Dostanic, Jasmina

Link to this page

Authority KeyName Variants
9e39aaf1-2c7d-4cb2-bdb2-7288dadfca82
  • Dostanic, Jasmina (4)
Projects

Author's Bibliography

Antibacterial ability of supported silver nanoparticles by functionalized hydroxyapatite with 5-aminosalicylic acid

Lazić, Vesna M.; Smičiklas, Ivana D.; Marković, Jelena P.; Lončarević, Davor; Dostanic, Jasmina; Ahrenkiel, Scott Phillip; Nedeljković, Jovan

(2018)

TY  - JOUR
AU  - Lazić, Vesna M.
AU  - Smičiklas, Ivana D.
AU  - Marković, Jelena P.
AU  - Lončarević, Davor
AU  - Dostanic, Jasmina
AU  - Ahrenkiel, Scott Phillip
AU  - Nedeljković, Jovan
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1928
AB  - Antimicrobial performance of silver nanoparticles supported by functionalized hydroxyapatite with 5-aminosalycile acid was tested against Gram-negative bacteria E. coli, Gram-positive bacteria S. aureus and yeast C. albicans. Thorough characterization of materials (electron microscopy, nitrogen adsorption desorption isotherms, diffuse reflectance spectroscopy) followed each step during the course of nanocomposite preparation. Synthesized powder consists of rod-like hydroxyapatite particles (40-60 x 10-20 nm, length x diameter) decorated with nano-sized spherical silver particles whose content in nanocomposite was found to be 1.9 wt.-%. Concentration- and time-dependent bacterial reduction data indicated that use of silver nanoparticles even at concentration as low as 1 mu g mL(-1) lead to complete reduction of both bacteria (E. coli and S. aureus). On the other hand, non-toxic behavior of nanocomposite in broad concentration range (0.05-2.0 mg mL(-1)) was found towards C albicans. Successful inactivation of E. coli and S. aureus in five repeated cycles proved that synthesized nanocomposite can perform under long-run working conditions. (C) 2017 Elsevier Ltd. All rights reserved.
T2  - Vacuum
T1  - Antibacterial ability of supported silver nanoparticles by functionalized hydroxyapatite with 5-aminosalicylic acid
VL  - 148
SP  - 62
EP  - 68
DO  - 10.1016/j.vacuum.2017.10.039
ER  - 
@article{
author = "Lazić, Vesna M. and Smičiklas, Ivana D. and Marković, Jelena P. and Lončarević, Davor and Dostanic, Jasmina and Ahrenkiel, Scott Phillip and Nedeljković, Jovan",
year = "2018",
abstract = "Antimicrobial performance of silver nanoparticles supported by functionalized hydroxyapatite with 5-aminosalycile acid was tested against Gram-negative bacteria E. coli, Gram-positive bacteria S. aureus and yeast C. albicans. Thorough characterization of materials (electron microscopy, nitrogen adsorption desorption isotherms, diffuse reflectance spectroscopy) followed each step during the course of nanocomposite preparation. Synthesized powder consists of rod-like hydroxyapatite particles (40-60 x 10-20 nm, length x diameter) decorated with nano-sized spherical silver particles whose content in nanocomposite was found to be 1.9 wt.-%. Concentration- and time-dependent bacterial reduction data indicated that use of silver nanoparticles even at concentration as low as 1 mu g mL(-1) lead to complete reduction of both bacteria (E. coli and S. aureus). On the other hand, non-toxic behavior of nanocomposite in broad concentration range (0.05-2.0 mg mL(-1)) was found towards C albicans. Successful inactivation of E. coli and S. aureus in five repeated cycles proved that synthesized nanocomposite can perform under long-run working conditions. (C) 2017 Elsevier Ltd. All rights reserved.",
journal = "Vacuum",
title = "Antibacterial ability of supported silver nanoparticles by functionalized hydroxyapatite with 5-aminosalicylic acid",
volume = "148",
pages = "62-68",
doi = "10.1016/j.vacuum.2017.10.039"
}
Lazić, V. M., Smičiklas, I. D., Marković, J. P., Lončarević, D., Dostanic, J., Ahrenkiel, S. P.,& Nedeljković, J.. (2018). Antibacterial ability of supported silver nanoparticles by functionalized hydroxyapatite with 5-aminosalicylic acid. in Vacuum, 148, 62-68.
https://doi.org/10.1016/j.vacuum.2017.10.039
Lazić VM, Smičiklas ID, Marković JP, Lončarević D, Dostanic J, Ahrenkiel SP, Nedeljković J. Antibacterial ability of supported silver nanoparticles by functionalized hydroxyapatite with 5-aminosalicylic acid. in Vacuum. 2018;148:62-68.
doi:10.1016/j.vacuum.2017.10.039 .
Lazić, Vesna M., Smičiklas, Ivana D., Marković, Jelena P., Lončarević, Davor, Dostanic, Jasmina, Ahrenkiel, Scott Phillip, Nedeljković, Jovan, "Antibacterial ability of supported silver nanoparticles by functionalized hydroxyapatite with 5-aminosalicylic acid" in Vacuum, 148 (2018):62-68,
https://doi.org/10.1016/j.vacuum.2017.10.039 . .
20
16
18

