Pejčić, Milica

Link to this page

Authority KeyName Variants
orcid::0000-0001-5379-6020
  • Pejčić, Milica (10)
Projects

Author's Bibliography

Utilization of swift heavy ions for modification of graphene oxide-based nanocomposites

Mravik, Željko; Pejčić, Milica; Bajuk-Bogdanović, Danica; Kirilkin, Nikita; Korneeva, Ekaterina; Skuratov, Vladimir; Jovanović, Zoran

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Mravik, Željko
AU  - Pejčić, Milica
AU  - Bajuk-Bogdanović, Danica
AU  - Kirilkin, Nikita
AU  - Korneeva, Ekaterina
AU  - Skuratov, Vladimir
AU  - Jovanović, Zoran
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13146
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Utilization of swift heavy ions for modification of graphene oxide-based nanocomposites
SP  - 42
EP  - 42
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13146
ER  - 
@conference{
author = "Mravik, Željko and Pejčić, Milica and Bajuk-Bogdanović, Danica and Kirilkin, Nikita and Korneeva, Ekaterina and Skuratov, Vladimir and Jovanović, Zoran",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Utilization of swift heavy ions for modification of graphene oxide-based nanocomposites",
pages = "42-42",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13146"
}
Mravik, Ž., Pejčić, M., Bajuk-Bogdanović, D., Kirilkin, N., Korneeva, E., Skuratov, V.,& Jovanović, Z.. (2024). Utilization of swift heavy ions for modification of graphene oxide-based nanocomposites. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 42-42.
https://hdl.handle.net/21.15107/rcub_vinar_13146
Mravik Ž, Pejčić M, Bajuk-Bogdanović D, Kirilkin N, Korneeva E, Skuratov V, Jovanović Z. Utilization of swift heavy ions for modification of graphene oxide-based nanocomposites. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:42-42.
https://hdl.handle.net/21.15107/rcub_vinar_13146 .
Mravik, Željko, Pejčić, Milica, Bajuk-Bogdanović, Danica, Kirilkin, Nikita, Korneeva, Ekaterina, Skuratov, Vladimir, Jovanović, Zoran, "Utilization of swift heavy ions for modification of graphene oxide-based nanocomposites" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):42-42,
https://hdl.handle.net/21.15107/rcub_vinar_13146 .

Spent Coffee Grounds as an Adsorbent for Malathion and Chlorpyrifos—Kinetics, Thermodynamics, and Eco-Neurotoxicity

Milanković, Vedran; Tasić, Tamara; Pejčić, Milica; Pašti, Igor; Lazarević-Pašti, Tamara

(2023)

TY  - JOUR
AU  - Milanković, Vedran
AU  - Tasić, Tamara
AU  - Pejčić, Milica
AU  - Pašti, Igor
AU  - Lazarević-Pašti, Tamara
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11215
AB  - Coffee is one of the most popular beverages, with around 10.5 million tons manufactured annually. The same amount of spent coffee grounds (SCGs) might harm the environment if disposed of carelessly. On the other hand, pesticide contamination in food and biowaste is a rising problem. Because pesticides are hazardous and can cause serious health consequences, it is critical to understand how they interact with food biowaste materials. However, it is also a question if biowaste can be used to remediate rising pesticide residues in the environment. This study investigated the interactions of SCGs with the organophosphate pesticides malathion (MLT) and chlorpyrifos (CHP) and addressed the possibility of using SCGs as adsorbents for the removal of these pesticides from water and fruit extracts. The kinetics of MLT and CHP adsorption on SCGs fits well with the pseudo-first-order kinetic model. The Langmuir isotherm model best describes the adsorption process, giving the maximal adsorption capacity for MLT as 7.16 mg g−1 and 7.00 mg g−1 for CHP. Based on the thermodynamic analysis, it can be deduced that MLT adsorption on SCGs is exothermic, while CHP adsorption is an endothermic process. The adsorption efficiency of MLT and CHP using SCGs in a complicated matrix of fruit extracts remained constant. The neurotoxicity results showed that no more toxic products were formed during adsorption, indicating that SCGs are a safe-to-use adsorbent for pesticide removal in water and fruit extracts.
T2  - Foods
T1  - Spent Coffee Grounds as an Adsorbent for Malathion and Chlorpyrifos—Kinetics, Thermodynamics, and Eco-Neurotoxicity
VL  - 12
IS  - 12
SP  - 2397
DO  - 10.3390/foods12122397
ER  - 
@article{
author = "Milanković, Vedran and Tasić, Tamara and Pejčić, Milica and Pašti, Igor and Lazarević-Pašti, Tamara",
year = "2023",
abstract = "Coffee is one of the most popular beverages, with around 10.5 million tons manufactured annually. The same amount of spent coffee grounds (SCGs) might harm the environment if disposed of carelessly. On the other hand, pesticide contamination in food and biowaste is a rising problem. Because pesticides are hazardous and can cause serious health consequences, it is critical to understand how they interact with food biowaste materials. However, it is also a question if biowaste can be used to remediate rising pesticide residues in the environment. This study investigated the interactions of SCGs with the organophosphate pesticides malathion (MLT) and chlorpyrifos (CHP) and addressed the possibility of using SCGs as adsorbents for the removal of these pesticides from water and fruit extracts. The kinetics of MLT and CHP adsorption on SCGs fits well with the pseudo-first-order kinetic model. The Langmuir isotherm model best describes the adsorption process, giving the maximal adsorption capacity for MLT as 7.16 mg g−1 and 7.00 mg g−1 for CHP. Based on the thermodynamic analysis, it can be deduced that MLT adsorption on SCGs is exothermic, while CHP adsorption is an endothermic process. The adsorption efficiency of MLT and CHP using SCGs in a complicated matrix of fruit extracts remained constant. The neurotoxicity results showed that no more toxic products were formed during adsorption, indicating that SCGs are a safe-to-use adsorbent for pesticide removal in water and fruit extracts.",
journal = "Foods",
title = "Spent Coffee Grounds as an Adsorbent for Malathion and Chlorpyrifos—Kinetics, Thermodynamics, and Eco-Neurotoxicity",
volume = "12",
number = "12",
pages = "2397",
doi = "10.3390/foods12122397"
}
Milanković, V., Tasić, T., Pejčić, M., Pašti, I.,& Lazarević-Pašti, T.. (2023). Spent Coffee Grounds as an Adsorbent for Malathion and Chlorpyrifos—Kinetics, Thermodynamics, and Eco-Neurotoxicity. in Foods, 12(12), 2397.
https://doi.org/10.3390/foods12122397
Milanković V, Tasić T, Pejčić M, Pašti I, Lazarević-Pašti T. Spent Coffee Grounds as an Adsorbent for Malathion and Chlorpyrifos—Kinetics, Thermodynamics, and Eco-Neurotoxicity. in Foods. 2023;12(12):2397.
doi:10.3390/foods12122397 .
Milanković, Vedran, Tasić, Tamara, Pejčić, Milica, Pašti, Igor, Lazarević-Pašti, Tamara, "Spent Coffee Grounds as an Adsorbent for Malathion and Chlorpyrifos—Kinetics, Thermodynamics, and Eco-Neurotoxicity" in Foods, 12, no. 12 (2023):2397,
https://doi.org/10.3390/foods12122397 . .
6
6

