Dramićanin, Miroslav

Link to this page

Authority KeyName Variants
orcid::0000-0003-4750-5359
  • Dramićanin, Miroslav (368)
Projects
Materials of Reduced Dimensions for Efficient Light Harvesting and Energy conversion Size-, shape- and structure- dependent properties of nanoparticles and nanocomposites
Physics of amorphous and nanostructural materials Thin films of single wall carbon nanotubes and graphene for electronic application
Ministry of Education, Science and Technological Development of the Republic of Serbia Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča)
Rational design and synthesis of biologically active and coordination compounds and functional materials, relevant for (bio)nanotechnology Graphitic and Inorganic Low-dimensional Nanostructures
NanoTBTech - Nanoparticles-based 2D thermal bioimaging technologies Development and Application of Methods and Materials for Monitoring New Organic Contaminants, Toxic Compounds and Heavy Metals
National Recruitment Program of High-end Foreign Experts [GDT20185200479] NATO Science for Peace and Security Programme [G5751]
European Regional Development Fund [TK141] Studies of enzyme interactions with toxic and pharmacologically active molecules
Sinteza i karakterizacija nanočestica i nanokompozita Ministry of Education, Science, and Technological Development of the Republic of Serbia
SASPRO - Mobility Programme of Slovak Academy of Sciences: Supportive Fund for Excellent Scientists Dynamics of nonlinear physicochemical and biochemical systems with modeling and predicting of their behavior under nonequilibrium conditions
Molecular determinants for tumor marker design Modulation of intracellular energy balance-controlling signalling pathways in therapy of cancer and neuro-immuno-endocrine disorders
Amorphous and nanostructural chalcogenides Ministry of Education, Science and Technological development of the Republic of Serbia
Wenfeng High-end Talents Project [W2016-01] APV Provincial Secretariat for Science and Technological Development of the Republic of Serbia [114-451-1850/2014-03]
Canada Excellence Research Chairs (CERC) program Estonian Research Council [PUT PRG111]
LUMINET - European Network on Luminescent Materials Programme for the Foreign Experts [W2017011]
Science and Technology Planning Project of Guangzhou City [201704030020] Special Fund of Guangdong Province Project for Applied Science and Technology Research and Development [2017B090917001]

Author's Bibliography

Concentration and temperature dependence of Pr3+ f-f emissions in La(PO3)3

Antić, Željka; Racu, Andrei V.; Medić, Mina; Alodhayb, Abdullah N.; Kuzman, Sanja; Brik, Mikhail G.; Dramićanin, Miroslav

(2024)

TY  - JOUR
AU  - Antić, Željka
AU  - Racu, Andrei V.
AU  - Medić, Mina
AU  - Alodhayb, Abdullah N.
AU  - Kuzman, Sanja
AU  - Brik, Mikhail G.
AU  - Dramićanin, Miroslav
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13020
AB  - La(PO3)3 activated with different concentrations of Pr3+ was synthesized by a solid-state process. The obtained powder was composed of chunks of several microns in size, typical for this type of synthesis. X-ray diffraction confirmed an orthorhombic crystal structure with the C2221 space group. The electronic band structures and density of states of La(PO3)3 and La(PO3)3:Pr3+ are calculated and presented. The visible and near-infrared emissions from Pr3+ [Xe]4f2 [Xe]4f2 electronic transitions were detected under 442 nm excitation. The red emission from the 1D2 state dominates visible spectra while emissions from the 3P0,1,2 states have smaller intensities. The 1D2 emission centered around 1020 nm is detected in the near-infrared spectral range. Intensities of 3P0 emissions increased with an increase in Pr concentration, while 1D2 emissions decreased in intensity. We found that the main process responsible for the 1D2 state decay is the Pr(1D2) + Pr(3H4) Pr(1G4) + Pr(3F3,4) cross-relaxation between two Pr ions of electric dipole-dipole character. This finding is supported by 1D2 emission decay measurements, which revealed a reduction of average decay constants from 242 μs for a 0.5 mol% doped sample to 11 μs for a 10 mol% doped sample and an increasingly stronger non-exponential behavior of emission decay patterns with an increase in Pr3+ concentration.
T2  - Optical Materials
T1  - Concentration and temperature dependence of Pr3+ f-f emissions in La(PO3)3
VL  - 150
SP  - 115226
DO  - 10.1016/j.optmat.2024.115226
ER  - 
@article{
author = "Antić, Željka and Racu, Andrei V. and Medić, Mina and Alodhayb, Abdullah N. and Kuzman, Sanja and Brik, Mikhail G. and Dramićanin, Miroslav",
year = "2024",
abstract = "La(PO3)3 activated with different concentrations of Pr3+ was synthesized by a solid-state process. The obtained powder was composed of chunks of several microns in size, typical for this type of synthesis. X-ray diffraction confirmed an orthorhombic crystal structure with the C2221 space group. The electronic band structures and density of states of La(PO3)3 and La(PO3)3:Pr3+ are calculated and presented. The visible and near-infrared emissions from Pr3+ [Xe]4f2 [Xe]4f2 electronic transitions were detected under 442 nm excitation. The red emission from the 1D2 state dominates visible spectra while emissions from the 3P0,1,2 states have smaller intensities. The 1D2 emission centered around 1020 nm is detected in the near-infrared spectral range. Intensities of 3P0 emissions increased with an increase in Pr concentration, while 1D2 emissions decreased in intensity. We found that the main process responsible for the 1D2 state decay is the Pr(1D2) + Pr(3H4) Pr(1G4) + Pr(3F3,4) cross-relaxation between two Pr ions of electric dipole-dipole character. This finding is supported by 1D2 emission decay measurements, which revealed a reduction of average decay constants from 242 μs for a 0.5 mol% doped sample to 11 μs for a 10 mol% doped sample and an increasingly stronger non-exponential behavior of emission decay patterns with an increase in Pr3+ concentration.",
journal = "Optical Materials",
title = "Concentration and temperature dependence of Pr3+ f-f emissions in La(PO3)3",
volume = "150",
pages = "115226",
doi = "10.1016/j.optmat.2024.115226"
}
Antić, Ž., Racu, A. V., Medić, M., Alodhayb, A. N., Kuzman, S., Brik, M. G.,& Dramićanin, M.. (2024). Concentration and temperature dependence of Pr3+ f-f emissions in La(PO3)3. in Optical Materials, 150, 115226.
https://doi.org/10.1016/j.optmat.2024.115226
Antić Ž, Racu AV, Medić M, Alodhayb AN, Kuzman S, Brik MG, Dramićanin M. Concentration and temperature dependence of Pr3+ f-f emissions in La(PO3)3. in Optical Materials. 2024;150:115226.
doi:10.1016/j.optmat.2024.115226 .
Antić, Željka, Racu, Andrei V., Medić, Mina, Alodhayb, Abdullah N., Kuzman, Sanja, Brik, Mikhail G., Dramićanin, Miroslav, "Concentration and temperature dependence of Pr3+ f-f emissions in La(PO3)3" in Optical Materials, 150 (2024):115226,
https://doi.org/10.1016/j.optmat.2024.115226 . .

In-band luminescence thermometry in the third biological window and multicolor emission of Er-doped fluoride and oxide nanoparticles

Gennari, F.; Periša, Jovana; Sekulić, Milica; Antić, Željka; Dramićanin, Miroslav; Toncelli, A.

(2024)

TY  - JOUR
AU  - Gennari, F.
AU  - Periša, Jovana
AU  - Sekulić, Milica
AU  - Antić, Željka
AU  - Dramićanin, Miroslav
AU  - Toncelli, A.
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12887
AB  - In this study we present a morphological and spectroscopical characterization of three different erbium doped nanocrystal samples, namely two oxides (Y2O3:3%Er, Sc2O3:3%Er) and one fluoride (YF3:5%Er). The spectroscopic study offers a comprehensive comparison of their multicolor emissions, ranging from the visible to the mid-infrared region. Emissions from the first five excited states are presented and the emission cross sections of the 4I11/2 → 4I15/2, 4I11/2 → 4I13/2, and 4I13/2 → 4I15/2 transitions have been calculated and compared with literature results for the oxide compounds providing a confirmation for the 1.5 emission of Er:Y2O3, a correction over published values for the 2.7 μm emission of Er:Y2O3, and also new results for the Er:Sc2O3 emission cross section values of all the infrared bands. Moreover, this study explores the application of the 4I13/2 emission for in-band luminescence thermometry within the third biological window. An optimized segmentation of the 1.5 μm emission permits to achieve high relative and absolute sensitivities using just one dopant ion.
T2  - Journal of Luminescence
T1  - In-band luminescence thermometry in the third biological window and multicolor emission of Er-doped fluoride and oxide nanoparticles
VL  - 269
SP  - 120520
DO  - 10.1016/j.jlumin.2024.120520
ER  - 
@article{
author = "Gennari, F. and Periša, Jovana and Sekulić, Milica and Antić, Željka and Dramićanin, Miroslav and Toncelli, A.",
year = "2024",
abstract = "In this study we present a morphological and spectroscopical characterization of three different erbium doped nanocrystal samples, namely two oxides (Y2O3:3%Er, Sc2O3:3%Er) and one fluoride (YF3:5%Er). The spectroscopic study offers a comprehensive comparison of their multicolor emissions, ranging from the visible to the mid-infrared region. Emissions from the first five excited states are presented and the emission cross sections of the 4I11/2 → 4I15/2, 4I11/2 → 4I13/2, and 4I13/2 → 4I15/2 transitions have been calculated and compared with literature results for the oxide compounds providing a confirmation for the 1.5 emission of Er:Y2O3, a correction over published values for the 2.7 μm emission of Er:Y2O3, and also new results for the Er:Sc2O3 emission cross section values of all the infrared bands. Moreover, this study explores the application of the 4I13/2 emission for in-band luminescence thermometry within the third biological window. An optimized segmentation of the 1.5 μm emission permits to achieve high relative and absolute sensitivities using just one dopant ion.",
journal = "Journal of Luminescence",
title = "In-band luminescence thermometry in the third biological window and multicolor emission of Er-doped fluoride and oxide nanoparticles",
volume = "269",
pages = "120520",
doi = "10.1016/j.jlumin.2024.120520"
}
Gennari, F., Periša, J., Sekulić, M., Antić, Ž., Dramićanin, M.,& Toncelli, A.. (2024). In-band luminescence thermometry in the third biological window and multicolor emission of Er-doped fluoride and oxide nanoparticles. in Journal of Luminescence, 269, 120520.
https://doi.org/10.1016/j.jlumin.2024.120520
Gennari F, Periša J, Sekulić M, Antić Ž, Dramićanin M, Toncelli A. In-band luminescence thermometry in the third biological window and multicolor emission of Er-doped fluoride and oxide nanoparticles. in Journal of Luminescence. 2024;269:120520.
doi:10.1016/j.jlumin.2024.120520 .
Gennari, F., Periša, Jovana, Sekulić, Milica, Antić, Željka, Dramićanin, Miroslav, Toncelli, A., "In-band luminescence thermometry in the third biological window and multicolor emission of Er-doped fluoride and oxide nanoparticles" in Journal of Luminescence, 269 (2024):120520,
https://doi.org/10.1016/j.jlumin.2024.120520 . .

