Cinkova, Kristina

Link to this page

Authority KeyName Variants
4d5b7c56-4b43-4477-901f-df4f551cd5dc
  • Cinkova, Kristina (2)

Author's Bibliography

The doping level of boron-doped diamond electrodes affects the voltammetric sensing of uric acid

Cinkova, Kristina; Kianičkova, Kristina; Stanković, Dalibor M.; Vojs, Marian; Marton, Marian; Švorc, Lubomir

(2018)

TY  - JOUR
AU  - Cinkova, Kristina
AU  - Kianičkova, Kristina
AU  - Stanković, Dalibor M.
AU  - Vojs, Marian
AU  - Marton, Marian
AU  - Švorc, Lubomir
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7662
AB  - In this work, the electrochemical oxidation and subsequent determination of uric acid was investigated using boron-doped diamond electrodes with various B/C ratios (0-2000 ppm). The cyclic voltammetric study showed one irreversible oxidation peak at +(1.1-1.25) V (vs. Ag/AgCl/3 M KCl) in the presence of Britton-Robinson buffer (pH 2.25) depending on the boron content. Employing differential pulse voltammetry using the 2000 ppm boron-doped diamond electrode the acquired analytical parameters were as follows: a limit of detection of 7.7 M, a limit of quantification of 26 M and intra-day repeatability (relative standard deviation of 2.9% for n = 15). After performing an interference study, the method was applied to the determination of uric acid in biological samples (human urine). The uric acid concentrations determined in the urine samples were compared with the reference values stated in the literature. The proposed methodology using boron-doped diamond electrodes could find applications in uric acid sensing within clinical, pharmaceutical and environmental analysis.
T2  - Analytical Methods
T1  - The doping level of boron-doped diamond electrodes affects the voltammetric sensing of uric acid
VL  - 10
IS  - 9
SP  - 991
EP  - 996
DO  - 10.1039/C7AY02720F
ER  - 
@article{
author = "Cinkova, Kristina and Kianičkova, Kristina and Stanković, Dalibor M. and Vojs, Marian and Marton, Marian and Švorc, Lubomir",
year = "2018",
abstract = "In this work, the electrochemical oxidation and subsequent determination of uric acid was investigated using boron-doped diamond electrodes with various B/C ratios (0-2000 ppm). The cyclic voltammetric study showed one irreversible oxidation peak at +(1.1-1.25) V (vs. Ag/AgCl/3 M KCl) in the presence of Britton-Robinson buffer (pH 2.25) depending on the boron content. Employing differential pulse voltammetry using the 2000 ppm boron-doped diamond electrode the acquired analytical parameters were as follows: a limit of detection of 7.7 M, a limit of quantification of 26 M and intra-day repeatability (relative standard deviation of 2.9% for n = 15). After performing an interference study, the method was applied to the determination of uric acid in biological samples (human urine). The uric acid concentrations determined in the urine samples were compared with the reference values stated in the literature. The proposed methodology using boron-doped diamond electrodes could find applications in uric acid sensing within clinical, pharmaceutical and environmental analysis.",
journal = "Analytical Methods",
title = "The doping level of boron-doped diamond electrodes affects the voltammetric sensing of uric acid",
volume = "10",
number = "9",
pages = "991-996",
doi = "10.1039/C7AY02720F"
}
Cinkova, K., Kianičkova, K., Stanković, D. M., Vojs, M., Marton, M.,& Švorc, L.. (2018). The doping level of boron-doped diamond electrodes affects the voltammetric sensing of uric acid. in Analytical Methods, 10(9), 991-996.
https://doi.org/10.1039/C7AY02720F
Cinkova K, Kianičkova K, Stanković DM, Vojs M, Marton M, Švorc L. The doping level of boron-doped diamond electrodes affects the voltammetric sensing of uric acid. in Analytical Methods. 2018;10(9):991-996.
doi:10.1039/C7AY02720F .
Cinkova, Kristina, Kianičkova, Kristina, Stanković, Dalibor M., Vojs, Marian, Marton, Marian, Švorc, Lubomir, "The doping level of boron-doped diamond electrodes affects the voltammetric sensing of uric acid" in Analytical Methods, 10, no. 9 (2018):991-996,
https://doi.org/10.1039/C7AY02720F . .
31
21
30

Advanced electrochemical platform for determination of cytostatic drug flutamide in various matrices using a boron-doped diamond electrode

Švorc, Lubomir; Borovska, Katarina; Cinkova, Kristina; Stanković, Dalibor M.; Plankova, Alexandra

(2017)