Graphene oxide/12 tungstophosphoric acid nanocomposites – achieving favorable properties with ion beams for electrochemical supercapacitors

Mravik, Željko; Pejčić, Milica; Rmuš Mravik, Jelena; Belec, Blaž; Bajuk-Bogdanović, Danica; Jovanović, Sonja; Marković, Smilja; Gavrilov, Nemanja; Skuratov, Vladimir; Jovanović, Zoran

(Belgrade : Serbian Ceramic Society, 2023)

TY  - CONF
AU  - Mravik, Željko
AU  - Pejčić, Milica
AU  - Rmuš Mravik, Jelena
AU  - Belec, Blaž
AU  - Bajuk-Bogdanović, Danica
AU  - Jovanović, Sonja
AU  - Marković, Smilja
AU  - Gavrilov, Nemanja
AU  - Skuratov, Vladimir
AU  - Jovanović, Zoran
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11637
AB  - In recent years graphene oxide (GO)/12-tungstophosphoric acid (WPA) nanocomposites have demonstrated promising potential for electrochemical supercapacitors. However, to enhance their performance, it is necessary to modify the surface chemistry of GO to minimize the influence of basal plane oxygen groups, which hinder the material's conductivity. Additionally, some degree of structural modification of WPA is desired. In this regard, ion beam irradiation presents a promising method to simultaneously optimize surface chemistry of GO and structurally modify WPA. To accomplish this, ion beam irradiation is employed for modification of individual components as well as their nanocomposites with varying mass ratios. Different ion species, fluences and energies were utilized depending on the sample type, ranging from 10 keV C to 710 MeV Bi. Spectroscopy methods were employed to gain insight into the type and degree of structural modification in WPA. A direct correlation is observed between the parameters of the ion beams and the resulting structural changes. As the disordering increases, the structure transitions from partially modified to increased bond breaking, ultimately leading to reconnected bronze-like structures. By increasing the fluence, a gradual modification of the structure and surface chemistry of GO was possible. The effects of irradiation on GO and WPA are particularly pronounced in irradiated composites, where higher capacitance is measured.
PB  - Belgrade : Serbian Ceramic Society
C3  - Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade
T1  - Graphene oxide/12 tungstophosphoric acid nanocomposites – achieving favorable properties with ion beams for electrochemical supercapacitors
SP  - 50
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11637
ER  - 
@conference{
author = "Mravik, Željko and Pejčić, Milica and Rmuš Mravik, Jelena and Belec, Blaž and Bajuk-Bogdanović, Danica and Jovanović, Sonja and Marković, Smilja and Gavrilov, Nemanja and Skuratov, Vladimir and Jovanović, Zoran",
year = "2023",
abstract = "In recent years graphene oxide (GO)/12-tungstophosphoric acid (WPA) nanocomposites have demonstrated promising potential for electrochemical supercapacitors. However, to enhance their performance, it is necessary to modify the surface chemistry of GO to minimize the influence of basal plane oxygen groups, which hinder the material's conductivity. Additionally, some degree of structural modification of WPA is desired. In this regard, ion beam irradiation presents a promising method to simultaneously optimize surface chemistry of GO and structurally modify WPA. To accomplish this, ion beam irradiation is employed for modification of individual components as well as their nanocomposites with varying mass ratios. Different ion species, fluences and energies were utilized depending on the sample type, ranging from 10 keV C to 710 MeV Bi. Spectroscopy methods were employed to gain insight into the type and degree of structural modification in WPA. A direct correlation is observed between the parameters of the ion beams and the resulting structural changes. As the disordering increases, the structure transitions from partially modified to increased bond breaking, ultimately leading to reconnected bronze-like structures. By increasing the fluence, a gradual modification of the structure and surface chemistry of GO was possible. The effects of irradiation on GO and WPA are particularly pronounced in irradiated composites, where higher capacitance is measured.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade",
title = "Graphene oxide/12 tungstophosphoric acid nanocomposites – achieving favorable properties with ion beams for electrochemical supercapacitors",
pages = "50",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11637"
}
Mravik, Ž., Pejčić, M., Rmuš Mravik, J., Belec, B., Bajuk-Bogdanović, D., Jovanović, S., Marković, S., Gavrilov, N., Skuratov, V.,& Jovanović, Z.. (2023). Graphene oxide/12 tungstophosphoric acid nanocomposites – achieving favorable properties with ion beams for electrochemical supercapacitors. in Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade
Belgrade : Serbian Ceramic Society., 50.
https://hdl.handle.net/21.15107/rcub_vinar_11637
Mravik Ž, Pejčić M, Rmuš Mravik J, Belec B, Bajuk-Bogdanović D, Jovanović S, Marković S, Gavrilov N, Skuratov V, Jovanović Z. Graphene oxide/12 tungstophosphoric acid nanocomposites – achieving favorable properties with ion beams for electrochemical supercapacitors. in Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade. 2023;:50.
https://hdl.handle.net/21.15107/rcub_vinar_11637 .
Mravik, Željko, Pejčić, Milica, Rmuš Mravik, Jelena, Belec, Blaž, Bajuk-Bogdanović, Danica, Jovanović, Sonja, Marković, Smilja, Gavrilov, Nemanja, Skuratov, Vladimir, Jovanović, Zoran, "Graphene oxide/12 tungstophosphoric acid nanocomposites – achieving favorable properties with ion beams for electrochemical supercapacitors" in Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade (2023):50,
https://hdl.handle.net/21.15107/rcub_vinar_11637 .