Emission color tunability of dysprosium-activated YNbO4–LuNbO4-mixed phosphors

Đačanin-Far, Ljubica; Dramićanin, Tatjana; Medić, Mina; Ristić, Zoran; Periša, Jovana; Đorđević, Vesna; Antić, Željka; Dramićanin, Miroslav

(2024)

TY  - JOUR
AU  - Đačanin-Far, Ljubica
AU  - Dramićanin, Tatjana
AU  - Medić, Mina
AU  - Ristić, Zoran
AU  - Periša, Jovana
AU  - Đorđević, Vesna
AU  - Antić, Željka
AU  - Dramićanin, Miroslav
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12568
AB  - Herein, we demonstrate the photoluminescence properties of Dy3+-activated YNbO4, LuNbO4, and mixed YxLu1−xNbO4:Dy3+ (x=0.25, 0.5, 0.75) phosphors. For this purpose, fve samples with a fxed Dy3+ concentration (2 mol%) were prepared by the solid-state reaction method. X-ray difraction measurements showed that all phosphors crystallize in a monoclinic fergusonite-beta-(Y) structure with a C2/c space group. Scanning electron microscopy clearly shows that samples are composed of dense, well-developed micron-sized, cube-shaped grains with rounded edges. The photoluminescent emission spectra feature Dy3+ peaks at standard positions corresponding to transitions from the 4 F9/2 excited emitting level to the 6 HJ (J=15/2; 13/2; 11/2 and 9/2) lower levels with two dominant emission bands placed in the blue (~479 nm, B) and yellow (~576 nm, Y) spectral region. It is observed that with Lu increase in the host lattice Y/B ratio decreases toward the desired ratio of unity to obtain white light. To evaluate the suitability of these phosphors for use in solid-state lighting, their photoluminescence emission was analyzed in detail by calculating CIE coordinates, correlated color temperature (CCT) and Delta u,v (DUV). It is shown that CIE chromaticity coordinates of all Dy3+-activated YxLu1−xNbO4 samples (x=0, 0.25, 0.5, 0.75, and 1) fall into the white portion of the diagram and that with the increase of Lu in the host lattice color becomes whiter. CCT values for all samples are in the cooler 4000–4500 K range with positive DUVs indicating that color points are placed above the black body curve. The average lifetime of 4 F9/2 level is calculated to be~0.2 ms for all Dy3+-activated YxLu1−xNbO4 samples, indicating that there is no infuence of the Y-to-Lu ratio in the host niobate material on the luminescence kinetics.
T2  - Applied Physics A
T1  - Emission color tunability of dysprosium-activated YNbO4–LuNbO4-mixed phosphors
VL  - 130
IS  - 2
SP  - 107
DO  - 10.1007/s00339-023-07271-z
ER  - 
@article{
author = "Đačanin-Far, Ljubica and Dramićanin, Tatjana and Medić, Mina and Ristić, Zoran and Periša, Jovana and Đorđević, Vesna and Antić, Željka and Dramićanin, Miroslav",
year = "2024",
abstract = "Herein, we demonstrate the photoluminescence properties of Dy3+-activated YNbO4, LuNbO4, and mixed YxLu1−xNbO4:Dy3+ (x=0.25, 0.5, 0.75) phosphors. For this purpose, fve samples with a fxed Dy3+ concentration (2 mol%) were prepared by the solid-state reaction method. X-ray difraction measurements showed that all phosphors crystallize in a monoclinic fergusonite-beta-(Y) structure with a C2/c space group. Scanning electron microscopy clearly shows that samples are composed of dense, well-developed micron-sized, cube-shaped grains with rounded edges. The photoluminescent emission spectra feature Dy3+ peaks at standard positions corresponding to transitions from the 4 F9/2 excited emitting level to the 6 HJ (J=15/2; 13/2; 11/2 and 9/2) lower levels with two dominant emission bands placed in the blue (~479 nm, B) and yellow (~576 nm, Y) spectral region. It is observed that with Lu increase in the host lattice Y/B ratio decreases toward the desired ratio of unity to obtain white light. To evaluate the suitability of these phosphors for use in solid-state lighting, their photoluminescence emission was analyzed in detail by calculating CIE coordinates, correlated color temperature (CCT) and Delta u,v (DUV). It is shown that CIE chromaticity coordinates of all Dy3+-activated YxLu1−xNbO4 samples (x=0, 0.25, 0.5, 0.75, and 1) fall into the white portion of the diagram and that with the increase of Lu in the host lattice color becomes whiter. CCT values for all samples are in the cooler 4000–4500 K range with positive DUVs indicating that color points are placed above the black body curve. The average lifetime of 4 F9/2 level is calculated to be~0.2 ms for all Dy3+-activated YxLu1−xNbO4 samples, indicating that there is no infuence of the Y-to-Lu ratio in the host niobate material on the luminescence kinetics.",
journal = "Applied Physics A",
title = "Emission color tunability of dysprosium-activated YNbO4–LuNbO4-mixed phosphors",
volume = "130",
number = "2",
pages = "107",
doi = "10.1007/s00339-023-07271-z"
}
Đačanin-Far, L., Dramićanin, T., Medić, M., Ristić, Z., Periša, J., Đorđević, V., Antić, Ž.,& Dramićanin, M.. (2024). Emission color tunability of dysprosium-activated YNbO4–LuNbO4-mixed phosphors. in Applied Physics A, 130(2), 107.
https://doi.org/10.1007/s00339-023-07271-z
Đačanin-Far L, Dramićanin T, Medić M, Ristić Z, Periša J, Đorđević V, Antić Ž, Dramićanin M. Emission color tunability of dysprosium-activated YNbO4–LuNbO4-mixed phosphors. in Applied Physics A. 2024;130(2):107.
doi:10.1007/s00339-023-07271-z .
Đačanin-Far, Ljubica, Dramićanin, Tatjana, Medić, Mina, Ristić, Zoran, Periša, Jovana, Đorđević, Vesna, Antić, Željka, Dramićanin, Miroslav, "Emission color tunability of dysprosium-activated YNbO4–LuNbO4-mixed phosphors" in Applied Physics A, 130, no. 2 (2024):107,
https://doi.org/10.1007/s00339-023-07271-z . .

Step by step optimization of luminescence thermometry in MgTiO3:Cr3+, Nd3+@SiO2 nanoparticles towards bioapplications

Piotrowski, Wojciech M.; Szymczak, Maja; Rodríguez, Emma Martín; Marin, Riccardo; Henklewska, Marta; Poźniak, Błażej; Dramićanin, Miroslav; Marciniak, Lukasz

(2024)

TY  - JOUR
AU  - Piotrowski, Wojciech M.
AU  - Szymczak, Maja
AU  - Rodríguez, Emma Martín
AU  - Marin, Riccardo
AU  - Henklewska, Marta
AU  - Poźniak, Błażej
AU  - Dramićanin, Miroslav
AU  - Marciniak, Lukasz
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11929
AB  - The increasing popularity of luminescent nanothermometry in recent years can be attributed to its application potential in biomedicine. In response to this need, we describe a biocompatible bimodal luminescent thermometer that operates in ratiometric and luminescence lifetime modes based on particles of MgTiO3:Cr3+,Nd3+@SiO2. The introduction of Cr3+ and Nd3+ dopants enabled the luminescence of Ti3+ ions to be observed, and the difference in the thermal quenching rates of Cr3+ (4T2→4A2), Ti3+ (2T2→2E) and Nd3+ (4F3/2 → 4I11/2) ions enabled the ratiometric thermometers. The highest sensitivity reaching SR = 1.00%K−1 was obtained for MgTiO3:0.1 % Cr3+, 0.1 % Nd3+ at 203 K. The shortening of the lifetime of the 4T2 level of Cr3+ ions associated with its thermal depopulation allows to develop a lifetime-based thermometer with a relative sensitivity reaching 0.85–1.18%K−1 in the physiological temperature range. The deposition of a SiO2 shell on a MgTiO3:Cr3+,Nd3+ did not introduce significant changes in the shape of the emission spectrum and slightly elongates the lifetime by reducing the probability of surface-related nonradiative processes. More importantly, the thermometric performance of this luminescence thermometer was preserved. The low cytotoxicity of the obtained materials underlines their potential in bioapplications of the described luminescent thermometers.
T2  - Materials Chemistry and Physics
T1  - Step by step optimization of luminescence thermometry in MgTiO3:Cr3+, Nd3+@SiO2 nanoparticles towards bioapplications
VL  - 312
SP  - 128623
DO  - 10.1016/j.matchemphys.2023.128623
ER  - 
@article{
author = "Piotrowski, Wojciech M. and Szymczak, Maja and Rodríguez, Emma Martín and Marin, Riccardo and Henklewska, Marta and Poźniak, Błażej and Dramićanin, Miroslav and Marciniak, Lukasz",
year = "2024",
abstract = "The increasing popularity of luminescent nanothermometry in recent years can be attributed to its application potential in biomedicine. In response to this need, we describe a biocompatible bimodal luminescent thermometer that operates in ratiometric and luminescence lifetime modes based on particles of MgTiO3:Cr3+,Nd3+@SiO2. The introduction of Cr3+ and Nd3+ dopants enabled the luminescence of Ti3+ ions to be observed, and the difference in the thermal quenching rates of Cr3+ (4T2→4A2), Ti3+ (2T2→2E) and Nd3+ (4F3/2 → 4I11/2) ions enabled the ratiometric thermometers. The highest sensitivity reaching SR = 1.00%K−1 was obtained for MgTiO3:0.1 % Cr3+, 0.1 % Nd3+ at 203 K. The shortening of the lifetime of the 4T2 level of Cr3+ ions associated with its thermal depopulation allows to develop a lifetime-based thermometer with a relative sensitivity reaching 0.85–1.18%K−1 in the physiological temperature range. The deposition of a SiO2 shell on a MgTiO3:Cr3+,Nd3+ did not introduce significant changes in the shape of the emission spectrum and slightly elongates the lifetime by reducing the probability of surface-related nonradiative processes. More importantly, the thermometric performance of this luminescence thermometer was preserved. The low cytotoxicity of the obtained materials underlines their potential in bioapplications of the described luminescent thermometers.",
journal = "Materials Chemistry and Physics",
title = "Step by step optimization of luminescence thermometry in MgTiO3:Cr3+, Nd3+@SiO2 nanoparticles towards bioapplications",
volume = "312",
pages = "128623",
doi = "10.1016/j.matchemphys.2023.128623"
}
Piotrowski, W. M., Szymczak, M., Rodríguez, E. M., Marin, R., Henklewska, M., Poźniak, B., Dramićanin, M.,& Marciniak, L.. (2024). Step by step optimization of luminescence thermometry in MgTiO3:Cr3+, Nd3+@SiO2 nanoparticles towards bioapplications. in Materials Chemistry and Physics, 312, 128623.
https://doi.org/10.1016/j.matchemphys.2023.128623
Piotrowski WM, Szymczak M, Rodríguez EM, Marin R, Henklewska M, Poźniak B, Dramićanin M, Marciniak L. Step by step optimization of luminescence thermometry in MgTiO3:Cr3+, Nd3+@SiO2 nanoparticles towards bioapplications. in Materials Chemistry and Physics. 2024;312:128623.
doi:10.1016/j.matchemphys.2023.128623 .
Piotrowski, Wojciech M., Szymczak, Maja, Rodríguez, Emma Martín, Marin, Riccardo, Henklewska, Marta, Poźniak, Błażej, Dramićanin, Miroslav, Marciniak, Lukasz, "Step by step optimization of luminescence thermometry in MgTiO3:Cr3+, Nd3+@SiO2 nanoparticles towards bioapplications" in Materials Chemistry and Physics, 312 (2024):128623,
https://doi.org/10.1016/j.matchemphys.2023.128623 . .

