Divović Matović, Branka

Link to this page

Authority KeyName Variants
e5ca8570-46ab-414d-9542-b1299c8aebae
  • Divović Matović, Branka (1)
Projects

Author's Bibliography

Behavioural interaction of pyrazoloquinolinone positive allosteric modulators at α6GABAA receptors and diazepam in rats: Anti-diazepam-induced ataxia action as a structure-dependent feature

Divović Matović, Branka; Knutson, Dan; Mitrović, Jelena; Stevanović, Vladimir; Stanojević, Boban; Savić, Snežana; Cook, James M.; Savić, Miroslav M.

(2022)

TY  - JOUR
AU  - Divović Matović, Branka
AU  - Knutson, Dan
AU  - Mitrović, Jelena
AU  - Stevanović, Vladimir
AU  - Stanojević, Boban
AU  - Savić, Snežana
AU  - Cook, James M.
AU  - Savić, Miroslav M.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10454
AB  - Several pyrazoloquinolinone (PQ) ligands were recently discovered as functionally selective positive modulators at the PQ site of α6-containing GABAA receptors. PQs are also neutral modulators at the benzodiazepine site. We assessed the influence of PQ compounds from three structural groups (PZ-II-029 and related deuterated analogues DK-I-56-1, RV-I-029, DK-I-60-3 and DK-I-86-1; LAU 463 and related analogues DK-I-58-1 and DK-II-58-1; and DK-I-87-1), alone and in combination with diazepam, on the behaviour of male Sprague–Dawley rats. An excellent behavioural safety profile of all tested PQs was demonstrated in the spontaneous locomotor activity, rotarod, loss of righting reflex and pentylenetetrazol tests. In interaction studies, only PZ-II-029 and its analogues prevented the ataxic effects of the benzodiazepine, as assessed in the rotarod test and during monitoring of rat locomotor activity after awakening from the loss of righting reflex. Published electrophysiological profiles of PQ ligands imply that positive modulation elicited at α6-GABAA receptors that contain the γ2 and δ subunit, rather than their neutral modulatory action at the benzodiazepine site, may prevent the ataxic action of diazepam. Thus, PZ-II-029 and its deuterated analogues are not prone to untoward interactions with benzodiazepines and may indeed completely abolish their ataxic action, seen at therapeutic, and especially toxic concentrations.
T2  - Basic & Clinical Pharmacology & Toxicology
T1  - Behavioural interaction of pyrazoloquinolinone positive allosteric modulators at α6GABAA receptors and diazepam in rats: Anti-diazepam-induced ataxia action as a structure-dependent feature
VL  - 131
IS  - 6
SP  - 514
EP  - 524
DO  - 10.1111/bcpt.13801
ER  - 
@article{
author = "Divović Matović, Branka and Knutson, Dan and Mitrović, Jelena and Stevanović, Vladimir and Stanojević, Boban and Savić, Snežana and Cook, James M. and Savić, Miroslav M.",
year = "2022",
abstract = "Several pyrazoloquinolinone (PQ) ligands were recently discovered as functionally selective positive modulators at the PQ site of α6-containing GABAA receptors. PQs are also neutral modulators at the benzodiazepine site. We assessed the influence of PQ compounds from three structural groups (PZ-II-029 and related deuterated analogues DK-I-56-1, RV-I-029, DK-I-60-3 and DK-I-86-1; LAU 463 and related analogues DK-I-58-1 and DK-II-58-1; and DK-I-87-1), alone and in combination with diazepam, on the behaviour of male Sprague–Dawley rats. An excellent behavioural safety profile of all tested PQs was demonstrated in the spontaneous locomotor activity, rotarod, loss of righting reflex and pentylenetetrazol tests. In interaction studies, only PZ-II-029 and its analogues prevented the ataxic effects of the benzodiazepine, as assessed in the rotarod test and during monitoring of rat locomotor activity after awakening from the loss of righting reflex. Published electrophysiological profiles of PQ ligands imply that positive modulation elicited at α6-GABAA receptors that contain the γ2 and δ subunit, rather than their neutral modulatory action at the benzodiazepine site, may prevent the ataxic action of diazepam. Thus, PZ-II-029 and its deuterated analogues are not prone to untoward interactions with benzodiazepines and may indeed completely abolish their ataxic action, seen at therapeutic, and especially toxic concentrations.",
journal = "Basic & Clinical Pharmacology & Toxicology",
title = "Behavioural interaction of pyrazoloquinolinone positive allosteric modulators at α6GABAA receptors and diazepam in rats: Anti-diazepam-induced ataxia action as a structure-dependent feature",
volume = "131",
number = "6",
pages = "514-524",
doi = "10.1111/bcpt.13801"
}
Divović Matović, B., Knutson, D., Mitrović, J., Stevanović, V., Stanojević, B., Savić, S., Cook, J. M.,& Savić, M. M.. (2022). Behavioural interaction of pyrazoloquinolinone positive allosteric modulators at α6GABAA receptors and diazepam in rats: Anti-diazepam-induced ataxia action as a structure-dependent feature. in Basic & Clinical Pharmacology & Toxicology, 131(6), 514-524.
https://doi.org/10.1111/bcpt.13801
Divović Matović B, Knutson D, Mitrović J, Stevanović V, Stanojević B, Savić S, Cook JM, Savić MM. Behavioural interaction of pyrazoloquinolinone positive allosteric modulators at α6GABAA receptors and diazepam in rats: Anti-diazepam-induced ataxia action as a structure-dependent feature. in Basic & Clinical Pharmacology & Toxicology. 2022;131(6):514-524.
doi:10.1111/bcpt.13801 .
Divović Matović, Branka, Knutson, Dan, Mitrović, Jelena, Stevanović, Vladimir, Stanojević, Boban, Savić, Snežana, Cook, James M., Savić, Miroslav M., "Behavioural interaction of pyrazoloquinolinone positive allosteric modulators at α6GABAA receptors and diazepam in rats: Anti-diazepam-induced ataxia action as a structure-dependent feature" in Basic & Clinical Pharmacology & Toxicology, 131, no. 6 (2022):514-524,
https://doi.org/10.1111/bcpt.13801 . .
3
3