Schott, Eduardo

Link to this page

Authority KeyName Variants
7c11ce31-3f37-46bf-abc9-c436352cfae6
  • Schott, Eduardo (1)
Projects

Author's Bibliography

Exploring UiO-66(Zr) frameworks as nanotraps for highly efficient removal of EDTA-complexed heavy metals from water

Lou, Xiaofei; Wu, Yi-nan; Kabtamu, Daniel Manaye; Matović, Ljiljana; Zhang, Yanxing; Sun, Xianyi; Schott, Eduardo; Chu, Wenhai; Li, Fengting

(2021)

TY  - JOUR
AU  - Lou, Xiaofei
AU  - Wu, Yi-nan
AU  - Kabtamu, Daniel Manaye
AU  - Matović, Ljiljana
AU  - Zhang, Yanxing
AU  - Sun, Xianyi
AU  - Schott, Eduardo
AU  - Chu, Wenhai
AU  - Li, Fengting
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8919
AB  - Metal-organic frameworks (MOFs), an exciting class of porous crystalline materials, are suitable for adsorptive removal of toxic heavy metal-ethylenediaminetetraacetic acid (M-EDTA) complexes from wastewater. In this paper, water-stable UiO-66(Zr) with well-defined morphology was successfully synthesized through a facile microwave-assisted solvothermal method and employed as nanotraps for the efficient capture of the three M-EDTA complexes, Cu-EDTA, Pb-EDTA, and Ni-EDTA. The adsorption behaviors, effects of solution pH and co-existing anions, as well as the eluant and desorption were investigated. The obtained UiO-66(Zr) showed good stability and excellent uptake capacity of M-EDTA in a wide pH range (3.0-10.0). UiO-66(Zr) exhibited a higher removal efficiency of Cu-EDTA (57.56 mg/g), Pb-EDTA (120.6 mg/g), and Ni-EDTA (54.27 mg/g). Based on the overall analysis results, our findings show that EDTA-metal complex ions can be adsorbed inside UiO-66(Zr) mainly through the Lewis-acid/-base interactions and possible anion-πinteraction with strong binding energies. Size-matching EDTA-metal complexes confined in the UiO-66(Zr) with flexible geometry would also contribute to the fast adsorption kinetics as well as the selective adsorption of different M-EDTA complexes. © 2020 Elsevier Ltd.
T2  - Journal of Environmental Chemical Engineering
T1  - Exploring UiO-66(Zr) frameworks as nanotraps for highly efficient removal of EDTA-complexed heavy metals from water
VL  - 9
IS  - 1
SP  - 104932
DO  - 10.1016/j.jece.2020.104932
ER  - 
@article{
author = "Lou, Xiaofei and Wu, Yi-nan and Kabtamu, Daniel Manaye and Matović, Ljiljana and Zhang, Yanxing and Sun, Xianyi and Schott, Eduardo and Chu, Wenhai and Li, Fengting",
year = "2021",
url = "https://vinar.vin.bg.ac.rs/handle/123456789/8919",
abstract = "Metal-organic frameworks (MOFs), an exciting class of porous crystalline materials, are suitable for adsorptive removal of toxic heavy metal-ethylenediaminetetraacetic acid (M-EDTA) complexes from wastewater. In this paper, water-stable UiO-66(Zr) with well-defined morphology was successfully synthesized through a facile microwave-assisted solvothermal method and employed as nanotraps for the efficient capture of the three M-EDTA complexes, Cu-EDTA, Pb-EDTA, and Ni-EDTA. The adsorption behaviors, effects of solution pH and co-existing anions, as well as the eluant and desorption were investigated. The obtained UiO-66(Zr) showed good stability and excellent uptake capacity of M-EDTA in a wide pH range (3.0-10.0). UiO-66(Zr) exhibited a higher removal efficiency of Cu-EDTA (57.56 mg/g), Pb-EDTA (120.6 mg/g), and Ni-EDTA (54.27 mg/g). Based on the overall analysis results, our findings show that EDTA-metal complex ions can be adsorbed inside UiO-66(Zr) mainly through the Lewis-acid/-base interactions and possible anion-πinteraction with strong binding energies. Size-matching EDTA-metal complexes confined in the UiO-66(Zr) with flexible geometry would also contribute to the fast adsorption kinetics as well as the selective adsorption of different M-EDTA complexes. © 2020 Elsevier Ltd.",
journal = "Journal of Environmental Chemical Engineering",
title = "Exploring UiO-66(Zr) frameworks as nanotraps for highly efficient removal of EDTA-complexed heavy metals from water",
volume = "9",
number = "1",
pages = "104932",
doi = "10.1016/j.jece.2020.104932"
}
Lou, X., Wu, Y., Kabtamu, D. M., Matović, L., Zhang, Y., Sun, X., Schott, E., Chu, W.,& Li, F. (2021). Exploring UiO-66(Zr) frameworks as nanotraps for highly efficient removal of EDTA-complexed heavy metals from water.
Journal of Environmental Chemical Engineering, 9(1), 104932.
https://doi.org/10.1016/j.jece.2020.104932
Lou X, Wu Y, Kabtamu DM, Matović L, Zhang Y, Sun X, Schott E, Chu W, Li F. Exploring UiO-66(Zr) frameworks as nanotraps for highly efficient removal of EDTA-complexed heavy metals from water. Journal of Environmental Chemical Engineering. 2021;9(1):104932
Lou Xiaofei, Wu Yi-nan, Kabtamu Daniel Manaye, Matović Ljiljana, Zhang Yanxing, Sun Xianyi, Schott Eduardo, Chu Wenhai, Li Fengting, "Exploring UiO-66(Zr) frameworks as nanotraps for highly efficient removal of EDTA-complexed heavy metals from water" Journal of Environmental Chemical Engineering, 9, no. 1 (2021):104932,
https://doi.org/10.1016/j.jece.2020.104932 .