Mn5+ Lifetime-Based Thermal Imaging in the Optical Transparency Windows Through Skin-Mimicking Tissue Phantom

Piotrowski, Wojciech M.; Marin, Riccardo; Szymczak, Maja; Martín Rodríguez, Emma; Ortgies, Dirk H.; Rodríguez-Sevilla, Paloma; Dramićanin, Miroslav; Jaque, Daniel; Marciniak, Lukasz

(2023)

TY  - JOUR
AU  - Piotrowski, Wojciech M.
AU  - Marin, Riccardo
AU  - Szymczak, Maja
AU  - Martín Rodríguez, Emma
AU  - Ortgies, Dirk H.
AU  - Rodríguez-Sevilla, Paloma
AU  - Dramićanin, Miroslav
AU  - Jaque, Daniel
AU  - Marciniak, Lukasz
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10546
AB  - Lifetime-based luminescence thermometry has been shown to enable accurate deep-tissue monitoring of temperature changes – even at the in vivo level – in a minimally invasive way. However, major limiting factors to the performance of this approach are short lifetimes and poor brightness. These are characteristics, respectively, of semiconductor nanocrystals and lanthanide-doped nanoparticles, of which most luminescent nanothermometers are made. To address these limitations, the composition of luminescent nanothermometers co-doped with transition metal (Mn5+) and Er3+ ions are designed and optimized. The salient features of these nanothermometers are strong, near-infrared emission and long, temperature-dependent photoluminescence lifetime. The potential of these luminescent nanophosphors for thermal sensing is then showcased by monitoring a thermal gradient using a one-of-a-kind piece of equipment designed for lifetime-based luminescence thermometry measurements. The combination of the newly developed nanothermometers and the custom-made instrument allows for obtaining 2D thermal maps both in the absence and presence of tissue phantoms mimicking the optical properties of the skin. The results presented in this study thus provide credible foundations for the deployment of lifetime-based thermometry for accurate deep-tissue thermal mapping at the preclinical level.
T2  - Advanced Optical Materials
T1  - Mn5+ Lifetime-Based Thermal Imaging in the Optical Transparency Windows Through Skin-Mimicking Tissue Phantom
VL  - 11
IS  - 3
SP  - 2202366
DO  - 10.1002/adom.202202366
ER  - 
@article{
author = "Piotrowski, Wojciech M. and Marin, Riccardo and Szymczak, Maja and Martín Rodríguez, Emma and Ortgies, Dirk H. and Rodríguez-Sevilla, Paloma and Dramićanin, Miroslav and Jaque, Daniel and Marciniak, Lukasz",
year = "2023",
abstract = "Lifetime-based luminescence thermometry has been shown to enable accurate deep-tissue monitoring of temperature changes – even at the in vivo level – in a minimally invasive way. However, major limiting factors to the performance of this approach are short lifetimes and poor brightness. These are characteristics, respectively, of semiconductor nanocrystals and lanthanide-doped nanoparticles, of which most luminescent nanothermometers are made. To address these limitations, the composition of luminescent nanothermometers co-doped with transition metal (Mn5+) and Er3+ ions are designed and optimized. The salient features of these nanothermometers are strong, near-infrared emission and long, temperature-dependent photoluminescence lifetime. The potential of these luminescent nanophosphors for thermal sensing is then showcased by monitoring a thermal gradient using a one-of-a-kind piece of equipment designed for lifetime-based luminescence thermometry measurements. The combination of the newly developed nanothermometers and the custom-made instrument allows for obtaining 2D thermal maps both in the absence and presence of tissue phantoms mimicking the optical properties of the skin. The results presented in this study thus provide credible foundations for the deployment of lifetime-based thermometry for accurate deep-tissue thermal mapping at the preclinical level.",
journal = "Advanced Optical Materials",
title = "Mn5+ Lifetime-Based Thermal Imaging in the Optical Transparency Windows Through Skin-Mimicking Tissue Phantom",
volume = "11",
number = "3",
pages = "2202366",
doi = "10.1002/adom.202202366"
}
Piotrowski, W. M., Marin, R., Szymczak, M., Martín Rodríguez, E., Ortgies, D. H., Rodríguez-Sevilla, P., Dramićanin, M., Jaque, D.,& Marciniak, L.. (2023). Mn5+ Lifetime-Based Thermal Imaging in the Optical Transparency Windows Through Skin-Mimicking Tissue Phantom. in Advanced Optical Materials, 11(3), 2202366.
https://doi.org/10.1002/adom.202202366
Piotrowski WM, Marin R, Szymczak M, Martín Rodríguez E, Ortgies DH, Rodríguez-Sevilla P, Dramićanin M, Jaque D, Marciniak L. Mn5+ Lifetime-Based Thermal Imaging in the Optical Transparency Windows Through Skin-Mimicking Tissue Phantom. in Advanced Optical Materials. 2023;11(3):2202366.
doi:10.1002/adom.202202366 .
Piotrowski, Wojciech M., Marin, Riccardo, Szymczak, Maja, Martín Rodríguez, Emma, Ortgies, Dirk H., Rodríguez-Sevilla, Paloma, Dramićanin, Miroslav, Jaque, Daniel, Marciniak, Lukasz, "Mn5+ Lifetime-Based Thermal Imaging in the Optical Transparency Windows Through Skin-Mimicking Tissue Phantom" in Advanced Optical Materials, 11, no. 3 (2023):2202366,
https://doi.org/10.1002/adom.202202366 . .
2
7
7

Judd-Ofelt description of radiative properties of YNbO4 activated with different Eu3+ concentrations

Đačanin Far, Ljubica; Ćirić, Aleksandar; Sekulić, Milica; Periša, Jovana; Ristić, Zoran; Antić, Željka; Dramićanin, Miroslav

(2023)

TY  - JOUR
AU  - Đačanin Far, Ljubica
AU  - Ćirić, Aleksandar
AU  - Sekulić, Milica
AU  - Periša, Jovana
AU  - Ristić, Zoran
AU  - Antić, Željka
AU  - Dramićanin, Miroslav
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10551
AB  - YNbO4:xEu3+ powders (0.1, 0.25, 0.5, 0.75, 1, 3, 5, 7.5, 10, 15, 20 mol %) were synthesized by a solid-state reaction, after homogenization in a vibrational mill. All the samples crystallize in a monoclinic Fergusonite-beta-(Y) structure (C2/c space group), with 45–65 nm crystallite sizes and show a strong orange/red luminescence with 5D0 excited state lifetimes of around 0.6 ms. Photoluminescence emission spectra showed no concentration quenching within the examined concentration range. Judd–Ofelt intensity parameters show a slight increase with rising concentration, up to Ω2 = 8.13∙10−20 cm2, Ω4 = 2.67∙10−20 cm2, and Ω6 is concentration invariant with the 0.35∙10−20 cm2 value. Emission lifetimes of the 5D0 state are almost constant with ∼0.6 ms, and a slight decrease is observed with the highest concentrations. The intrinsic quantum yield of all the samples is about 0.5.
T2  - Optik
T1  - Judd-Ofelt description of radiative properties of YNbO4 activated with different Eu3+ concentrations
VL  - 272
SP  - 170398
DO  - 10.1016/j.ijleo.2022.170398
ER  - 
@article{
author = "Đačanin Far, Ljubica and Ćirić, Aleksandar and Sekulić, Milica and Periša, Jovana and Ristić, Zoran and Antić, Željka and Dramićanin, Miroslav",
year = "2023",
abstract = "YNbO4:xEu3+ powders (0.1, 0.25, 0.5, 0.75, 1, 3, 5, 7.5, 10, 15, 20 mol %) were synthesized by a solid-state reaction, after homogenization in a vibrational mill. All the samples crystallize in a monoclinic Fergusonite-beta-(Y) structure (C2/c space group), with 45–65 nm crystallite sizes and show a strong orange/red luminescence with 5D0 excited state lifetimes of around 0.6 ms. Photoluminescence emission spectra showed no concentration quenching within the examined concentration range. Judd–Ofelt intensity parameters show a slight increase with rising concentration, up to Ω2 = 8.13∙10−20 cm2, Ω4 = 2.67∙10−20 cm2, and Ω6 is concentration invariant with the 0.35∙10−20 cm2 value. Emission lifetimes of the 5D0 state are almost constant with ∼0.6 ms, and a slight decrease is observed with the highest concentrations. The intrinsic quantum yield of all the samples is about 0.5.",
journal = "Optik",
title = "Judd-Ofelt description of radiative properties of YNbO4 activated with different Eu3+ concentrations",
volume = "272",
pages = "170398",
doi = "10.1016/j.ijleo.2022.170398"
}
Đačanin Far, L., Ćirić, A., Sekulić, M., Periša, J., Ristić, Z., Antić, Ž.,& Dramićanin, M.. (2023). Judd-Ofelt description of radiative properties of YNbO4 activated with different Eu3+ concentrations. in Optik, 272, 170398.
https://doi.org/10.1016/j.ijleo.2022.170398
Đačanin Far L, Ćirić A, Sekulić M, Periša J, Ristić Z, Antić Ž, Dramićanin M. Judd-Ofelt description of radiative properties of YNbO4 activated with different Eu3+ concentrations. in Optik. 2023;272:170398.
doi:10.1016/j.ijleo.2022.170398 .
Đačanin Far, Ljubica, Ćirić, Aleksandar, Sekulić, Milica, Periša, Jovana, Ristić, Zoran, Antić, Željka, Dramićanin, Miroslav, "Judd-Ofelt description of radiative properties of YNbO4 activated with different Eu3+ concentrations" in Optik, 272 (2023):170398,
https://doi.org/10.1016/j.ijleo.2022.170398 . .
1
1

Analysis of site symmetries of Er3+ doped CaF2 and BaF2 crystals by high resolution photoluminescence spectroscopy

Racu, Andrei V.; Ristić, Zoran; Ćirić, Aleksandar; Ðorđević, Vesna; Buse, Gabriel; Poienar, Maria; Gutmann, Michael J.; Ivashko, Oleh; Stef, Marius; Vizman, Daniel; Dramićanin, Miroslav; Piasecki, Michal; Brik, Mikhail G.

(2023)