Ion-beam irradiated graphene oxide, 12-tungstophosphoric acid and their nanocomposites for electrochemical supercapacitors

Mravik, Željko; Pejčić, Milica; Rmuš Mravik, Jelena; Belec, Blaž; Bajuk-Bogdanović, Danica; Jovanović, Sonja; Marković, Smilja; Gavrilov, Nemanja; Skuratov, Vladimir; Jovanović, Zoran

(Belgrade : Materials Research Society of Serbia, 2023)

TY  - CONF
AU  - Mravik, Željko
AU  - Pejčić, Milica
AU  - Rmuš Mravik, Jelena
AU  - Belec, Blaž
AU  - Bajuk-Bogdanović, Danica
AU  - Jovanović, Sonja
AU  - Marković, Smilja
AU  - Gavrilov, Nemanja
AU  - Skuratov, Vladimir
AU  - Jovanović, Zoran
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11651
AB  - Ion beam modification of materials is notable method for achieving their unique structural, electronic, and other physicochemical properties. In the case of graphene oxide (GO) such modification of structure and surface chemistry is known to yield properties interesting for electrochemical supercapacitors. The performance of GO supercapacitors can be additionally improved by incorporating components with attractive redox properties. In this work, the influence of ion beam irradiation on synergy of GO and 12-tungstophosphoric acid (WPA) in their nanocomposite was investigated. For that, both components and their composites with different mass ratios were irradiated using different ion species, fluences and energies (from 10 keV C to 710 MeV Bi). For the irradiated WPA, results showed clear correlation between ion beam parameters, degree of structural modification and electrochemical properties. With increasing structural modification, bond breaking is first induced giving higher catalytic activity toward HER. Further irradiation resulted in an increased interconnection of polytungstate species producing lower catalytic activity and lower lithiation capacity. Irradiated GO showed modified surface chemistry, with preferable reduction of alkoxy and epoxy groups, changes in morphology and electric properties due to increased number of defects with increasing fluence, synergic effect of ion beam irradiated GO and WPA resulted in higher capacitance of irradiated composites compared to GO presumably because of interaction of structurally modified WPA with defect sites on GO thus reducing electrolyte flow along ion tracks.
PB  - Belgrade : Materials Research Society of Serbia
C3  - YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro
T1  - Ion-beam irradiated graphene oxide, 12-tungstophosphoric acid and their nanocomposites for electrochemical supercapacitors
SP  - 36
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11651
ER  - 
@conference{
author = "Mravik, Željko and Pejčić, Milica and Rmuš Mravik, Jelena and Belec, Blaž and Bajuk-Bogdanović, Danica and Jovanović, Sonja and Marković, Smilja and Gavrilov, Nemanja and Skuratov, Vladimir and Jovanović, Zoran",
year = "2023",
abstract = "Ion beam modification of materials is notable method for achieving their unique structural, electronic, and other physicochemical properties. In the case of graphene oxide (GO) such modification of structure and surface chemistry is known to yield properties interesting for electrochemical supercapacitors. The performance of GO supercapacitors can be additionally improved by incorporating components with attractive redox properties. In this work, the influence of ion beam irradiation on synergy of GO and 12-tungstophosphoric acid (WPA) in their nanocomposite was investigated. For that, both components and their composites with different mass ratios were irradiated using different ion species, fluences and energies (from 10 keV C to 710 MeV Bi). For the irradiated WPA, results showed clear correlation between ion beam parameters, degree of structural modification and electrochemical properties. With increasing structural modification, bond breaking is first induced giving higher catalytic activity toward HER. Further irradiation resulted in an increased interconnection of polytungstate species producing lower catalytic activity and lower lithiation capacity. Irradiated GO showed modified surface chemistry, with preferable reduction of alkoxy and epoxy groups, changes in morphology and electric properties due to increased number of defects with increasing fluence, synergic effect of ion beam irradiated GO and WPA resulted in higher capacitance of irradiated composites compared to GO presumably because of interaction of structurally modified WPA with defect sites on GO thus reducing electrolyte flow along ion tracks.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro",
title = "Ion-beam irradiated graphene oxide, 12-tungstophosphoric acid and their nanocomposites for electrochemical supercapacitors",
pages = "36",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11651"
}
Mravik, Ž., Pejčić, M., Rmuš Mravik, J., Belec, B., Bajuk-Bogdanović, D., Jovanović, S., Marković, S., Gavrilov, N., Skuratov, V.,& Jovanović, Z.. (2023). Ion-beam irradiated graphene oxide, 12-tungstophosphoric acid and their nanocomposites for electrochemical supercapacitors. in YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro
Belgrade : Materials Research Society of Serbia., 36.
https://hdl.handle.net/21.15107/rcub_vinar_11651
Mravik Ž, Pejčić M, Rmuš Mravik J, Belec B, Bajuk-Bogdanović D, Jovanović S, Marković S, Gavrilov N, Skuratov V, Jovanović Z. Ion-beam irradiated graphene oxide, 12-tungstophosphoric acid and their nanocomposites for electrochemical supercapacitors. in YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro. 2023;:36.
https://hdl.handle.net/21.15107/rcub_vinar_11651 .
Mravik, Željko, Pejčić, Milica, Rmuš Mravik, Jelena, Belec, Blaž, Bajuk-Bogdanović, Danica, Jovanović, Sonja, Marković, Smilja, Gavrilov, Nemanja, Skuratov, Vladimir, Jovanović, Zoran, "Ion-beam irradiated graphene oxide, 12-tungstophosphoric acid and their nanocomposites for electrochemical supercapacitors" in YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro (2023):36,
https://hdl.handle.net/21.15107/rcub_vinar_11651 .