Hybrid visible-light responsive Al2O3 particles

Đorđević, Vesna R.; Dostanic, Jasmina; Lončarević, Davor; Ahrenkiel, Scott Phillip; Sredojević, Dušan; Švrakić, Nenad M.; Belić, Milivoj R.; Nedeljković, Jovan

(2017)

TY  - JOUR
AU  - Đorđević, Vesna R.
AU  - Dostanic, Jasmina
AU  - Lončarević, Davor
AU  - Ahrenkiel, Scott Phillip
AU  - Sredojević, Dušan
AU  - Švrakić, Nenad M.
AU  - Belić, Milivoj R.
AU  - Nedeljković, Jovan
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1723
AB  - Detailed study of Al2O3, an insulator with the band gap of about 8.7 eV, and its different organic/inorganic charge transfer complexes with visible-light photo activity is presented. In particular, prepared Al2O3 particles of the size 0.1-0.3 mu m are coated with several organic complexes - the specific details for catecholate- and salicylate-type of ligands are described below - and the light absorption properties and photocatalytic activity of such hybrids are scrutinized and compared with those of other organic/inorganic hybrid materials previously studied. In addition, the obtained experimental results are supported with quantum chemical calculations based on density functional theory. (C) 2017 Elsevier B.V. All rights reserved.
T2  - Chemical Physics Letters
T1  - Hybrid visible-light responsive Al2O3 particles
VL  - 685
SP  - 416
EP  - 421
DO  - 10.1016/j.cplett.2017.08.012
ER  - 
@article{
author = "Đorđević, Vesna R. and Dostanic, Jasmina and Lončarević, Davor and Ahrenkiel, Scott Phillip and Sredojević, Dušan and Švrakić, Nenad M. and Belić, Milivoj R. and Nedeljković, Jovan",
year = "2017",
abstract = "Detailed study of Al2O3, an insulator with the band gap of about 8.7 eV, and its different organic/inorganic charge transfer complexes with visible-light photo activity is presented. In particular, prepared Al2O3 particles of the size 0.1-0.3 mu m are coated with several organic complexes - the specific details for catecholate- and salicylate-type of ligands are described below - and the light absorption properties and photocatalytic activity of such hybrids are scrutinized and compared with those of other organic/inorganic hybrid materials previously studied. In addition, the obtained experimental results are supported with quantum chemical calculations based on density functional theory. (C) 2017 Elsevier B.V. All rights reserved.",
journal = "Chemical Physics Letters",
title = "Hybrid visible-light responsive Al2O3 particles",
volume = "685",
pages = "416-421",
doi = "10.1016/j.cplett.2017.08.012"
}
Đorđević, V. R., Dostanic, J., Lončarević, D., Ahrenkiel, S. P., Sredojević, D., Švrakić, N. M., Belić, M. R.,& Nedeljković, J.. (2017). Hybrid visible-light responsive Al2O3 particles. in Chemical Physics Letters, 685, 416-421.
https://doi.org/10.1016/j.cplett.2017.08.012
Đorđević VR, Dostanic J, Lončarević D, Ahrenkiel SP, Sredojević D, Švrakić NM, Belić MR, Nedeljković J. Hybrid visible-light responsive Al2O3 particles. in Chemical Physics Letters. 2017;685:416-421.
doi:10.1016/j.cplett.2017.08.012 .
Đorđević, Vesna R., Dostanic, Jasmina, Lončarević, Davor, Ahrenkiel, Scott Phillip, Sredojević, Dušan, Švrakić, Nenad M., Belić, Milivoj R., Nedeljković, Jovan, "Hybrid visible-light responsive Al2O3 particles" in Chemical Physics Letters, 685 (2017):416-421,
https://doi.org/10.1016/j.cplett.2017.08.012 . .
10
8
9

Antimicrobial and Photocatalytic Abilities of Ag2CO3 Nano-Rods

Lončarević, Davor; Vukoje, Ivana D.; Dostanic, Jasmina; Bjelajac, Anđelika; Đorđević, Vesna R.; Dimitrijević, Suzana I.; Nedeljković, Jovan