TY  - JOUR
AU  - Racu, Andrei V.
AU  - Ristić, Zoran
AU  - Ćirić, Aleksandar
AU  - Ðorđević, Vesna
AU  - Buse, Gabriel
AU  - Poienar, Maria
AU  - Gutmann, Michael J.
AU  - Ivashko, Oleh
AU  - Stef, Marius
AU  - Vizman, Daniel
AU  - Dramićanin, Miroslav
AU  - Piasecki, Michal
AU  - Brik, Mikhail G.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10561
AB  - The understanding of complex relationships between luminescent properties, local symmetry of an emitting center, and the host crystal structure provides a better insight into optical properties of materials. In this work, the alkaline earths CaF2 and BaF2 fluoride crystals doped with 0.1 mol% ErF3 were investigated. The crystals structure has been studied using a synchrotron and laboratory X-ray diffraction. The C3v and C4v sites symmetry were determined using erbium probed high resolution emission spectroscopy (HRPL) at low temperature (LT) of 10 K. The considerable difference in room temperature (RT) optical properties for CaF2 compared to BaF2 crystals was observed. Such difference in absorption intensity of 4.7 times of erbium 4G11/2 manifold in UV, and 7.5 times in green emission from 4S3/2 manifold, could be due to the distinction in the host crystals cationic radius (ΔrCa,Ba) and the dopant-host ionic radius (ΔrCa-Er, ΔrBa-Er). Those Δr differences influence the structure and lead to the following symmetry formation: In CaF2, the C4v and C3v isolated centers were identified, with the determined Er3+- F−i bond lengths of 2.734 Å and 4.735 Å respectively; In BaF2, only C3v isolated centers were identified with the determined Er3+- F−i bond lengths of 5.380 Å. The present work is the first study that takes into account correlations of optical properties, the local symmetry and the structure in mentioned fluorides crystals, and it could be a step forward in the lanthanide doped optical materials systematics.
T2  - Optical Materials
T1  - Analysis of site symmetries of Er3+ doped CaF2 and BaF2 crystals by high resolution photoluminescence spectroscopy
VL  - 136
SP  - 113337
DO  - 10.1016/j.optmat.2022.113337
ER  - 
@article{
author = "Racu, Andrei V. and Ristić, Zoran and Ćirić, Aleksandar and Ðorđević, Vesna and Buse, Gabriel and Poienar, Maria and Gutmann, Michael J. and Ivashko, Oleh and Stef, Marius and Vizman, Daniel and Dramićanin, Miroslav and Piasecki, Michal and Brik, Mikhail G.",
year = "2023",
abstract = "The understanding of complex relationships between luminescent properties, local symmetry of an emitting center, and the host crystal structure provides a better insight into optical properties of materials. In this work, the alkaline earths CaF2 and BaF2 fluoride crystals doped with 0.1 mol% ErF3 were investigated. The crystals structure has been studied using a synchrotron and laboratory X-ray diffraction. The C3v and C4v sites symmetry were determined using erbium probed high resolution emission spectroscopy (HRPL) at low temperature (LT) of 10 K. The considerable difference in room temperature (RT) optical properties for CaF2 compared to BaF2 crystals was observed. Such difference in absorption intensity of 4.7 times of erbium 4G11/2 manifold in UV, and 7.5 times in green emission from 4S3/2 manifold, could be due to the distinction in the host crystals cationic radius (ΔrCa,Ba) and the dopant-host ionic radius (ΔrCa-Er, ΔrBa-Er). Those Δr differences influence the structure and lead to the following symmetry formation: In CaF2, the C4v and C3v isolated centers were identified, with the determined Er3+- F−i bond lengths of 2.734 Å and 4.735 Å respectively; In BaF2, only C3v isolated centers were identified with the determined Er3+- F−i bond lengths of 5.380 Å. The present work is the first study that takes into account correlations of optical properties, the local symmetry and the structure in mentioned fluorides crystals, and it could be a step forward in the lanthanide doped optical materials systematics.",
journal = "Optical Materials",
title = "Analysis of site symmetries of Er3+ doped CaF2 and BaF2 crystals by high resolution photoluminescence spectroscopy",
volume = "136",
pages = "113337",
doi = "10.1016/j.optmat.2022.113337"
}
Racu, A. V., Ristić, Z., Ćirić, A., Ðorđević, V., Buse, G., Poienar, M., Gutmann, M. J., Ivashko, O., Stef, M., Vizman, D., Dramićanin, M., Piasecki, M.,& Brik, M. G.. (2023). Analysis of site symmetries of Er3+ doped CaF2 and BaF2 crystals by high resolution photoluminescence spectroscopy. in Optical Materials, 136, 113337.
https://doi.org/10.1016/j.optmat.2022.113337
Racu AV, Ristić Z, Ćirić A, Ðorđević V, Buse G, Poienar M, Gutmann MJ, Ivashko O, Stef M, Vizman D, Dramićanin M, Piasecki M, Brik MG. Analysis of site symmetries of Er3+ doped CaF2 and BaF2 crystals by high resolution photoluminescence spectroscopy. in Optical Materials. 2023;136:113337.
doi:10.1016/j.optmat.2022.113337 .
Racu, Andrei V., Ristić, Zoran, Ćirić, Aleksandar, Ðorđević, Vesna, Buse, Gabriel, Poienar, Maria, Gutmann, Michael J., Ivashko, Oleh, Stef, Marius, Vizman, Daniel, Dramićanin, Miroslav, Piasecki, Michal, Brik, Mikhail G., "Analysis of site symmetries of Er3+ doped CaF2 and BaF2 crystals by high resolution photoluminescence spectroscopy" in Optical Materials, 136 (2023):113337,
https://doi.org/10.1016/j.optmat.2022.113337 . .
1
1

Hydrothermal Synthesis and Properties of Yb3+/Tm3+ Doped Sr2LaF7 Upconversion Nanoparticles

Milićević, Bojana R.; Periša, Jovana; Ristić, Zoran; Milenković, Katarina; Antić, Željka; Smits, Krisjanis; Kemere, Meldra; Vitols, Kaspars; Sarakovskis, Anatolijs; Dramićanin, Miroslav

(2023)

TY  - JOUR
AU  - Milićević, Bojana R.
AU  - Periša, Jovana
AU  - Ristić, Zoran
AU  - Milenković, Katarina
AU  - Antić, Željka
AU  - Smits, Krisjanis
AU  - Kemere, Meldra
AU  - Vitols, Kaspars
AU  - Sarakovskis, Anatolijs
AU  - Dramićanin, Miroslav
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10590
AB  - We report the procedure for hydrothermal synthesis of ultrasmall Yb3+/Tm3+ co-doped Sr2LaF7 (SLF) upconversion phosphors. These phosphors were synthesized by varying the concentrations of Yb3+ (x = 10, 15, 20, and 25 mol%) and Tm3+ (y = 0.75, 1, 2, and 3 mol%) with the aim to analyze their emissions in the near IR spectral range. According to the detailed structural analysis, Yb3+ and Tm3+ occupy the La3+ sites in the SLF host. The addition of Yb3+/Tm3+ ions has a huge impact on the lattice constant, particle size, and PL emission properties of the synthesized SLF nanophosphor. The results show that the optimal dopant concentrations for upconversion luminescence of Yb3+/Tm3+ co-doped SLF are 20 mol% Yb3+ and 1 mol% Tm3+ with EDTA as the chelating agent. Under 980 nm light excitation, a strong upconversion emission of Tm3+ ions around 800 nm was achieved. In addition, the experimental photoluminescence lifetime of Tm3+ emission in the SLF host is reported. This study discovered that efficient near IR emission from ultrasmall Yb3+/Tm3+ co-doped SLF phosphors may have potential applications in the fields of fluorescent labels in bioimaging and security applications.
T2  - Nanomaterials
T1  - Hydrothermal Synthesis and Properties of Yb3+/Tm3+ Doped Sr2LaF7 Upconversion Nanoparticles
VL  - 13
IS  - 1
SP  - 30
DO  - 10.3390/nano13010030
ER  - 
@article{
author = "Milićević, Bojana R. and Periša, Jovana and Ristić, Zoran and Milenković, Katarina and Antić, Željka and Smits, Krisjanis and Kemere, Meldra and Vitols, Kaspars and Sarakovskis, Anatolijs and Dramićanin, Miroslav",
year = "2023",
abstract = "We report the procedure for hydrothermal synthesis of ultrasmall Yb3+/Tm3+ co-doped Sr2LaF7 (SLF) upconversion phosphors. These phosphors were synthesized by varying the concentrations of Yb3+ (x = 10, 15, 20, and 25 mol%) and Tm3+ (y = 0.75, 1, 2, and 3 mol%) with the aim to analyze their emissions in the near IR spectral range. According to the detailed structural analysis, Yb3+ and Tm3+ occupy the La3+ sites in the SLF host. The addition of Yb3+/Tm3+ ions has a huge impact on the lattice constant, particle size, and PL emission properties of the synthesized SLF nanophosphor. The results show that the optimal dopant concentrations for upconversion luminescence of Yb3+/Tm3+ co-doped SLF are 20 mol% Yb3+ and 1 mol% Tm3+ with EDTA as the chelating agent. Under 980 nm light excitation, a strong upconversion emission of Tm3+ ions around 800 nm was achieved. In addition, the experimental photoluminescence lifetime of Tm3+ emission in the SLF host is reported. This study discovered that efficient near IR emission from ultrasmall Yb3+/Tm3+ co-doped SLF phosphors may have potential applications in the fields of fluorescent labels in bioimaging and security applications.",
journal = "Nanomaterials",
title = "Hydrothermal Synthesis and Properties of Yb3+/Tm3+ Doped Sr2LaF7 Upconversion Nanoparticles",
volume = "13",
number = "1",
pages = "30",
doi = "10.3390/nano13010030"
}
Milićević, B. R., Periša, J., Ristić, Z., Milenković, K., Antić, Ž., Smits, K., Kemere, M., Vitols, K., Sarakovskis, A.,& Dramićanin, M.. (2023). Hydrothermal Synthesis and Properties of Yb3+/Tm3+ Doped Sr2LaF7 Upconversion Nanoparticles. in Nanomaterials, 13(1), 30.
https://doi.org/10.3390/nano13010030
Milićević BR, Periša J, Ristić Z, Milenković K, Antić Ž, Smits K, Kemere M, Vitols K, Sarakovskis A, Dramićanin M. Hydrothermal Synthesis and Properties of Yb3+/Tm3+ Doped Sr2LaF7 Upconversion Nanoparticles. in Nanomaterials. 2023;13(1):30.
doi:10.3390/nano13010030 .
Milićević, Bojana R., Periša, Jovana, Ristić, Zoran, Milenković, Katarina, Antić, Željka, Smits, Krisjanis, Kemere, Meldra, Vitols, Kaspars, Sarakovskis, Anatolijs, Dramićanin, Miroslav, "Hydrothermal Synthesis and Properties of Yb3+/Tm3+ Doped Sr2LaF7 Upconversion Nanoparticles" in Nanomaterials, 13, no. 1 (2023):30,
https://doi.org/10.3390/nano13010030 . .
3

Barium hexaferrite nanoplatelets with polyphenol coatings for versatile applications as a stable, magnetic, and antimicrobial colloid

Papan Đaniš, Jelena; Periša, Jovana; Hribar Boštjančič, Patricija; Mihajlovski, Katarina; Lazić, Vesna M.; Dramićanin, Miroslav; Lisjak, Darja

(2023)

TY  - JOUR
AU  - Papan Đaniš, Jelena
AU  - Periša, Jovana
AU  - Hribar Boštjančič, Patricija
AU  - Mihajlovski, Katarina
AU  - Lazić, Vesna M.
AU  - Dramićanin, Miroslav
AU  - Lisjak, Darja
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10639
AB  - Colloidal stabilization of magnetic nanoparticles is one of the most important steps in the preparation of magnetic nanoparticles for potential biomedical applications. A special kind of magnetic nanoparticle are barium hexaferrite nanoplatelets (BSHF NPLs) with a hexagonal shape and a permanent magnetic moment. One strategy for the stabilization of BHF in aqueous media is to use coatings. In our research, we used an eco-friendly tannic acid, as a coating on BSHF NPLs. As-prepared BSHF NPLs coated with tannic acid were examined with transmission electron microscopy, infrared and UV-Vis spectroscopy, electro-kinetic measurements, and their room-temperature magnetic properties were measured. Stable colloids were tested in two biological complex media and antimicrobial properties of the material were examined. To enhance the antimicrobial properties of our material, we used tannic acid as a platform for the in-situ production of silver on BSHF NPLs. New hybrid material with silver also possesses magnetic properties and excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus.
T2  - Colloids and Surfaces. B: Biointerfaces
T1  - Barium hexaferrite nanoplatelets with polyphenol coatings for versatile applications as a stable, magnetic, and antimicrobial colloid
VL  - 224
SP  - 113198
DO  - 10.1016/j.colsurfb.2023.113198
ER  - 
@article{
author = "Papan Đaniš, Jelena and Periša, Jovana and Hribar Boštjančič, Patricija and Mihajlovski, Katarina and Lazić, Vesna M. and Dramićanin, Miroslav and Lisjak, Darja",
year = "2023",
abstract = "Colloidal stabilization of magnetic nanoparticles is one of the most important steps in the preparation of magnetic nanoparticles for potential biomedical applications. A special kind of magnetic nanoparticle are barium hexaferrite nanoplatelets (BSHF NPLs) with a hexagonal shape and a permanent magnetic moment. One strategy for the stabilization of BHF in aqueous media is to use coatings. In our research, we used an eco-friendly tannic acid, as a coating on BSHF NPLs. As-prepared BSHF NPLs coated with tannic acid were examined with transmission electron microscopy, infrared and UV-Vis spectroscopy, electro-kinetic measurements, and their room-temperature magnetic properties were measured. Stable colloids were tested in two biological complex media and antimicrobial properties of the material were examined. To enhance the antimicrobial properties of our material, we used tannic acid as a platform for the in-situ production of silver on BSHF NPLs. New hybrid material with silver also possesses magnetic properties and excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus.",
journal = "Colloids and Surfaces. B: Biointerfaces",
title = "Barium hexaferrite nanoplatelets with polyphenol coatings for versatile applications as a stable, magnetic, and antimicrobial colloid",
volume = "224",
pages = "113198",
doi = "10.1016/j.colsurfb.2023.113198"
}
Papan Đaniš, J., Periša, J., Hribar Boštjančič, P., Mihajlovski, K., Lazić, V. M., Dramićanin, M.,& Lisjak, D.. (2023). Barium hexaferrite nanoplatelets with polyphenol coatings for versatile applications as a stable, magnetic, and antimicrobial colloid. in Colloids and Surfaces. B: Biointerfaces, 224, 113198.
https://doi.org/10.1016/j.colsurfb.2023.113198
Papan Đaniš J, Periša J, Hribar Boštjančič P, Mihajlovski K, Lazić VM, Dramićanin M, Lisjak D. Barium hexaferrite nanoplatelets with polyphenol coatings for versatile applications as a stable, magnetic, and antimicrobial colloid. in Colloids and Surfaces. B: Biointerfaces. 2023;224:113198.
doi:10.1016/j.colsurfb.2023.113198 .
Papan Đaniš, Jelena, Periša, Jovana, Hribar Boštjančič, Patricija, Mihajlovski, Katarina, Lazić, Vesna M., Dramićanin, Miroslav, Lisjak, Darja, "Barium hexaferrite nanoplatelets with polyphenol coatings for versatile applications as a stable, magnetic, and antimicrobial colloid" in Colloids and Surfaces. B: Biointerfaces, 224 (2023):113198,
https://doi.org/10.1016/j.colsurfb.2023.113198 . .

