Guth, Imre O.

Link to this page

Authority KeyName Variants
47f3d46b-438d-4ada-86f4-35793c4c2c30
  • Guth, Imre O. (2)
Projects

Author's Bibliography

Niobium and zinc doped titanium-tin-oxide solid-solution ceramics: Synthesis, structure and electrical characterization

Ivetić, Tamara B.; Sekulić, Dalibor L.; Papan, Jelena; Guth, Imre O.; Petrović, Dragoslav M.; Lukić-Petrović, Svetlana R.

(2018)

TY  - JOUR
AU  - Ivetić, Tamara B.
AU  - Sekulić, Dalibor L.
AU  - Papan, Jelena
AU  - Guth, Imre O.
AU  - Petrović, Dragoslav M.
AU  - Lukić-Petrović, Svetlana R.
PY  - 2018
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0272884218318674
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7813
AB  - This paper describes the processing, microstructure, optical and electrical properties of the nanocrystalline (NC) niobium and zinc doped titanium-tin-oxide (TTO:NZ) based ceramics. Variety of techniques was employed (X-ray diffraction, scanning electron microscopy, energy dispersive, Raman and impedance spectroscopy) in the characterization of the obtained TTO:NZ, which confirmed the formation of NC solid-solution matrix with Ti0.8Sn0.2O2 composition. A specific highly dense (approximately 97% of the theoretical density was reached) varistor like microstructure (matrix metal-oxide grains surrounded by the grain-boundary regions) and accordingly resembling electrical properties (breakdown electric field of approximately 130 V/mm and nonlinearity coefficient of α ≈ 6.5) were achieved through double cation doping and elected condition of the mechanochemical solid-state synthesis. Impedance response analysis of TTO:NZ ceramics by means of an equivalent electrical circuit based on the brick-layer model for polycrystalline materials revealed the presence of two temperature dependent electrical relaxation phenomena of the non-Debye type as well as the negative temperature coefficient of resistance behavior.
T2  - Ceramics International
T1  - Niobium and zinc doped titanium-tin-oxide solid-solution ceramics: Synthesis, structure and electrical characterization
VL  - 44
IS  - 15
SP  - 18987
EP  - 18995
DO  - 10.1016/j.ceramint.2018.07.139
ER  - 
@article{
author = "Ivetić, Tamara B. and Sekulić, Dalibor L. and Papan, Jelena and Guth, Imre O. and Petrović, Dragoslav M. and Lukić-Petrović, Svetlana R.",
year = "2018",
abstract = "This paper describes the processing, microstructure, optical and electrical properties of the nanocrystalline (NC) niobium and zinc doped titanium-tin-oxide (TTO:NZ) based ceramics. Variety of techniques was employed (X-ray diffraction, scanning electron microscopy, energy dispersive, Raman and impedance spectroscopy) in the characterization of the obtained TTO:NZ, which confirmed the formation of NC solid-solution matrix with Ti0.8Sn0.2O2 composition. A specific highly dense (approximately 97% of the theoretical density was reached) varistor like microstructure (matrix metal-oxide grains surrounded by the grain-boundary regions) and accordingly resembling electrical properties (breakdown electric field of approximately 130 V/mm and nonlinearity coefficient of α ≈ 6.5) were achieved through double cation doping and elected condition of the mechanochemical solid-state synthesis. Impedance response analysis of TTO:NZ ceramics by means of an equivalent electrical circuit based on the brick-layer model for polycrystalline materials revealed the presence of two temperature dependent electrical relaxation phenomena of the non-Debye type as well as the negative temperature coefficient of resistance behavior.",
journal = "Ceramics International",
title = "Niobium and zinc doped titanium-tin-oxide solid-solution ceramics: Synthesis, structure and electrical characterization",
volume = "44",
number = "15",
pages = "18987-18995",
doi = "10.1016/j.ceramint.2018.07.139"
}
Ivetić, T. B., Sekulić, D. L., Papan, J., Guth, I. O., Petrović, D. M.,& Lukić-Petrović, S. R.. (2018). Niobium and zinc doped titanium-tin-oxide solid-solution ceramics: Synthesis, structure and electrical characterization. in Ceramics International, 44(15), 18987-18995.
https://doi.org/10.1016/j.ceramint.2018.07.139
Ivetić TB, Sekulić DL, Papan J, Guth IO, Petrović DM, Lukić-Petrović SR. Niobium and zinc doped titanium-tin-oxide solid-solution ceramics: Synthesis, structure and electrical characterization. in Ceramics International. 2018;44(15):18987-18995.
doi:10.1016/j.ceramint.2018.07.139 .
Ivetić, Tamara B., Sekulić, Dalibor L., Papan, Jelena, Guth, Imre O., Petrović, Dragoslav M., Lukić-Petrović, Svetlana R., "Niobium and zinc doped titanium-tin-oxide solid-solution ceramics: Synthesis, structure and electrical characterization" in Ceramics International, 44, no. 15 (2018):18987-18995,
https://doi.org/10.1016/j.ceramint.2018.07.139 . .
6
1
7

Mechanochemical synthesis of YNbO4:Eu nanocrystalline powder and its structural, microstructural and photoluminescence properties

Đačanin, Ljubica; Dramićanin, Miroslav; Lukić-Petrović, Svetlana R.; Petrović, Dragoslav M.; Nikolić, Marko G.; Ivetić, Tamara B.; Guth, Imre O.