Physicochemical properties of solvothermaly synthesized zinc copper ferrite nanoparticles

Jovanović, Sonja; Rmuš Mravik, Jelena; Grujičić, Marija; Petković, Darija; Pejčić, Milica; Jovanović, Zoran

(Belgrade : Materials Research Society of Serbia, 2023)

TY  - CONF
AU  - Jovanović, Sonja
AU  - Rmuš Mravik, Jelena
AU  - Grujičić, Marija
AU  - Petković, Darija
AU  - Pejčić, Milica
AU  - Jovanović, Zoran
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11659
AB  - In the past two decades spinel ferrites nanoparticles have been extensively investigated due to their potential applications in a variety of fields (data storage, catalysis, energy, environment, biomedicine, etc.). In the present work, zinc ferrite nanoparticles with different copper content (Zn(1-x)CuxFe2O4; x=0, 0.2, 0.4, 0.6, and 0.8) but with the same particle size distribution and amount of oleic acid as capping agent were prepared by solvothermal synthesis and the physicochemical properties of as-prepared samples were investigated. The prepared samples were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and vibrating sample magnetometry (VSM). The XRD results show that all the diffraction maxima correspond to the cubic spinel structure, while TEM images reviled that samples are consisted of sphere-like particles, 5-7 nm in size. The presence of oleic acid on the surface of nanoparticles was confirmed by FTIR analysis. The magnetic measurements revealed superparamagnetic behavior of obtained powders, with gradual increase of saturation magnetization.
PB  - Belgrade : Materials Research Society of Serbia
C3  - YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro
T1  - Physicochemical properties of solvothermaly synthesized zinc copper ferrite nanoparticles
SP  - 157
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11659
ER  - 
@conference{
author = "Jovanović, Sonja and Rmuš Mravik, Jelena and Grujičić, Marija and Petković, Darija and Pejčić, Milica and Jovanović, Zoran",
year = "2023",
abstract = "In the past two decades spinel ferrites nanoparticles have been extensively investigated due to their potential applications in a variety of fields (data storage, catalysis, energy, environment, biomedicine, etc.). In the present work, zinc ferrite nanoparticles with different copper content (Zn(1-x)CuxFe2O4; x=0, 0.2, 0.4, 0.6, and 0.8) but with the same particle size distribution and amount of oleic acid as capping agent were prepared by solvothermal synthesis and the physicochemical properties of as-prepared samples were investigated. The prepared samples were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and vibrating sample magnetometry (VSM). The XRD results show that all the diffraction maxima correspond to the cubic spinel structure, while TEM images reviled that samples are consisted of sphere-like particles, 5-7 nm in size. The presence of oleic acid on the surface of nanoparticles was confirmed by FTIR analysis. The magnetic measurements revealed superparamagnetic behavior of obtained powders, with gradual increase of saturation magnetization.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro",
title = "Physicochemical properties of solvothermaly synthesized zinc copper ferrite nanoparticles",
pages = "157",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11659"
}
Jovanović, S., Rmuš Mravik, J., Grujičić, M., Petković, D., Pejčić, M.,& Jovanović, Z.. (2023). Physicochemical properties of solvothermaly synthesized zinc copper ferrite nanoparticles. in YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro
Belgrade : Materials Research Society of Serbia., 157.
https://hdl.handle.net/21.15107/rcub_vinar_11659
Jovanović S, Rmuš Mravik J, Grujičić M, Petković D, Pejčić M, Jovanović Z. Physicochemical properties of solvothermaly synthesized zinc copper ferrite nanoparticles. in YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro. 2023;:157.
https://hdl.handle.net/21.15107/rcub_vinar_11659 .
Jovanović, Sonja, Rmuš Mravik, Jelena, Grujičić, Marija, Petković, Darija, Pejčić, Milica, Jovanović, Zoran, "Physicochemical properties of solvothermaly synthesized zinc copper ferrite nanoparticles" in YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro (2023):157,
https://hdl.handle.net/21.15107/rcub_vinar_11659 .

Temperature dependence of electric properties of GO and GO/WPA films on interdigital electrodes

Mravik, Željko; Pejčić, Milica; Grujičić, Marija; Rmuš Mravik, Jelena; Stević, Miša; Stević, Zoran; Jovanović, Zoran

(Belgrade : Institute of Technical Sciences of SASA, 2023)