(2017)

TY  - JOUR
AU  - Lončarević, Davor
AU  - Vukoje, Ivana D.
AU  - Dostanic, Jasmina
AU  - Bjelajac, Anđelika
AU  - Đorđević, Vesna R.
AU  - Dimitrijević, Suzana I.
AU  - Nedeljković, Jovan
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1499
AB  - The rod-like Ag2CO3 particles (2-4 3 0.3-0.6 mm, length 3 diameter) were synthesized in water by the precipitation reaction between AgNO3 and NaHCO3 in the presence of polyvinylpyrrolidone. The X-ray diffraction analysis revealed the co-existence of monoclinic and hexagonal phases of Ag2CO3, without presence of impurities. The band gap energy of Ag-2 CO3 was found to be 1.4 eV from the diffuse reflectance spectra. Photocatalytic ability of Ag2CO3 was tested using degradation reaction of the organic dye methylene blue over the wide range of concentrations, as well as under long run working conditions in repeated cycles. The photocatalytic mechanism was discussed in terms of the relative energetics of valence and conduction band. Antimicrobial efficiency of Ag-2 CO3 in dark was tested against Gram-negative bacteria E. coli. The Ag2CO3 dispersions in the concentration range 0.1-1.0 mg/mL ensured 100% reduction of bacteria cells. Time-dependent measurements revealed that reduction rates of bacteria cells vary in ascending order with the content of Ag2CO3. On the other hand, the observed reduction rates of bacteria cells do not depend on the concentration of coexisting free Ag+ ions (from 2 to 25 mg/L) present in Ag2CO3 dispersion.
T2  - Chemistryselect
T1  - Antimicrobial and Photocatalytic Abilities of Ag2CO3 Nano-Rods
VL  - 2
IS  - 10
SP  - 2931
EP  - 2938
DO  - 10.1002/slct.201700003
ER  - 
@article{
author = "Lončarević, Davor and Vukoje, Ivana D. and Dostanic, Jasmina and Bjelajac, Anđelika and Đorđević, Vesna R. and Dimitrijević, Suzana I. and Nedeljković, Jovan",
year = "2017",
abstract = "The rod-like Ag2CO3 particles (2-4 3 0.3-0.6 mm, length 3 diameter) were synthesized in water by the precipitation reaction between AgNO3 and NaHCO3 in the presence of polyvinylpyrrolidone. The X-ray diffraction analysis revealed the co-existence of monoclinic and hexagonal phases of Ag2CO3, without presence of impurities. The band gap energy of Ag-2 CO3 was found to be 1.4 eV from the diffuse reflectance spectra. Photocatalytic ability of Ag2CO3 was tested using degradation reaction of the organic dye methylene blue over the wide range of concentrations, as well as under long run working conditions in repeated cycles. The photocatalytic mechanism was discussed in terms of the relative energetics of valence and conduction band. Antimicrobial efficiency of Ag-2 CO3 in dark was tested against Gram-negative bacteria E. coli. The Ag2CO3 dispersions in the concentration range 0.1-1.0 mg/mL ensured 100% reduction of bacteria cells. Time-dependent measurements revealed that reduction rates of bacteria cells vary in ascending order with the content of Ag2CO3. On the other hand, the observed reduction rates of bacteria cells do not depend on the concentration of coexisting free Ag+ ions (from 2 to 25 mg/L) present in Ag2CO3 dispersion.",
journal = "Chemistryselect",
title = "Antimicrobial and Photocatalytic Abilities of Ag2CO3 Nano-Rods",
volume = "2",
number = "10",
pages = "2931-2938",
doi = "10.1002/slct.201700003"
}
Lončarević, D., Vukoje, I. D., Dostanic, J., Bjelajac, A., Đorđević, V. R., Dimitrijević, S. I.,& Nedeljković, J.. (2017). Antimicrobial and Photocatalytic Abilities of Ag2CO3 Nano-Rods. in Chemistryselect, 2(10), 2931-2938.
https://doi.org/10.1002/slct.201700003
Lončarević D, Vukoje ID, Dostanic J, Bjelajac A, Đorđević VR, Dimitrijević SI, Nedeljković J. Antimicrobial and Photocatalytic Abilities of Ag2CO3 Nano-Rods. in Chemistryselect. 2017;2(10):2931-2938.
doi:10.1002/slct.201700003 .
Lončarević, Davor, Vukoje, Ivana D., Dostanic, Jasmina, Bjelajac, Anđelika, Đorđević, Vesna R., Dimitrijević, Suzana I., Nedeljković, Jovan, "Antimicrobial and Photocatalytic Abilities of Ag2CO3 Nano-Rods" in Chemistryselect, 2, no. 10 (2017):2931-2938,
https://doi.org/10.1002/slct.201700003 . .
8
7
8