Structure and properties of ZnO/ZnMn2O4 composite obtained by thermal decomposition of terephthalate precursor: Scientific paper

Radovanović, Lidija; Radovanović, Željko; Simović, Bojana; Vasić, Milica V.; Balanč, Bojana; Dapčević, Aleksandra; Dramićanin, Miroslav; Rogan, Jelena

(2023)

TY  - JOUR
AU  - Radovanović, Lidija
AU  - Radovanović, Željko
AU  - Simović, Bojana
AU  - Vasić, Milica V.
AU  - Balanč, Bojana
AU  - Dapčević, Aleksandra
AU  - Dramićanin, Miroslav
AU  - Rogan, Jelena
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10873
AB  - A biphasic [Mn(dipya)(H2O)4](tpht)/{[Zn(dipya)(tpht)]·H2O}n com­plex material, I (dipya = 2,2’-dipyridylamine, tpht2– = dianion of terephthalatic acid) was synthesized by ligand exchange reaction and characterized by XRPD and FTIR spectroscopy. A ZnO/ZnMn2O4 composite, II, has been prepared via thermal decomposition of I in an air atmosphere at 450 °C. XRPD, FTIR and FESEM analyses of II revealed the simultaneous presence of spherical nano­particles of wurtzite ZnO and elongated nanoparticles of spinel ZnMn2O4. The specific surface area of II was determined by the BET method, whereas the volume and average size of the mesopores were calculated in accordance with the BJH method. The measurements of the mean size, polydispersity index and zeta potential showed colloidal instability of II. Two band gap values of 2.4 and 3.3 eV were determined using UV–Vis diffuse reflectance spectroscopy, while the measurements of photoluminescence revealed that II is active in the blue region of the visible spectrum. Testing of composite II as a pigmentary material showed that it can be used for the colouring of a ceramic glaze.
T2  - Journal of the Serbian Chemical Society
T1  - Structure and properties of ZnO/ZnMn2O4 composite obtained by thermal decomposition of terephthalate precursor: Scientific paper
VL  - 88
IS  - 3
DO  - 10.2298/JSC221102090R
ER  - 
@article{
author = "Radovanović, Lidija and Radovanović, Željko and Simović, Bojana and Vasić, Milica V. and Balanč, Bojana and Dapčević, Aleksandra and Dramićanin, Miroslav and Rogan, Jelena",
year = "2023",
abstract = "A biphasic [Mn(dipya)(H2O)4](tpht)/{[Zn(dipya)(tpht)]·H2O}n com­plex material, I (dipya = 2,2’-dipyridylamine, tpht2– = dianion of terephthalatic acid) was synthesized by ligand exchange reaction and characterized by XRPD and FTIR spectroscopy. A ZnO/ZnMn2O4 composite, II, has been prepared via thermal decomposition of I in an air atmosphere at 450 °C. XRPD, FTIR and FESEM analyses of II revealed the simultaneous presence of spherical nano­particles of wurtzite ZnO and elongated nanoparticles of spinel ZnMn2O4. The specific surface area of II was determined by the BET method, whereas the volume and average size of the mesopores were calculated in accordance with the BJH method. The measurements of the mean size, polydispersity index and zeta potential showed colloidal instability of II. Two band gap values of 2.4 and 3.3 eV were determined using UV–Vis diffuse reflectance spectroscopy, while the measurements of photoluminescence revealed that II is active in the blue region of the visible spectrum. Testing of composite II as a pigmentary material showed that it can be used for the colouring of a ceramic glaze.",
journal = "Journal of the Serbian Chemical Society",
title = "Structure and properties of ZnO/ZnMn2O4 composite obtained by thermal decomposition of terephthalate precursor: Scientific paper",
volume = "88",
number = "3",
doi = "10.2298/JSC221102090R"
}
Radovanović, L., Radovanović, Ž., Simović, B., Vasić, M. V., Balanč, B., Dapčević, A., Dramićanin, M.,& Rogan, J.. (2023). Structure and properties of ZnO/ZnMn2O4 composite obtained by thermal decomposition of terephthalate precursor: Scientific paper. in Journal of the Serbian Chemical Society, 88(3).
https://doi.org/10.2298/JSC221102090R
Radovanović L, Radovanović Ž, Simović B, Vasić MV, Balanč B, Dapčević A, Dramićanin M, Rogan J. Structure and properties of ZnO/ZnMn2O4 composite obtained by thermal decomposition of terephthalate precursor: Scientific paper. in Journal of the Serbian Chemical Society. 2023;88(3).
doi:10.2298/JSC221102090R .
Radovanović, Lidija, Radovanović, Željko, Simović, Bojana, Vasić, Milica V., Balanč, Bojana, Dapčević, Aleksandra, Dramićanin, Miroslav, Rogan, Jelena, "Structure and properties of ZnO/ZnMn2O4 composite obtained by thermal decomposition of terephthalate precursor: Scientific paper" in Journal of the Serbian Chemical Society, 88, no. 3 (2023),
https://doi.org/10.2298/JSC221102090R . .

Understanding the power of luminescence ratiometric thermal history indicators driven by phase transitions: the case of Eu3+ doped LaVO4

Elzbieciak-Piecka, K.; Piotrowski, Wojciech M.; Dramićanin, Miroslav; Marciniak, Lukasz

(2023)

TY  - JOUR
AU  - Elzbieciak-Piecka, K.
AU  - Piotrowski, Wojciech M.
AU  - Dramićanin, Miroslav
AU  - Marciniak, Lukasz
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10875
AB  - Finding thermal history phosphors with high sensitivity and a consistent readout is required for reliable thermal history determination with high temperature resolution. This work presents a new thermal history phosphor based on the luminescence of Eu3+ ions in LaVO4 to meet these requirements. As demonstrated, raising the annealing temperature causes a structural phase transition from a low-temperature tetragonal phase to a high-temperature single-stranded phase. The associated change in the local point symmetry of the crystallographic site occupied by Eu3+ ions result in a significant decrease in the emission intensity ratio of the 5D0 → 7F2 band relative to the 5D0 → 7F1 band, which enables the development of the ratiometric thermal history phosphor with the relative sensitivity of 0.38% °C−1 at 800 °C. Its applicative potential for thermal history readout was proved in the proof-of-concept experiment.
T2  - Dalton Transactions
T1  - Understanding the power of luminescence ratiometric thermal history indicators driven by phase transitions: the case of Eu3+ doped LaVO4
DO  - 10.1039/D3DT00601H
ER  - 
@article{
author = "Elzbieciak-Piecka, K. and Piotrowski, Wojciech M. and Dramićanin, Miroslav and Marciniak, Lukasz",
year = "2023",
abstract = "Finding thermal history phosphors with high sensitivity and a consistent readout is required for reliable thermal history determination with high temperature resolution. This work presents a new thermal history phosphor based on the luminescence of Eu3+ ions in LaVO4 to meet these requirements. As demonstrated, raising the annealing temperature causes a structural phase transition from a low-temperature tetragonal phase to a high-temperature single-stranded phase. The associated change in the local point symmetry of the crystallographic site occupied by Eu3+ ions result in a significant decrease in the emission intensity ratio of the 5D0 → 7F2 band relative to the 5D0 → 7F1 band, which enables the development of the ratiometric thermal history phosphor with the relative sensitivity of 0.38% °C−1 at 800 °C. Its applicative potential for thermal history readout was proved in the proof-of-concept experiment.",
journal = "Dalton Transactions",
title = "Understanding the power of luminescence ratiometric thermal history indicators driven by phase transitions: the case of Eu3+ doped LaVO4",
doi = "10.1039/D3DT00601H"
}
Elzbieciak-Piecka, K., Piotrowski, W. M., Dramićanin, M.,& Marciniak, L.. (2023). Understanding the power of luminescence ratiometric thermal history indicators driven by phase transitions: the case of Eu3+ doped LaVO4. in Dalton Transactions.
https://doi.org/10.1039/D3DT00601H
Elzbieciak-Piecka K, Piotrowski WM, Dramićanin M, Marciniak L. Understanding the power of luminescence ratiometric thermal history indicators driven by phase transitions: the case of Eu3+ doped LaVO4. in Dalton Transactions. 2023;.
doi:10.1039/D3DT00601H .
Elzbieciak-Piecka, K., Piotrowski, Wojciech M., Dramićanin, Miroslav, Marciniak, Lukasz, "Understanding the power of luminescence ratiometric thermal history indicators driven by phase transitions: the case of Eu3+ doped LaVO4" in Dalton Transactions (2023),
https://doi.org/10.1039/D3DT00601H . .
3
4
1

Comparison of Performance between Single- and Multiparameter Luminescence Thermometry Methods Based on the Mn5+ Near-Infrared Emission

Alrebdi, Tahani A.; Alodhayb, Abdullah N.; Ristić, Zoran; Dramićanin, Miroslav

(2023)