TY  - CONF
AU  - Mravik, Željko
AU  - Pejčić, Milica
AU  - Grujičić, Marija
AU  - Rmuš Mravik, Jelena
AU  - Stević, Miša
AU  - Stević, Zoran
AU  - Jovanović, Zoran
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12314
AB  - In sensor devices the material of choice should be highly dependent on perturbation of environmental parameters. In order to achieve good sensitivity and selectivity of sensing devices to temperature, humidity or concentration of different gasses, the materials with adjustable properties are highly desirable. Electric properties of graphene oxide (GO) can be easily tuned by modification of surface chemistry and anchoring of functional compounds onto its two-dimensional structure. Prior to application of sensing device, research and development of materials system is the most essential step. In this work, the formation of GO and GO/12-tungstophosphoric acid (WPA) films with 6 wt.% of WPA on interdigital electrodes was investigated by variation of dip-coating parameters (receding angle and time between steps). Obtained films were thermally reduced in argon atmosphere after which optical microscopy was used to evaluate morphology and stability of deposited GO and GO/WPA films. Impedance spectroscopy was used to investigate the electric properties of the obtained films in range from 10 Hz to 100 kHz. Measured impedance values were correlated to the degree of material detachment and deposition parameters i.e. films showing the lowest impedance values had the smallest area of detached film. Additionally, impedance values were measured depending on the environment temperature which showed that GO/WPA films exhibit the lowest impedance values and good sensitivity to changes of temperature making it good a candidate for sensing devices.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts
T1  - Temperature dependence of electric properties of GO and GO/WPA films on interdigital electrodes
SP  - 40
EP  - 40
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12314
ER  - 
@conference{
author = "Mravik, Željko and Pejčić, Milica and Grujičić, Marija and Rmuš Mravik, Jelena and Stević, Miša and Stević, Zoran and Jovanović, Zoran",
year = "2023",
abstract = "In sensor devices the material of choice should be highly dependent on perturbation of environmental parameters. In order to achieve good sensitivity and selectivity of sensing devices to temperature, humidity or concentration of different gasses, the materials with adjustable properties are highly desirable. Electric properties of graphene oxide (GO) can be easily tuned by modification of surface chemistry and anchoring of functional compounds onto its two-dimensional structure. Prior to application of sensing device, research and development of materials system is the most essential step. In this work, the formation of GO and GO/12-tungstophosphoric acid (WPA) films with 6 wt.% of WPA on interdigital electrodes was investigated by variation of dip-coating parameters (receding angle and time between steps). Obtained films were thermally reduced in argon atmosphere after which optical microscopy was used to evaluate morphology and stability of deposited GO and GO/WPA films. Impedance spectroscopy was used to investigate the electric properties of the obtained films in range from 10 Hz to 100 kHz. Measured impedance values were correlated to the degree of material detachment and deposition parameters i.e. films showing the lowest impedance values had the smallest area of detached film. Additionally, impedance values were measured depending on the environment temperature which showed that GO/WPA films exhibit the lowest impedance values and good sensitivity to changes of temperature making it good a candidate for sensing devices.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts",
title = "Temperature dependence of electric properties of GO and GO/WPA films on interdigital electrodes",
pages = "40-40",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12314"
}
Mravik, Ž., Pejčić, M., Grujičić, M., Rmuš Mravik, J., Stević, M., Stević, Z.,& Jovanović, Z.. (2023). Temperature dependence of electric properties of GO and GO/WPA films on interdigital electrodes. in 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts
Belgrade : Institute of Technical Sciences of SASA., 40-40.
https://hdl.handle.net/21.15107/rcub_vinar_12314
Mravik Ž, Pejčić M, Grujičić M, Rmuš Mravik J, Stević M, Stević Z, Jovanović Z. Temperature dependence of electric properties of GO and GO/WPA films on interdigital electrodes. in 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts. 2023;:40-40.
https://hdl.handle.net/21.15107/rcub_vinar_12314 .
Mravik, Željko, Pejčić, Milica, Grujičić, Marija, Rmuš Mravik, Jelena, Stević, Miša, Stević, Zoran, Jovanović, Zoran, "Temperature dependence of electric properties of GO and GO/WPA films on interdigital electrodes" in 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts (2023):40-40,
https://hdl.handle.net/21.15107/rcub_vinar_12314 .

Investigating the influence of hydrothermal treatment on oxygen functional groups in graphene oxide-based nanocomposites

Pejčić, Milica; Mravik, Željko; Bajuk-Bogdanović, Danica; Grujičić, Marija; Rmuš Mravik, Jelena; Jovanović, Sonja; Jovanović, Zoran

(Belgrade : Institute of Technical Sciences of SASA, 2023)

TY  - CONF
AU  - Pejčić, Milica
AU  - Mravik, Željko
AU  - Bajuk-Bogdanović, Danica
AU  - Grujičić, Marija
AU  - Rmuš Mravik, Jelena
AU  - Jovanović, Sonja
AU  - Jovanović, Zoran
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12316
AB  - Different hierarchical ordering of nanomaterials, either as individual components or in the form of nanocomposites, is one of the approaches used for the development of supercapacitors. In this work, the effect of hydrothermal treatment on oxygen functional groups of nanocomposites between graphene oxide (GO), 12-tungstophosphoric acid (WPA), and 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) was examined. The mentioned materials were hydrothermally treated for 4, 8 and 12 hours at 180 °C in order to understand how interaction between the components is influencing development of surface chemistry. The results of Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy (Raman), and temperature-programmed desorption (TPD) are showing the surface and structural changes of GO (individually and in nanocomposite) as a result of hydrothermal treatment. Both FTIR and RAMAN confirm the presence of WPA and PTCDA. Additionally, it appears that hydrothermal treatment has no impact on the structural changes in PTCDA, which is consistent across various temperature conditions. TPD results indicate that prolonged hydrothermal treatment leads to a gradual increase of the number of functional groups of GO. However, the number of desorbed groups is influenced by the WPA and PTDCA components. This research offers new insights into GO, WPA, and PTCDA interactions which can have useful implications for development of electrochemical supercapacitors.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts
T1  - Investigating the influence of hydrothermal treatment on oxygen functional groups in graphene oxide-based nanocomposites
SP  - 43
EP  - 43
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12316
ER  - 
@conference{
author = "Pejčić, Milica and Mravik, Željko and Bajuk-Bogdanović, Danica and Grujičić, Marija and Rmuš Mravik, Jelena and Jovanović, Sonja and Jovanović, Zoran",
year = "2023",
abstract = "Different hierarchical ordering of nanomaterials, either as individual components or in the form of nanocomposites, is one of the approaches used for the development of supercapacitors. In this work, the effect of hydrothermal treatment on oxygen functional groups of nanocomposites between graphene oxide (GO), 12-tungstophosphoric acid (WPA), and 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) was examined. The mentioned materials were hydrothermally treated for 4, 8 and 12 hours at 180 °C in order to understand how interaction between the components is influencing development of surface chemistry. The results of Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy (Raman), and temperature-programmed desorption (TPD) are showing the surface and structural changes of GO (individually and in nanocomposite) as a result of hydrothermal treatment. Both FTIR and RAMAN confirm the presence of WPA and PTCDA. Additionally, it appears that hydrothermal treatment has no impact on the structural changes in PTCDA, which is consistent across various temperature conditions. TPD results indicate that prolonged hydrothermal treatment leads to a gradual increase of the number of functional groups of GO. However, the number of desorbed groups is influenced by the WPA and PTDCA components. This research offers new insights into GO, WPA, and PTCDA interactions which can have useful implications for development of electrochemical supercapacitors.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts",
title = "Investigating the influence of hydrothermal treatment on oxygen functional groups in graphene oxide-based nanocomposites",
pages = "43-43",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12316"
}
Pejčić, M., Mravik, Ž., Bajuk-Bogdanović, D., Grujičić, M., Rmuš Mravik, J., Jovanović, S.,& Jovanović, Z.. (2023). Investigating the influence of hydrothermal treatment on oxygen functional groups in graphene oxide-based nanocomposites. in 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts
Belgrade : Institute of Technical Sciences of SASA., 43-43.
https://hdl.handle.net/21.15107/rcub_vinar_12316
Pejčić M, Mravik Ž, Bajuk-Bogdanović D, Grujičić M, Rmuš Mravik J, Jovanović S, Jovanović Z. Investigating the influence of hydrothermal treatment on oxygen functional groups in graphene oxide-based nanocomposites. in 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts. 2023;:43-43.
https://hdl.handle.net/21.15107/rcub_vinar_12316 .
Pejčić, Milica, Mravik, Željko, Bajuk-Bogdanović, Danica, Grujičić, Marija, Rmuš Mravik, Jelena, Jovanović, Sonja, Jovanović, Zoran, "Investigating the influence of hydrothermal treatment on oxygen functional groups in graphene oxide-based nanocomposites" in 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts (2023):43-43,
https://hdl.handle.net/21.15107/rcub_vinar_12316 .