TY  - JOUR
AU  - Švorc, Lubomir
AU  - Borovska, Katarina
AU  - Cinkova, Kristina
AU  - Stanković, Dalibor M.
AU  - Plankova, Alexandra
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7183
AB  - An innovative, rapid and simple electrochemical approach for the reliable quantification of cytostatic drug flutamide (FLU) in various matrices is herein proposed. This platform involves coupling of differential pulse (DPV) and square-wave voltammetry (SWV) with a boron-doped diamond (BDD) electrode as the working electrode and 0.1 M sulphuric acid as the supporting electrolyte. For the first time, the voltammetric profile of FLU was manifested by three irreversible and diffusion-controlled oxidation peaks at + 1.1 (P1), + 1.4 (P2) and + 1.9 V (P3). The analytical performance evaluation was assessed for all three peaks, using both pulse voltammetric techniques with the optimized operating parameters and the highest sensitivity of 1.76 nA/mu M was accomplished for P2 using DPV and 3.54 nA/mu M for P3 using SWV. The corresponding linear concentration ranges were found to be 0.99-42.9 and 4.8-35.5 mu M with the detection limits of 0.42 and 0.18 mu M, respectively. The repeatability varied, depending on the oxidation peaks of FLU, with the relative standard deviations in the range of 3.3-8.8% and 2.9-9.3% for DPV and SWV, respectively. The proposed electrochemical platform was successfully applied in the analysis of pharmaceutical formulations, spiked human urine and water samples with the significant mean recoveries. Using BDD electrode, the current work establishes an advanced, simple and rapid alternative platform to so far used toxic mercury-based electrodes and time demanding chemically modified electrodes in cytostatic sensing. Besides, BDD electrode represents a comfortable electrochemical sensor for routine analysis in pharmaceutical, clinical and environmental chemistry. (C) 2017 Elsevier Ltd. All rights reserved.
T2  - Electrochimica Acta
T1  - Advanced electrochemical platform for determination of cytostatic drug flutamide in various matrices using a boron-doped diamond electrode
VL  - 251
SP  - 621
EP  - 630
DO  - 10.1016/j.electacta.2017.08.077
ER  - 
@article{
author = "Švorc, Lubomir and Borovska, Katarina and Cinkova, Kristina and Stanković, Dalibor M. and Plankova, Alexandra",
year = "2017",
abstract = "An innovative, rapid and simple electrochemical approach for the reliable quantification of cytostatic drug flutamide (FLU) in various matrices is herein proposed. This platform involves coupling of differential pulse (DPV) and square-wave voltammetry (SWV) with a boron-doped diamond (BDD) electrode as the working electrode and 0.1 M sulphuric acid as the supporting electrolyte. For the first time, the voltammetric profile of FLU was manifested by three irreversible and diffusion-controlled oxidation peaks at + 1.1 (P1), + 1.4 (P2) and + 1.9 V (P3). The analytical performance evaluation was assessed for all three peaks, using both pulse voltammetric techniques with the optimized operating parameters and the highest sensitivity of 1.76 nA/mu M was accomplished for P2 using DPV and 3.54 nA/mu M for P3 using SWV. The corresponding linear concentration ranges were found to be 0.99-42.9 and 4.8-35.5 mu M with the detection limits of 0.42 and 0.18 mu M, respectively. The repeatability varied, depending on the oxidation peaks of FLU, with the relative standard deviations in the range of 3.3-8.8% and 2.9-9.3% for DPV and SWV, respectively. The proposed electrochemical platform was successfully applied in the analysis of pharmaceutical formulations, spiked human urine and water samples with the significant mean recoveries. Using BDD electrode, the current work establishes an advanced, simple and rapid alternative platform to so far used toxic mercury-based electrodes and time demanding chemically modified electrodes in cytostatic sensing. Besides, BDD electrode represents a comfortable electrochemical sensor for routine analysis in pharmaceutical, clinical and environmental chemistry. (C) 2017 Elsevier Ltd. All rights reserved.",
journal = "Electrochimica Acta",
title = "Advanced electrochemical platform for determination of cytostatic drug flutamide in various matrices using a boron-doped diamond electrode",
volume = "251",
pages = "621-630",
doi = "10.1016/j.electacta.2017.08.077"
}
Švorc, L., Borovska, K., Cinkova, K., Stanković, D. M.,& Plankova, A.. (2017). Advanced electrochemical platform for determination of cytostatic drug flutamide in various matrices using a boron-doped diamond electrode. in Electrochimica Acta, 251, 621-630.
https://doi.org/10.1016/j.electacta.2017.08.077
Švorc L, Borovska K, Cinkova K, Stanković DM, Plankova A. Advanced electrochemical platform for determination of cytostatic drug flutamide in various matrices using a boron-doped diamond electrode. in Electrochimica Acta. 2017;251:621-630.
doi:10.1016/j.electacta.2017.08.077 .
Švorc, Lubomir, Borovska, Katarina, Cinkova, Kristina, Stanković, Dalibor M., Plankova, Alexandra, "Advanced electrochemical platform for determination of cytostatic drug flutamide in various matrices using a boron-doped diamond electrode" in Electrochimica Acta, 251 (2017):621-630,
https://doi.org/10.1016/j.electacta.2017.08.077 . .
72
55
77