TY  - JOUR
AU  - Alrebdi, Tahani A.
AU  - Alodhayb, Abdullah N.
AU  - Ristić, Zoran
AU  - Dramićanin, Miroslav
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10931
AB  - Herein, we investigate the performance of single- and multiparametric luminescence thermometry founded on the temperature-dependent spectral features of Ca6BaP4O17:Mn5+ near-infrared emission. The material was prepared by a conventional steady-state synthesis, and its photoluminescence emission was measured from 7500 to 10,000 cm−1 over the 293–373 K temperature range in 5 K increments. The spectra are composed of the emissions from 1E → 3A2 and 3T2 → 3A2 electronic transitions and Stokes and anti-Stokes vibronic sidebands at 320 cm−1 and 800 cm−1 from the maximum of 1E → 3A2 emission. Upon temperature increase, the 3T2 and Stokes bands gained in intensity while the maximum of 1E emission band is redshifted. We introduced the procedure for the linearization and feature scaling of input variables for linear multiparametric regression. Then, we experimentally determined accuracies and precisions of the luminescence thermometry based on luminescence intensity ratios between emissions from the 1E and 3T2 states, between Stokes and anti-Stokes emission sidebands, and at the 1E energy maximum. The multiparametric luminescence thermometry involving the same spectral features showed similar performance, comparable to the best single-parameter thermometry.
T2  - Sensors
T1  - Comparison of Performance between Single- and Multiparameter Luminescence Thermometry Methods Based on the Mn5+ Near-Infrared Emission
VL  - 23
IS  - 8
SP  - 3839
DO  - 10.3390/s23083839
ER  - 
@article{
author = "Alrebdi, Tahani A. and Alodhayb, Abdullah N. and Ristić, Zoran and Dramićanin, Miroslav",
year = "2023",
abstract = "Herein, we investigate the performance of single- and multiparametric luminescence thermometry founded on the temperature-dependent spectral features of Ca6BaP4O17:Mn5+ near-infrared emission. The material was prepared by a conventional steady-state synthesis, and its photoluminescence emission was measured from 7500 to 10,000 cm−1 over the 293–373 K temperature range in 5 K increments. The spectra are composed of the emissions from 1E → 3A2 and 3T2 → 3A2 electronic transitions and Stokes and anti-Stokes vibronic sidebands at 320 cm−1 and 800 cm−1 from the maximum of 1E → 3A2 emission. Upon temperature increase, the 3T2 and Stokes bands gained in intensity while the maximum of 1E emission band is redshifted. We introduced the procedure for the linearization and feature scaling of input variables for linear multiparametric regression. Then, we experimentally determined accuracies and precisions of the luminescence thermometry based on luminescence intensity ratios between emissions from the 1E and 3T2 states, between Stokes and anti-Stokes emission sidebands, and at the 1E energy maximum. The multiparametric luminescence thermometry involving the same spectral features showed similar performance, comparable to the best single-parameter thermometry.",
journal = "Sensors",
title = "Comparison of Performance between Single- and Multiparameter Luminescence Thermometry Methods Based on the Mn5+ Near-Infrared Emission",
volume = "23",
number = "8",
pages = "3839",
doi = "10.3390/s23083839"
}
Alrebdi, T. A., Alodhayb, A. N., Ristić, Z.,& Dramićanin, M.. (2023). Comparison of Performance between Single- and Multiparameter Luminescence Thermometry Methods Based on the Mn5+ Near-Infrared Emission. in Sensors, 23(8), 3839.
https://doi.org/10.3390/s23083839
Alrebdi TA, Alodhayb AN, Ristić Z, Dramićanin M. Comparison of Performance between Single- and Multiparameter Luminescence Thermometry Methods Based on the Mn5+ Near-Infrared Emission. in Sensors. 2023;23(8):3839.
doi:10.3390/s23083839 .
Alrebdi, Tahani A., Alodhayb, Abdullah N., Ristić, Zoran, Dramićanin, Miroslav, "Comparison of Performance between Single- and Multiparameter Luminescence Thermometry Methods Based on the Mn5+ Near-Infrared Emission" in Sensors, 23, no. 8 (2023):3839,
https://doi.org/10.3390/s23083839 . .
3
2

Twofold increase in the sensitivity of Er3+/Yb3+ Boltzmann thermometer

Ćirić, Aleksandar; van Swieten, Thomas; Periša, Jovana; Meijerink, Andries; Dramićanin, Miroslav

(2023)

TY  - JOUR
AU  - Ćirić, Aleksandar
AU  - van Swieten, Thomas
AU  - Periša, Jovana
AU  - Meijerink, Andries
AU  - Dramićanin, Miroslav
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11066
AB  - Luminescence thermometry is the most versatile remote temperature sensing technique and can be employed from living cells to large surfaces and from cryogenic temperatures to the melting points of metals. Ongoing research aims to optimize the sensitivity of the ratio between the emission intensity from two coupled excited states. However, this approach is inherently limited to temperature-dependent processes involving only the excited states. Here, we develop a novel measurement technique, called luminescence intensity ratio squared (LIR2) for the Yb3+/Er3+ pair, that combines the temperature sensitivity of ground- and excited-state populations. We use Y3Al5O12:Er3+,Yb3+ nanoparticles as a promising model system with both visible and infrared emissions. To apply our method, we record two luminescence spectra at different excitation wavelengths and determine the LIR2 using one emission in each of the two spectra. The LIR2 testing with Y3Al5O12 nanoparticles showed a sensitivity increase of 70% in the visible region and an impressive 230% increase in the NIR region compared to the conventional LIR method. This enhances the measurement precision by a factor of 1.5–2.5. The LIR2 based on the visible upconversion emission is particularly useful for measurements of high temperatures, while the LIR2 based on the downshifted ∼1.5 μm emission may revolutionize temperature measurements of biological samples in the range of physiological temperatures.
T2  - Journal of Applied Physics
T1  - Twofold increase in the sensitivity of Er3+/Yb3+ Boltzmann thermometer
VL  - 133
IS  - 19
SP  - 194501
DO  - 10.1063/5.0149757
ER  - 
@article{
author = "Ćirić, Aleksandar and van Swieten, Thomas and Periša, Jovana and Meijerink, Andries and Dramićanin, Miroslav",
year = "2023",
abstract = "Luminescence thermometry is the most versatile remote temperature sensing technique and can be employed from living cells to large surfaces and from cryogenic temperatures to the melting points of metals. Ongoing research aims to optimize the sensitivity of the ratio between the emission intensity from two coupled excited states. However, this approach is inherently limited to temperature-dependent processes involving only the excited states. Here, we develop a novel measurement technique, called luminescence intensity ratio squared (LIR2) for the Yb3+/Er3+ pair, that combines the temperature sensitivity of ground- and excited-state populations. We use Y3Al5O12:Er3+,Yb3+ nanoparticles as a promising model system with both visible and infrared emissions. To apply our method, we record two luminescence spectra at different excitation wavelengths and determine the LIR2 using one emission in each of the two spectra. The LIR2 testing with Y3Al5O12 nanoparticles showed a sensitivity increase of 70% in the visible region and an impressive 230% increase in the NIR region compared to the conventional LIR method. This enhances the measurement precision by a factor of 1.5–2.5. The LIR2 based on the visible upconversion emission is particularly useful for measurements of high temperatures, while the LIR2 based on the downshifted ∼1.5 μm emission may revolutionize temperature measurements of biological samples in the range of physiological temperatures.",
journal = "Journal of Applied Physics",
title = "Twofold increase in the sensitivity of Er3+/Yb3+ Boltzmann thermometer",
volume = "133",
number = "19",
pages = "194501",
doi = "10.1063/5.0149757"
}
Ćirić, A., van Swieten, T., Periša, J., Meijerink, A.,& Dramićanin, M.. (2023). Twofold increase in the sensitivity of Er3+/Yb3+ Boltzmann thermometer. in Journal of Applied Physics, 133(19), 194501.
https://doi.org/10.1063/5.0149757
Ćirić A, van Swieten T, Periša J, Meijerink A, Dramićanin M. Twofold increase in the sensitivity of Er3+/Yb3+ Boltzmann thermometer. in Journal of Applied Physics. 2023;133(19):194501.
doi:10.1063/5.0149757 .
Ćirić, Aleksandar, van Swieten, Thomas, Periša, Jovana, Meijerink, Andries, Dramićanin, Miroslav, "Twofold increase in the sensitivity of Er3+/Yb3+ Boltzmann thermometer" in Journal of Applied Physics, 133, no. 19 (2023):194501,
https://doi.org/10.1063/5.0149757 . .
2
2
2

Critical evaluation of the thermometric performance of ratiometric luminescence thermometers based on Ba3(VO4)2:Mn5+,Nd3+ for deep-tissue thermal imaging

Piotrowski, Wojciech Michal; Marin, Riccardo; Szymczak, Maja; Martin Rodriguez, Emma; Ortgies, Dirk H.; Rodríguez-Sevilla, Paloma; Bolek, Paulina; Dramićanin, Miroslav; Jaque, Daniel; Marciniak, Lukasz

(2023)

TY  - JOUR
AU  - Piotrowski, Wojciech Michal
AU  - Marin, Riccardo
AU  - Szymczak, Maja
AU  - Martin Rodriguez, Emma
AU  - Ortgies, Dirk H.
AU  - Rodríguez-Sevilla, Paloma
AU  - Bolek, Paulina
AU  - Dramićanin, Miroslav
AU  - Jaque, Daniel
AU  - Marciniak, Lukasz
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11082
AB  - Near-infrared (NIR) luminescence thermometry has been brought to the fore as a reliable approach for remote thermal sensing and imaging. Lanthanide (Ln3+)-based nanophosphors are often proposed as NIR nanothermometers of choice. However, the combination of Ln3+ with transition metal (TM) ions has recently emerged as a strategy to introduce additional emission bands and/or TM ↔ Ln3+ energy transfer pathways whose temperature dependence can be harnessed to increase the sensitivity of the thermometric approach. Yet, the examples of the combination of luminescence nanothermometers working in the NIR and hosting simultaneously TM and Ln3+ are scarce, leaving plenty of space for the exploration of these systems. Herein, we report on the preparation and optimization of the thermometric performance of Ba3(VO4)2:Mn5+,Nd3+ nanophosphors. The different temperature dependences of the emission intensity of the two doped luminescent centers allow using the ratio between Mn5+ and Nd3+ as a reliable thermometric parameter with a relative thermal sensitivity of 1% K−1 close to room temperature. We then showcase the suitability of this nanophosphor for employment in 2D NIR luminescence thermal imaging. Lastly, we critically evaluate the possibility of using this thermal imaging approach through opaque media with the help of phantoms with tissue-like optical properties. As expected, a loss of reliability of the thermometric method is observed due to tissue-induced photon scattering and absorption that differentially affect the emission of Mn5+ and Nd3+. Overall, the reported results underscore the good performance of the newly developed nanothermometer, while consolidating the call for the use of luminescence nanothermometers working in the time-domain (rather than in the spectral domain) for deep-tissue thermal readout/imaging.
T2  - Journal of Materials Chemistry C
T1  - Critical evaluation of the thermometric performance of ratiometric luminescence thermometers based on Ba3(VO4)2:Mn5+,Nd3+ for deep-tissue thermal imaging
VL  - 11
IS  - 20
SP  - 6713
EP  - 6723
DO  - 10.1039/D3TC00249G
ER  - 
@article{
author = "Piotrowski, Wojciech Michal and Marin, Riccardo and Szymczak, Maja and Martin Rodriguez, Emma and Ortgies, Dirk H. and Rodríguez-Sevilla, Paloma and Bolek, Paulina and Dramićanin, Miroslav and Jaque, Daniel and Marciniak, Lukasz",
year = "2023",
abstract = "Near-infrared (NIR) luminescence thermometry has been brought to the fore as a reliable approach for remote thermal sensing and imaging. Lanthanide (Ln3+)-based nanophosphors are often proposed as NIR nanothermometers of choice. However, the combination of Ln3+ with transition metal (TM) ions has recently emerged as a strategy to introduce additional emission bands and/or TM ↔ Ln3+ energy transfer pathways whose temperature dependence can be harnessed to increase the sensitivity of the thermometric approach. Yet, the examples of the combination of luminescence nanothermometers working in the NIR and hosting simultaneously TM and Ln3+ are scarce, leaving plenty of space for the exploration of these systems. Herein, we report on the preparation and optimization of the thermometric performance of Ba3(VO4)2:Mn5+,Nd3+ nanophosphors. The different temperature dependences of the emission intensity of the two doped luminescent centers allow using the ratio between Mn5+ and Nd3+ as a reliable thermometric parameter with a relative thermal sensitivity of 1% K−1 close to room temperature. We then showcase the suitability of this nanophosphor for employment in 2D NIR luminescence thermal imaging. Lastly, we critically evaluate the possibility of using this thermal imaging approach through opaque media with the help of phantoms with tissue-like optical properties. As expected, a loss of reliability of the thermometric method is observed due to tissue-induced photon scattering and absorption that differentially affect the emission of Mn5+ and Nd3+. Overall, the reported results underscore the good performance of the newly developed nanothermometer, while consolidating the call for the use of luminescence nanothermometers working in the time-domain (rather than in the spectral domain) for deep-tissue thermal readout/imaging.",
journal = "Journal of Materials Chemistry C",
title = "Critical evaluation of the thermometric performance of ratiometric luminescence thermometers based on Ba3(VO4)2:Mn5+,Nd3+ for deep-tissue thermal imaging",
volume = "11",
number = "20",
pages = "6713-6723",
doi = "10.1039/D3TC00249G"
}
Piotrowski, W. M., Marin, R., Szymczak, M., Martin Rodriguez, E., Ortgies, D. H., Rodríguez-Sevilla, P., Bolek, P., Dramićanin, M., Jaque, D.,& Marciniak, L.. (2023). Critical evaluation of the thermometric performance of ratiometric luminescence thermometers based on Ba3(VO4)2:Mn5+,Nd3+ for deep-tissue thermal imaging. in Journal of Materials Chemistry C, 11(20), 6713-6723.
https://doi.org/10.1039/D3TC00249G
Piotrowski WM, Marin R, Szymczak M, Martin Rodriguez E, Ortgies DH, Rodríguez-Sevilla P, Bolek P, Dramićanin M, Jaque D, Marciniak L. Critical evaluation of the thermometric performance of ratiometric luminescence thermometers based on Ba3(VO4)2:Mn5+,Nd3+ for deep-tissue thermal imaging. in Journal of Materials Chemistry C. 2023;11(20):6713-6723.
doi:10.1039/D3TC00249G .
Piotrowski, Wojciech Michal, Marin, Riccardo, Szymczak, Maja, Martin Rodriguez, Emma, Ortgies, Dirk H., Rodríguez-Sevilla, Paloma, Bolek, Paulina, Dramićanin, Miroslav, Jaque, Daniel, Marciniak, Lukasz, "Critical evaluation of the thermometric performance of ratiometric luminescence thermometers based on Ba3(VO4)2:Mn5+,Nd3+ for deep-tissue thermal imaging" in Journal of Materials Chemistry C, 11, no. 20 (2023):6713-6723,
https://doi.org/10.1039/D3TC00249G . .
1
3
3