Sinteza i modifikacija naprednih nanomaterijala - pogled kroz prizmu obnovljivih izvora energije

Jovanović, Zoran; Jovanović, Sonja; Mravik, Željko; Rmuš, Jelena; Jelić, Marko; Pejčić, Milica; Grujičić, Marija; Petković, Darija

(2023)

TY  - CONF
AU  - Jovanović, Zoran
AU  - Jovanović, Sonja
AU  - Mravik, Željko
AU  - Rmuš, Jelena
AU  - Jelić, Marko
AU  - Pejčić, Milica
AU  - Grujičić, Marija
AU  - Petković, Darija
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12334
AB  - Elektrohemijska istraživanja su prethodnih godina dala ključni podstrek globalnim stremljenjima ka obnovljivim izvorima energije. Višegeneracijski napori, u početku motivisani željom za fundamentalnim razumevanjem procesa, aktuelizovani su očekivanim nedostatkom fosilnih goriva i pratećim nepovoljnim uticajem na životnu sredinu. Nanomaterijali su omogućili spektakularan skok u tehnološkim inovacijama i neosporan je njihov doprinos obnovljivim izvorima energije. Zahvaljujući novim svojstvima nanomaterijala i njihovoj sinergiji, omogućeno je dalje unapređenje i integracija različitih funkcionalnosti. Pri tome, postalo je jasno da atomski precizan dizajn materijala postaje kritičan za razvoj naprava sledeće generacije. Ovo je posebno važno u slučaju nanokompozita gde interakcija komponenti pojačava moguće sinergijske doprinose. U izlaganju će biti dat osvrt na napredne metode sinteze i modifikacije materijala – od tradicionalnih, do tankih filmova, 0D i 2D nanomaterijala i njihovih kompozita – posmatranih kroz prizmu obnovljivih izvora energije i održivosti (elektrohemijski superkondenzatori, razgradnja vode, senzori, i dr.). Razvoj novih materijala i unapređenje elektrohemijskih sistema ima potencijal da suštinski učini obnovljivu energiju održivijom i dostupnijom, time otvarajući put ka održivoj budućnosti.
C3  - Savremena stremljenja u elektrohemiji u proceu prelaska na obnovljive izvore energije: Naučni skup posvećen 100 - godišnjici rođenja inostranog člana SANU Dž. O'M. Bokrisa : Knjiga izvoda
T1  - Sinteza i modifikacija naprednih nanomaterijala - pogled kroz prizmu obnovljivih izvora energije
SP  - 19
EP  - 19
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12334
ER  - 
@conference{
author = "Jovanović, Zoran and Jovanović, Sonja and Mravik, Željko and Rmuš, Jelena and Jelić, Marko and Pejčić, Milica and Grujičić, Marija and Petković, Darija",
year = "2023",
abstract = "Elektrohemijska istraživanja su prethodnih godina dala ključni podstrek globalnim stremljenjima ka obnovljivim izvorima energije. Višegeneracijski napori, u početku motivisani željom za fundamentalnim razumevanjem procesa, aktuelizovani su očekivanim nedostatkom fosilnih goriva i pratećim nepovoljnim uticajem na životnu sredinu. Nanomaterijali su omogućili spektakularan skok u tehnološkim inovacijama i neosporan je njihov doprinos obnovljivim izvorima energije. Zahvaljujući novim svojstvima nanomaterijala i njihovoj sinergiji, omogućeno je dalje unapređenje i integracija različitih funkcionalnosti. Pri tome, postalo je jasno da atomski precizan dizajn materijala postaje kritičan za razvoj naprava sledeće generacije. Ovo je posebno važno u slučaju nanokompozita gde interakcija komponenti pojačava moguće sinergijske doprinose. U izlaganju će biti dat osvrt na napredne metode sinteze i modifikacije materijala – od tradicionalnih, do tankih filmova, 0D i 2D nanomaterijala i njihovih kompozita – posmatranih kroz prizmu obnovljivih izvora energije i održivosti (elektrohemijski superkondenzatori, razgradnja vode, senzori, i dr.). Razvoj novih materijala i unapređenje elektrohemijskih sistema ima potencijal da suštinski učini obnovljivu energiju održivijom i dostupnijom, time otvarajući put ka održivoj budućnosti.",
journal = "Savremena stremljenja u elektrohemiji u proceu prelaska na obnovljive izvore energije: Naučni skup posvećen 100 - godišnjici rođenja inostranog člana SANU Dž. O'M. Bokrisa : Knjiga izvoda",
title = "Sinteza i modifikacija naprednih nanomaterijala - pogled kroz prizmu obnovljivih izvora energije",
pages = "19-19",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12334"
}
Jovanović, Z., Jovanović, S., Mravik, Ž., Rmuš, J., Jelić, M., Pejčić, M., Grujičić, M.,& Petković, D.. (2023). Sinteza i modifikacija naprednih nanomaterijala - pogled kroz prizmu obnovljivih izvora energije. in Savremena stremljenja u elektrohemiji u proceu prelaska na obnovljive izvore energije: Naučni skup posvećen 100 - godišnjici rođenja inostranog člana SANU Dž. O'M. Bokrisa : Knjiga izvoda, 19-19.
https://hdl.handle.net/21.15107/rcub_vinar_12334
Jovanović Z, Jovanović S, Mravik Ž, Rmuš J, Jelić M, Pejčić M, Grujičić M, Petković D. Sinteza i modifikacija naprednih nanomaterijala - pogled kroz prizmu obnovljivih izvora energije. in Savremena stremljenja u elektrohemiji u proceu prelaska na obnovljive izvore energije: Naučni skup posvećen 100 - godišnjici rođenja inostranog člana SANU Dž. O'M. Bokrisa : Knjiga izvoda. 2023;:19-19.
https://hdl.handle.net/21.15107/rcub_vinar_12334 .
Jovanović, Zoran, Jovanović, Sonja, Mravik, Željko, Rmuš, Jelena, Jelić, Marko, Pejčić, Milica, Grujičić, Marija, Petković, Darija, "Sinteza i modifikacija naprednih nanomaterijala - pogled kroz prizmu obnovljivih izvora energije" in Savremena stremljenja u elektrohemiji u proceu prelaska na obnovljive izvore energije: Naučni skup posvećen 100 - godišnjici rođenja inostranog člana SANU Dž. O'M. Bokrisa : Knjiga izvoda (2023):19-19,
https://hdl.handle.net/21.15107/rcub_vinar_12334 .