The photocatalytic performance of silver halides - Silver carbonate heterostructures

Dostanic, Jasmina; Lončarević, Davor; Đorđević, Vesna R.; Ahrenkiel, Scott Phillip; Nedeljković, Jovan

(2017)

TY  - JOUR
AU  - Dostanic, Jasmina
AU  - Lončarević, Davor
AU  - Đorđević, Vesna R.
AU  - Ahrenkiel, Scott Phillip
AU  - Nedeljković, Jovan
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1425
AB  - The synthesized rod-like Ag2CO3 particles (2-4 x 0.3-0.6 mu m, length x diameter) served as a precursor for preparation of the AgX/Ag2CO3 (X = CI, I) composites by ion exchange method. The various microstructural (X-ray diffraction analysis, transmission electron microscopy, nitrogen adsorption desorption isotherms) and optical (diffuse reflection spectroscopy) techniques were used for thorough characterization of obtained heterostructures. The enhanced photocatalytic performance of AgX/Ag2CO3 heterostructures in comparison to Ag2CO3 nanorods (NRs) was evidenced using degradation of organic dye methylene blue as a test reaction. Also, the formation of composites improved their stability under long run illumination conditions. The effect of AgX content on photocatalytic activity of the composites were also investigated. The possible photocatalytic mechanism that facilitates efficient separation of photo-formed charge carriers in heterostructures was discussed in terms of the relative energetic of valence and conduction bands. (C) 2016 Elsevier B.V. All rights reserved.
T2  - Journal of Photochemistry and Photobiology. A: Chemistry
T1  - The photocatalytic performance of silver halides - Silver carbonate heterostructures
VL  - 336
SP  - 1
EP  - 7
DO  - 10.1016/j.jphotochem.2016.12.019
ER  - 
@article{
author = "Dostanic, Jasmina and Lončarević, Davor and Đorđević, Vesna R. and Ahrenkiel, Scott Phillip and Nedeljković, Jovan",
year = "2017",
abstract = "The synthesized rod-like Ag2CO3 particles (2-4 x 0.3-0.6 mu m, length x diameter) served as a precursor for preparation of the AgX/Ag2CO3 (X = CI, I) composites by ion exchange method. The various microstructural (X-ray diffraction analysis, transmission electron microscopy, nitrogen adsorption desorption isotherms) and optical (diffuse reflection spectroscopy) techniques were used for thorough characterization of obtained heterostructures. The enhanced photocatalytic performance of AgX/Ag2CO3 heterostructures in comparison to Ag2CO3 nanorods (NRs) was evidenced using degradation of organic dye methylene blue as a test reaction. Also, the formation of composites improved their stability under long run illumination conditions. The effect of AgX content on photocatalytic activity of the composites were also investigated. The possible photocatalytic mechanism that facilitates efficient separation of photo-formed charge carriers in heterostructures was discussed in terms of the relative energetic of valence and conduction bands. (C) 2016 Elsevier B.V. All rights reserved.",
journal = "Journal of Photochemistry and Photobiology. A: Chemistry",
title = "The photocatalytic performance of silver halides - Silver carbonate heterostructures",
volume = "336",
pages = "1-7",
doi = "10.1016/j.jphotochem.2016.12.019"
}
Dostanic, J., Lončarević, D., Đorđević, V. R., Ahrenkiel, S. P.,& Nedeljković, J.. (2017). The photocatalytic performance of silver halides - Silver carbonate heterostructures. in Journal of Photochemistry and Photobiology. A: Chemistry, 336, 1-7.
https://doi.org/10.1016/j.jphotochem.2016.12.019
Dostanic J, Lončarević D, Đorđević VR, Ahrenkiel SP, Nedeljković J. The photocatalytic performance of silver halides - Silver carbonate heterostructures. in Journal of Photochemistry and Photobiology. A: Chemistry. 2017;336:1-7.
doi:10.1016/j.jphotochem.2016.12.019 .
Dostanic, Jasmina, Lončarević, Davor, Đorđević, Vesna R., Ahrenkiel, Scott Phillip, Nedeljković, Jovan, "The photocatalytic performance of silver halides - Silver carbonate heterostructures" in Journal of Photochemistry and Photobiology. A: Chemistry, 336 (2017):1-7,
https://doi.org/10.1016/j.jphotochem.2016.12.019 . .
5
5
5
5