Thirty-Fold Increase in Relative Sensitivity of Dy3+ Luminescent Boltzmann Thermometers Using Multiparameter and Multilevel Cascade Temperature Readings

Antić, Željka; Ćirić, Aleksandar; Sekulić, Milica; Periša, Jovana; Milićević, Bojana; Alodhayb, Abdullah N.; Alrebdi, Tahani A.; Dramićanin, Miroslav

(2023)

TY  - JOUR
AU  - Antić, Željka
AU  - Ćirić, Aleksandar
AU  - Sekulić, Milica
AU  - Periša, Jovana
AU  - Milićević, Bojana
AU  - Alodhayb, Abdullah N.
AU  - Alrebdi, Tahani A.
AU  - Dramićanin, Miroslav
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11216
AB  - The sensitivity of luminescent Boltzmann thermometers is restricted by the energy difference between the thermally coupled excitement levels of trivalent lanthanides, and their values further decrease with increases in temperature, rendering their use at high temperatures difficult. Here, we demonstrate how to overcome this sensitivity limitation by employing multiparameter and multilevel cascade temperature readings. For this purpose, we synthesized Dy3+:Y2SiO5, a phosphor whose emission is known to begin quenching at very high temperatures. Its photoluminescence-emission features, later used for thermometry, consisted of two blue emission bands centered around 486 nm and 458 nm, and two bands centered around 430 nm and 398 nm, which were only visible at elevated temperatures. Next, we performed thermometry using the standard luminescence-intensity ratio (LIR) method, which employs the 4F9/2 and 4I15/2 Dy3+ levels’ emissions and the multilevel cascade method, which additionally uses the 4G11/2 level and overlapping intensities of 4I13/2, 4M21/2, 4K17/2, and 4F7/2 levels to create two LIRs with a larger energy difference than the standard LIR. This approach yielded a sensitivity that was 3.14 times greater than the standard method. Finally, we simultaneously exploited all the LIRs in the multiparameter temperature readings and found a relative sensitivity that was 30 times greater than that of the standard approach.
T2  - Crystals
T1  - Thirty-Fold Increase in Relative Sensitivity of Dy3+ Luminescent Boltzmann Thermometers Using Multiparameter and Multilevel Cascade Temperature Readings
VL  - 13
IS  - 6
SP  - 884
DO  - 10.3390/cryst13060884
ER  - 
@article{
author = "Antić, Željka and Ćirić, Aleksandar and Sekulić, Milica and Periša, Jovana and Milićević, Bojana and Alodhayb, Abdullah N. and Alrebdi, Tahani A. and Dramićanin, Miroslav",
year = "2023",
abstract = "The sensitivity of luminescent Boltzmann thermometers is restricted by the energy difference between the thermally coupled excitement levels of trivalent lanthanides, and their values further decrease with increases in temperature, rendering their use at high temperatures difficult. Here, we demonstrate how to overcome this sensitivity limitation by employing multiparameter and multilevel cascade temperature readings. For this purpose, we synthesized Dy3+:Y2SiO5, a phosphor whose emission is known to begin quenching at very high temperatures. Its photoluminescence-emission features, later used for thermometry, consisted of two blue emission bands centered around 486 nm and 458 nm, and two bands centered around 430 nm and 398 nm, which were only visible at elevated temperatures. Next, we performed thermometry using the standard luminescence-intensity ratio (LIR) method, which employs the 4F9/2 and 4I15/2 Dy3+ levels’ emissions and the multilevel cascade method, which additionally uses the 4G11/2 level and overlapping intensities of 4I13/2, 4M21/2, 4K17/2, and 4F7/2 levels to create two LIRs with a larger energy difference than the standard LIR. This approach yielded a sensitivity that was 3.14 times greater than the standard method. Finally, we simultaneously exploited all the LIRs in the multiparameter temperature readings and found a relative sensitivity that was 30 times greater than that of the standard approach.",
journal = "Crystals",
title = "Thirty-Fold Increase in Relative Sensitivity of Dy3+ Luminescent Boltzmann Thermometers Using Multiparameter and Multilevel Cascade Temperature Readings",
volume = "13",
number = "6",
pages = "884",
doi = "10.3390/cryst13060884"
}
Antić, Ž., Ćirić, A., Sekulić, M., Periša, J., Milićević, B., Alodhayb, A. N., Alrebdi, T. A.,& Dramićanin, M.. (2023). Thirty-Fold Increase in Relative Sensitivity of Dy3+ Luminescent Boltzmann Thermometers Using Multiparameter and Multilevel Cascade Temperature Readings. in Crystals, 13(6), 884.
https://doi.org/10.3390/cryst13060884
Antić Ž, Ćirić A, Sekulić M, Periša J, Milićević B, Alodhayb AN, Alrebdi TA, Dramićanin M. Thirty-Fold Increase in Relative Sensitivity of Dy3+ Luminescent Boltzmann Thermometers Using Multiparameter and Multilevel Cascade Temperature Readings. in Crystals. 2023;13(6):884.
doi:10.3390/cryst13060884 .
Antić, Željka, Ćirić, Aleksandar, Sekulić, Milica, Periša, Jovana, Milićević, Bojana, Alodhayb, Abdullah N., Alrebdi, Tahani A., Dramićanin, Miroslav, "Thirty-Fold Increase in Relative Sensitivity of Dy3+ Luminescent Boltzmann Thermometers Using Multiparameter and Multilevel Cascade Temperature Readings" in Crystals, 13, no. 6 (2023):884,
https://doi.org/10.3390/cryst13060884 . .
1

Luminescent Eu3+ doped SrF2 nanoparticles for fluorescent detection of fertilizers

Đačanin Far, Ljubica; Zeković, Ivana; Periša, Jovana; Ristić, Zoran; Alodhayb, Abdullah; Dramićanin, Miroslav; Antić, Željka

(2023)

TY  - JOUR
AU  - Đačanin Far, Ljubica
AU  - Zeković, Ivana
AU  - Periša, Jovana
AU  - Ristić, Zoran
AU  - Alodhayb, Abdullah
AU  - Dramićanin, Miroslav
AU  - Antić, Željka
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11339
AB  - Luminescent Eu3+-doped SrF2 nanoparticles were synthesized using microwave-assisted synthesis. Their surfaces were modified either by polyethylene glycol or mercaptopropionic acid to enhance their dispersibility in aqueous media and colloidal formation. X-ray diffraction analysis confirmed single-phase cubic structure in both types of hydrophilic-modified Sr0.9Eu0.1F2 luminescent powders. The average crystallite size of nanoparticles is found to be ∼13 nm. Scanning electron microscopy of the representative PEG2000-modified sample revealed that particles form agglomerates composed of densely packed nanoparticles. The microstructure at a local level was investigated by transmission electron microscopy showing the presence of sphere-like nanoparticles with an average particle size of 12.5 nm and 14 nm for PEG-modified and MPA-modified Sr0.9Eu0.1F2, respectively. Both PEG2000 and MPA-modified Sr0.9Eu0.1F2 water dispersions show strong red Eu3+ emission under 405 nm excitation that is quenched in the presence of the primary NP fertilizer, ammonium dihydrogen phosphate, NH4H2PO4. The limit of detection was calculated to be ∼19 mM for both hydrophilic-modified Sr0.9Eu0.1F2 luminescent nanoparticles.
T2  - Optical Materials
T1  - Luminescent Eu3+ doped SrF2 nanoparticles for fluorescent detection of fertilizers
VL  - 142
SP  - 114061
DO  - 10.1016/j.optmat.2023.114061
ER  - 
@article{
author = "Đačanin Far, Ljubica and Zeković, Ivana and Periša, Jovana and Ristić, Zoran and Alodhayb, Abdullah and Dramićanin, Miroslav and Antić, Željka",
year = "2023",
abstract = "Luminescent Eu3+-doped SrF2 nanoparticles were synthesized using microwave-assisted synthesis. Their surfaces were modified either by polyethylene glycol or mercaptopropionic acid to enhance their dispersibility in aqueous media and colloidal formation. X-ray diffraction analysis confirmed single-phase cubic structure in both types of hydrophilic-modified Sr0.9Eu0.1F2 luminescent powders. The average crystallite size of nanoparticles is found to be ∼13 nm. Scanning electron microscopy of the representative PEG2000-modified sample revealed that particles form agglomerates composed of densely packed nanoparticles. The microstructure at a local level was investigated by transmission electron microscopy showing the presence of sphere-like nanoparticles with an average particle size of 12.5 nm and 14 nm for PEG-modified and MPA-modified Sr0.9Eu0.1F2, respectively. Both PEG2000 and MPA-modified Sr0.9Eu0.1F2 water dispersions show strong red Eu3+ emission under 405 nm excitation that is quenched in the presence of the primary NP fertilizer, ammonium dihydrogen phosphate, NH4H2PO4. The limit of detection was calculated to be ∼19 mM for both hydrophilic-modified Sr0.9Eu0.1F2 luminescent nanoparticles.",
journal = "Optical Materials",
title = "Luminescent Eu3+ doped SrF2 nanoparticles for fluorescent detection of fertilizers",
volume = "142",
pages = "114061",
doi = "10.1016/j.optmat.2023.114061"
}
Đačanin Far, L., Zeković, I., Periša, J., Ristić, Z., Alodhayb, A., Dramićanin, M.,& Antić, Ž.. (2023). Luminescent Eu3+ doped SrF2 nanoparticles for fluorescent detection of fertilizers. in Optical Materials, 142, 114061.
https://doi.org/10.1016/j.optmat.2023.114061
Đačanin Far L, Zeković I, Periša J, Ristić Z, Alodhayb A, Dramićanin M, Antić Ž. Luminescent Eu3+ doped SrF2 nanoparticles for fluorescent detection of fertilizers. in Optical Materials. 2023;142:114061.
doi:10.1016/j.optmat.2023.114061 .
Đačanin Far, Ljubica, Zeković, Ivana, Periša, Jovana, Ristić, Zoran, Alodhayb, Abdullah, Dramićanin, Miroslav, Antić, Željka, "Luminescent Eu3+ doped SrF2 nanoparticles for fluorescent detection of fertilizers" in Optical Materials, 142 (2023):114061,
https://doi.org/10.1016/j.optmat.2023.114061 . .
1
1

Thermometric Judd-Ofelt model for Dy3+ ion tested in CaYAlO4 host and evaluation of its sensing performances for luminescence thermometry