The Role of Surface Chemistry, Structure and Interactions in the Electrochemical Charge Storage Properties of Graphene Oxide and 12-tungstophoshoric Acid Nanocomposites

Jovanović, Zoran; Bajuk-Bogdanović, Danica; Vujković, Milica; Mravik, Željko; Jovanović, Sonja; Marković, Smilja; Pejčić, Milica; Holclajtner Antunović, Ivanka

(Belgrade : University of Belgrade, Faculty of Physical Chemistry, 2022)

TY  - CONF
AU  - Jovanović, Zoran
AU  - Bajuk-Bogdanović, Danica
AU  - Vujković, Milica
AU  - Mravik, Željko
AU  - Jovanović, Sonja
AU  - Marković, Smilja
AU  - Pejčić, Milica
AU  - Holclajtner Antunović, Ivanka
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12783
AB  - Gaining a momentum from newly emerging properties of nanomaterials the further enhancement and integration of various functionalities have been made possible. Also, it became apparent that interaction between nano-objects can provide additional synergy capable of yielding new or significantly improved properties. This particularly applies to the surfaces and interfaces of nanomaterials where the intimate contact between components amplifies possible contributions of interfacial interactions. Since this aspect of interaction-property relation in many nanocomposites is still insufficiently explored, it is of interest to identify to what extent the properties emerge as a result of interaction-based synergy or a co-action of individual components. To address these aspects, we have investigated a nanocomposite of graphene oxide (GO) and 12-tungstophosporic acid (WPA) – a combination of materials that are known for the rich “portfolio” of properties. In the talk the novel findings will be presented that contribute to better the understanding of interactions between nano-objects and how they contribute to novel properties. The results are showing how simple temperature treatment and weight ratio of components is influencing the evolution of surface, structural properties and charge storage properties – all closely connected to interactions between components. Finally, the implications on synthetic approaches and fine-tuning of the functionality of GO/WPA nanocomposites will be discussed from the perspective of the obtained results.
PB  - Belgrade : University of Belgrade, Faculty of Physical Chemistry
C3  - COIN2022 : Contemporary batteries and supercapacitors : Program and book of abstracts
T1  - The Role of Surface Chemistry, Structure and Interactions in the Electrochemical Charge Storage Properties of Graphene Oxide and 12-tungstophoshoric Acid Nanocomposites
SP  - 16
EP  - 16
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12783
ER  - 
@conference{
author = "Jovanović, Zoran and Bajuk-Bogdanović, Danica and Vujković, Milica and Mravik, Željko and Jovanović, Sonja and Marković, Smilja and Pejčić, Milica and Holclajtner Antunović, Ivanka",
year = "2022",
abstract = "Gaining a momentum from newly emerging properties of nanomaterials the further enhancement and integration of various functionalities have been made possible. Also, it became apparent that interaction between nano-objects can provide additional synergy capable of yielding new or significantly improved properties. This particularly applies to the surfaces and interfaces of nanomaterials where the intimate contact between components amplifies possible contributions of interfacial interactions. Since this aspect of interaction-property relation in many nanocomposites is still insufficiently explored, it is of interest to identify to what extent the properties emerge as a result of interaction-based synergy or a co-action of individual components. To address these aspects, we have investigated a nanocomposite of graphene oxide (GO) and 12-tungstophosporic acid (WPA) – a combination of materials that are known for the rich “portfolio” of properties. In the talk the novel findings will be presented that contribute to better the understanding of interactions between nano-objects and how they contribute to novel properties. The results are showing how simple temperature treatment and weight ratio of components is influencing the evolution of surface, structural properties and charge storage properties – all closely connected to interactions between components. Finally, the implications on synthetic approaches and fine-tuning of the functionality of GO/WPA nanocomposites will be discussed from the perspective of the obtained results.",
publisher = "Belgrade : University of Belgrade, Faculty of Physical Chemistry",
journal = "COIN2022 : Contemporary batteries and supercapacitors : Program and book of abstracts",
title = "The Role of Surface Chemistry, Structure and Interactions in the Electrochemical Charge Storage Properties of Graphene Oxide and 12-tungstophoshoric Acid Nanocomposites",
pages = "16-16",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12783"
}
Jovanović, Z., Bajuk-Bogdanović, D., Vujković, M., Mravik, Ž., Jovanović, S., Marković, S., Pejčić, M.,& Holclajtner Antunović, I.. (2022). The Role of Surface Chemistry, Structure and Interactions in the Electrochemical Charge Storage Properties of Graphene Oxide and 12-tungstophoshoric Acid Nanocomposites. in COIN2022 : Contemporary batteries and supercapacitors : Program and book of abstracts
Belgrade : University of Belgrade, Faculty of Physical Chemistry., 16-16.
https://hdl.handle.net/21.15107/rcub_vinar_12783
Jovanović Z, Bajuk-Bogdanović D, Vujković M, Mravik Ž, Jovanović S, Marković S, Pejčić M, Holclajtner Antunović I. The Role of Surface Chemistry, Structure and Interactions in the Electrochemical Charge Storage Properties of Graphene Oxide and 12-tungstophoshoric Acid Nanocomposites. in COIN2022 : Contemporary batteries and supercapacitors : Program and book of abstracts. 2022;:16-16.
https://hdl.handle.net/21.15107/rcub_vinar_12783 .
Jovanović, Zoran, Bajuk-Bogdanović, Danica, Vujković, Milica, Mravik, Željko, Jovanović, Sonja, Marković, Smilja, Pejčić, Milica, Holclajtner Antunović, Ivanka, "The Role of Surface Chemistry, Structure and Interactions in the Electrochemical Charge Storage Properties of Graphene Oxide and 12-tungstophoshoric Acid Nanocomposites" in COIN2022 : Contemporary batteries and supercapacitors : Program and book of abstracts (2022):16-16,
https://hdl.handle.net/21.15107/rcub_vinar_12783 .