(2014)

TY  - JOUR
AU  - Đačanin, Ljubica
AU  - Dramićanin, Miroslav
AU  - Lukić-Petrović, Svetlana R.
AU  - Petrović, Dragoslav M.
AU  - Nikolić, Marko G.
AU  - Ivetić, Tamara B.
AU  - Guth, Imre O.
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5971
AB  - In this research we prepared nanocrystalline YNbO4:Eu3+ phosphor, i.e. nanophosphor, powder using an efficient mechanochemical method followed by annealing. X-ray diffraction analysis revealed that YNbO4:Eu3+ crystallizes in monoclinic structure C2/c where, from the point of view of A and B in ABO(4) compounds, cation coordination can be noted as [6+2, 4+2]. Crystallite size of about 40 nm, was estimated using Debye Scherrers equation. Raman spectroscopy with 785 and 532 rim excitation wavelengths is performed to record a majority of materials phonon modes and to provide more in depth understanding of the YNbO4 structure. Scanning electron microscopy observations indicate that the mechanical treatment during synthesis is causing non-uniformity of the powder microstructure. High resolution photoluminescent measurements upon UV excitation showed intense emission coming from f-f transitions of the europium ion with the lifetime of 0.68 ms, suggesting that the obtained YNbO4:Eu3+ is a good potential phosphor. A comparison of emissive properties with microcrystalline YNbO4:Eu3+ was made and it showed higher values of emission intensity and lifetime of the nanocrystalline sample.(C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
T2  - Ceramics International
T1  - Mechanochemical synthesis of YNbO4:Eu nanocrystalline powder and its structural, microstructural and photoluminescence properties
VL  - 40
IS  - 6
SP  - 8281
EP  - 8286
DO  - 10.1016/j.ceramint.2014.01.028
ER  - 
@article{
author = "Đačanin, Ljubica and Dramićanin, Miroslav and Lukić-Petrović, Svetlana R. and Petrović, Dragoslav M. and Nikolić, Marko G. and Ivetić, Tamara B. and Guth, Imre O.",
year = "2014",
abstract = "In this research we prepared nanocrystalline YNbO4:Eu3+ phosphor, i.e. nanophosphor, powder using an efficient mechanochemical method followed by annealing. X-ray diffraction analysis revealed that YNbO4:Eu3+ crystallizes in monoclinic structure C2/c where, from the point of view of A and B in ABO(4) compounds, cation coordination can be noted as [6+2, 4+2]. Crystallite size of about 40 nm, was estimated using Debye Scherrers equation. Raman spectroscopy with 785 and 532 rim excitation wavelengths is performed to record a majority of materials phonon modes and to provide more in depth understanding of the YNbO4 structure. Scanning electron microscopy observations indicate that the mechanical treatment during synthesis is causing non-uniformity of the powder microstructure. High resolution photoluminescent measurements upon UV excitation showed intense emission coming from f-f transitions of the europium ion with the lifetime of 0.68 ms, suggesting that the obtained YNbO4:Eu3+ is a good potential phosphor. A comparison of emissive properties with microcrystalline YNbO4:Eu3+ was made and it showed higher values of emission intensity and lifetime of the nanocrystalline sample.(C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.",
journal = "Ceramics International",
title = "Mechanochemical synthesis of YNbO4:Eu nanocrystalline powder and its structural, microstructural and photoluminescence properties",
volume = "40",
number = "6",
pages = "8281-8286",
doi = "10.1016/j.ceramint.2014.01.028"
}
Đačanin, L., Dramićanin, M., Lukić-Petrović, S. R., Petrović, D. M., Nikolić, M. G., Ivetić, T. B.,& Guth, I. O.. (2014). Mechanochemical synthesis of YNbO4:Eu nanocrystalline powder and its structural, microstructural and photoluminescence properties. in Ceramics International, 40(6), 8281-8286.
https://doi.org/10.1016/j.ceramint.2014.01.028
Đačanin L, Dramićanin M, Lukić-Petrović SR, Petrović DM, Nikolić MG, Ivetić TB, Guth IO. Mechanochemical synthesis of YNbO4:Eu nanocrystalline powder and its structural, microstructural and photoluminescence properties. in Ceramics International. 2014;40(6):8281-8286.
doi:10.1016/j.ceramint.2014.01.028 .
Đačanin, Ljubica, Dramićanin, Miroslav, Lukić-Petrović, Svetlana R., Petrović, Dragoslav M., Nikolić, Marko G., Ivetić, Tamara B., Guth, Imre O., "Mechanochemical synthesis of YNbO4:Eu nanocrystalline powder and its structural, microstructural and photoluminescence properties" in Ceramics International, 40, no. 6 (2014):8281-8286,
https://doi.org/10.1016/j.ceramint.2014.01.028 . .
14
9
14