Surface chemistry of ion beam irradiated graphene oxide papers

Mravik, Željko; Gloginjić, Marko; Bajuk-Bogdanović, Danica; Pejčić, Milica; Olejniczak, Andrzej; Skuratov, Vladimir; Jovanović, Zoran

(Zagreb, Croatia : Ruđer Bošković Institute, 2021)

TY  - CONF
AU  - Mravik, Željko
AU  - Gloginjić, Marko
AU  - Bajuk-Bogdanović, Danica
AU  - Pejčić, Milica
AU  - Olejniczak, Andrzej
AU  - Skuratov, Vladimir
AU  - Jovanović, Zoran
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12526
AB  - Surface chemistry of graphene oxide (GO) plays an important role in possible applications of the material. Beside traditional approaches, like thermal treatment, ion beam irradiation has been recognized as a tool for modifying not only the surface chemistry, but also the structural properties of GO. In this study, the GO paper was irradiated with 15 keV proton beam with fluencies from 5×1016 to 2×1017 ions/cm2 . Surface chemistry of GO was monitored with Fourier-transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) while structural changes were investigated with Raman spectroscopy. XPS and ATR-FTIR methods showed partial reduction of GO, with preferential desorption of basal plane alkoxy and epoxy oxygen groups. In terms of structural changes, intensity ratio of D and G peaks decreased linearly with the increase of C/O ratio i.e. increase of fluence. The reduction of GO with hydrogen atom was also investigated dynamically by semi-empirical calculations. The calculations for the epoxy group have identified energy ranges at which reduction is a consequence of physical (>20 eV) or chemical (<1.5 eV) processes. The results are showing a potential of ion beam irradiation for controllable modification of structural and surface properties which can be used for tuning of the charge storage properties of graphene oxide.
PB  - Zagreb, Croatia : Ruđer Bošković Institute
C3  - SCIRES 2021 : The 3rd International Conference Solid-State Science & Research : Book of abstracts
T1  - Surface chemistry of ion beam irradiated graphene oxide papers
SP  - 38
EP  - 38
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12526
ER  - 
@conference{
author = "Mravik, Željko and Gloginjić, Marko and Bajuk-Bogdanović, Danica and Pejčić, Milica and Olejniczak, Andrzej and Skuratov, Vladimir and Jovanović, Zoran",
year = "2021",
abstract = "Surface chemistry of graphene oxide (GO) plays an important role in possible applications of the material. Beside traditional approaches, like thermal treatment, ion beam irradiation has been recognized as a tool for modifying not only the surface chemistry, but also the structural properties of GO. In this study, the GO paper was irradiated with 15 keV proton beam with fluencies from 5×1016 to 2×1017 ions/cm2 . Surface chemistry of GO was monitored with Fourier-transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) while structural changes were investigated with Raman spectroscopy. XPS and ATR-FTIR methods showed partial reduction of GO, with preferential desorption of basal plane alkoxy and epoxy oxygen groups. In terms of structural changes, intensity ratio of D and G peaks decreased linearly with the increase of C/O ratio i.e. increase of fluence. The reduction of GO with hydrogen atom was also investigated dynamically by semi-empirical calculations. The calculations for the epoxy group have identified energy ranges at which reduction is a consequence of physical (>20 eV) or chemical (<1.5 eV) processes. The results are showing a potential of ion beam irradiation for controllable modification of structural and surface properties which can be used for tuning of the charge storage properties of graphene oxide.",
publisher = "Zagreb, Croatia : Ruđer Bošković Institute",
journal = "SCIRES 2021 : The 3rd International Conference Solid-State Science & Research : Book of abstracts",
title = "Surface chemistry of ion beam irradiated graphene oxide papers",
pages = "38-38",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12526"
}
Mravik, Ž., Gloginjić, M., Bajuk-Bogdanović, D., Pejčić, M., Olejniczak, A., Skuratov, V.,& Jovanović, Z.. (2021). Surface chemistry of ion beam irradiated graphene oxide papers. in SCIRES 2021 : The 3rd International Conference Solid-State Science & Research : Book of abstracts
Zagreb, Croatia : Ruđer Bošković Institute., 38-38.
https://hdl.handle.net/21.15107/rcub_vinar_12526
Mravik Ž, Gloginjić M, Bajuk-Bogdanović D, Pejčić M, Olejniczak A, Skuratov V, Jovanović Z. Surface chemistry of ion beam irradiated graphene oxide papers. in SCIRES 2021 : The 3rd International Conference Solid-State Science & Research : Book of abstracts. 2021;:38-38.
https://hdl.handle.net/21.15107/rcub_vinar_12526 .
Mravik, Željko, Gloginjić, Marko, Bajuk-Bogdanović, Danica, Pejčić, Milica, Olejniczak, Andrzej, Skuratov, Vladimir, Jovanović, Zoran, "Surface chemistry of ion beam irradiated graphene oxide papers" in SCIRES 2021 : The 3rd International Conference Solid-State Science & Research : Book of abstracts (2021):38-38,
https://hdl.handle.net/21.15107/rcub_vinar_12526 .