Martinović, Ana; Milićević, Bojana; Periša, Jovana; Ristić, Zoran; Stojadinović, Stevan; Dramićanin, Miroslav; Ćirić, Aleksandar

(2023)

TY  - JOUR
AU  - Martinović, Ana
AU  - Milićević, Bojana
AU  - Periša, Jovana
AU  - Ristić, Zoran
AU  - Stojadinović, Stevan
AU  - Dramićanin, Miroslav
AU  - Ćirić, Aleksandar
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11361
AB  - Luminescence thermometry uses temperature-dependent emission of light for remote sensing. Dy3+ is established as a perspective ion for high-temperature probes, but given that there is an infinite number of potential hosts it is impossible to find conventionally the one with the best performance. Judd-Ofelt thermometric model can predict sensitivities but it was not yet experimentally validated on Dy3+ ion. Pure phase CaYAlO4:Dy3+ powder was synthesized via the modified Pechini method. Photoluminescence spectra were taken from 300 to 600 K. Luminescence intensity ratio was estimated using 4 I15/2 and 4 F9/2 levels. Experimentally obtained thermometric parameters and sensitivities showed an excellent matching with those obtained from the Judd-Ofelt, indicating the potential application of the Judd-Ofelt model for fast assessment of Dy3+-doped luminescent sensor thermometric perspective. The maximum absolute and relative sensitivities are ~0.001 K− 1 at 600 K and ~1.4% K− 1 at 300 K, respectively. The optimum temperature range for the CaYAlO4:Dy3+ probe is from 370 to 616 K.
T2  - Physica B: Condensed Matter
T1  - Thermometric Judd-Ofelt model for Dy3+ ion tested in CaYAlO4 host and evaluation of its sensing performances for luminescence thermometry
VL  - 666
SP  - 415096
DO  - 10.1016/j.physb.2023.415096
ER  - 
@article{
author = "Martinović, Ana and Milićević, Bojana and Periša, Jovana and Ristić, Zoran and Stojadinović, Stevan and Dramićanin, Miroslav and Ćirić, Aleksandar",
year = "2023",
abstract = "Luminescence thermometry uses temperature-dependent emission of light for remote sensing. Dy3+ is established as a perspective ion for high-temperature probes, but given that there is an infinite number of potential hosts it is impossible to find conventionally the one with the best performance. Judd-Ofelt thermometric model can predict sensitivities but it was not yet experimentally validated on Dy3+ ion. Pure phase CaYAlO4:Dy3+ powder was synthesized via the modified Pechini method. Photoluminescence spectra were taken from 300 to 600 K. Luminescence intensity ratio was estimated using 4 I15/2 and 4 F9/2 levels. Experimentally obtained thermometric parameters and sensitivities showed an excellent matching with those obtained from the Judd-Ofelt, indicating the potential application of the Judd-Ofelt model for fast assessment of Dy3+-doped luminescent sensor thermometric perspective. The maximum absolute and relative sensitivities are ~0.001 K− 1 at 600 K and ~1.4% K− 1 at 300 K, respectively. The optimum temperature range for the CaYAlO4:Dy3+ probe is from 370 to 616 K.",
journal = "Physica B: Condensed Matter",
title = "Thermometric Judd-Ofelt model for Dy3+ ion tested in CaYAlO4 host and evaluation of its sensing performances for luminescence thermometry",
volume = "666",
pages = "415096",
doi = "10.1016/j.physb.2023.415096"
}
Martinović, A., Milićević, B., Periša, J., Ristić, Z., Stojadinović, S., Dramićanin, M.,& Ćirić, A.. (2023). Thermometric Judd-Ofelt model for Dy3+ ion tested in CaYAlO4 host and evaluation of its sensing performances for luminescence thermometry. in Physica B: Condensed Matter, 666, 415096.
https://doi.org/10.1016/j.physb.2023.415096
Martinović A, Milićević B, Periša J, Ristić Z, Stojadinović S, Dramićanin M, Ćirić A. Thermometric Judd-Ofelt model for Dy3+ ion tested in CaYAlO4 host and evaluation of its sensing performances for luminescence thermometry. in Physica B: Condensed Matter. 2023;666:415096.
doi:10.1016/j.physb.2023.415096 .
Martinović, Ana, Milićević, Bojana, Periša, Jovana, Ristić, Zoran, Stojadinović, Stevan, Dramićanin, Miroslav, Ćirić, Aleksandar, "Thermometric Judd-Ofelt model for Dy3+ ion tested in CaYAlO4 host and evaluation of its sensing performances for luminescence thermometry" in Physica B: Condensed Matter, 666 (2023):415096,
https://doi.org/10.1016/j.physb.2023.415096 . .

The Upconversion Luminescence of Ca3Sc2Si3O12:Yb3+,Er3+ and Its Application in Thermometry

Hong, Junyu; Liu, Feilong; Dramićanin, Miroslav; Zhou, Lei; Wu, Mingmei

(2023)

TY  - JOUR
AU  - Hong, Junyu
AU  - Liu, Feilong
AU  - Dramićanin, Miroslav
AU  - Zhou, Lei
AU  - Wu, Mingmei
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11366
AB  - To develop novel luminescent materials for optical temperature measurement, a series of Yb3+- and Er3+-doped Ca3Sc2Si3O12 (CSS) upconversion (UC) phosphors were synthesized by the sol– gel combustion method. The crystal structure, phase purity, and element distribution of the samples were characterized by powder X-ray diffraction and a transmission electron microscope (TEM). The detailed study of the photoluminescence emission spectra of the samples shows that the addition of Yb3+ can greatly enhance the emission of Er3+ by effective energy transfer. The prepared Yb3+ and Er3+ co-doped CSS phosphors exhibit green emission bands near 522 and 555 nm and red emission bands near 658 nm, which correspond to the 2H11/2→4 I15/2, 4S3/2→4 I15/2, and 4F9/2→4 I15/2 transitions of Er3+, respectively. The temperature-dependent behavior of the CSS:0.2Yb3+,0.02Er3+ sample was carefully studied by the fluorescence intensity ratio (FIR) technique. The results indicate the excellent sensitivity of the sample, with a maximum absolute sensitivity of 0.67% K−1 at 500 K and a relative sensitivity of 1.34% K−1 at 300 K. We demonstrate here that the temperature measurement performance of FIR technology using the CSS:Yb3+,Er3+ phosphor is not inferior to that of infrared thermal imaging thermometers. Therefore, CSS:Yb3+,Er3+ phosphors have great potential applications in the field of optical thermometry.
T2  - Nanomaterials
T1  - The Upconversion Luminescence of Ca3Sc2Si3O12:Yb3+,Er3+ and Its Application in Thermometry
VL  - 13
IS  - 13
SP  - 1910
DO  - 10.3390/nano13131910
ER  - 
@article{
author = "Hong, Junyu and Liu, Feilong and Dramićanin, Miroslav and Zhou, Lei and Wu, Mingmei",
year = "2023",
abstract = "To develop novel luminescent materials for optical temperature measurement, a series of Yb3+- and Er3+-doped Ca3Sc2Si3O12 (CSS) upconversion (UC) phosphors were synthesized by the sol– gel combustion method. The crystal structure, phase purity, and element distribution of the samples were characterized by powder X-ray diffraction and a transmission electron microscope (TEM). The detailed study of the photoluminescence emission spectra of the samples shows that the addition of Yb3+ can greatly enhance the emission of Er3+ by effective energy transfer. The prepared Yb3+ and Er3+ co-doped CSS phosphors exhibit green emission bands near 522 and 555 nm and red emission bands near 658 nm, which correspond to the 2H11/2→4 I15/2, 4S3/2→4 I15/2, and 4F9/2→4 I15/2 transitions of Er3+, respectively. The temperature-dependent behavior of the CSS:0.2Yb3+,0.02Er3+ sample was carefully studied by the fluorescence intensity ratio (FIR) technique. The results indicate the excellent sensitivity of the sample, with a maximum absolute sensitivity of 0.67% K−1 at 500 K and a relative sensitivity of 1.34% K−1 at 300 K. We demonstrate here that the temperature measurement performance of FIR technology using the CSS:Yb3+,Er3+ phosphor is not inferior to that of infrared thermal imaging thermometers. Therefore, CSS:Yb3+,Er3+ phosphors have great potential applications in the field of optical thermometry.",
journal = "Nanomaterials",
title = "The Upconversion Luminescence of Ca3Sc2Si3O12:Yb3+,Er3+ and Its Application in Thermometry",
volume = "13",
number = "13",
pages = "1910",
doi = "10.3390/nano13131910"
}
Hong, J., Liu, F., Dramićanin, M., Zhou, L.,& Wu, M.. (2023). The Upconversion Luminescence of Ca3Sc2Si3O12:Yb3+,Er3+ and Its Application in Thermometry. in Nanomaterials, 13(13), 1910.
https://doi.org/10.3390/nano13131910
Hong J, Liu F, Dramićanin M, Zhou L, Wu M. The Upconversion Luminescence of Ca3Sc2Si3O12:Yb3+,Er3+ and Its Application in Thermometry. in Nanomaterials. 2023;13(13):1910.
doi:10.3390/nano13131910 .
Hong, Junyu, Liu, Feilong, Dramićanin, Miroslav, Zhou, Lei, Wu, Mingmei, "The Upconversion Luminescence of Ca3Sc2Si3O12:Yb3+,Er3+ and Its Application in Thermometry" in Nanomaterials, 13, no. 13 (2023):1910,
https://doi.org/10.3390/nano13131910 . .
1

Influence of composition on the emission properties of impurities in solids: Case study of Mg1-xZnxAl2O4:Cr3+ with the spinel structure

Antić, Željka; Đorđević, Vesna R.; Ristić, Zoran; Srivastava, A.M.; Beers, W.W.; Dramićanin, Miroslav; Brik, Mikhail G.

(2023)

TY  - JOUR
AU  - Antić, Željka
AU  - Đorđević, Vesna R.
AU  - Ristić, Zoran
AU  - Srivastava, A.M.
AU  - Beers, W.W.
AU  - Dramićanin, Miroslav
AU  - Brik, Mikhail G.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11576
AB  - The importance of structural disorder of crystal lattice for the formation of the optical properties of impurity ions is studied by evaluating the optical properties of Cr3+ impurity ions in Mg1-xZnxAl2O4:Cr3+ (x = 0; 0.25; 0.50; 0.75; 1.0) spinel solid solutions. It is demonstrated that the gradual replacement of Zn by Mg, which transforms the normal spinel ZnAl2O4 into the inverse spinel MgAl2O4, leads to an enhancement of the Cr3+ red emission. In addition, the Cr3+ decay rate (inverse to the emitting excited state lifetime) increases linearly when Zn is gradually replaced by Mg. These observations are explained by the lifting of the parity selection rule due to the random distribution of the Zn and Mg cations in the second coordination sphere around the emitting ion, which lowers the local symmetry at the impurity ion site. The strategy of deliberately creating disorder in the crystalline lattice is a successful way of increasing brightness and decreasing the excited state lifetime of the impurity ions, which can be applied for improving emission properties of the phosphor materials used in solid state lighting.
T2  - Journal of Luminescence
T1  - Influence of composition on the emission properties of impurities in solids: Case study of Mg1-xZnxAl2O4:Cr3+ with the spinel structure
VL  - 264
SP  - 120190
DO  - 10.1016/j.jlumin.2023.120190
ER  - 
@article{
author = "Antić, Željka and Đorđević, Vesna R. and Ristić, Zoran and Srivastava, A.M. and Beers, W.W. and Dramićanin, Miroslav and Brik, Mikhail G.",
year = "2023",
abstract = "The importance of structural disorder of crystal lattice for the formation of the optical properties of impurity ions is studied by evaluating the optical properties of Cr3+ impurity ions in Mg1-xZnxAl2O4:Cr3+ (x = 0; 0.25; 0.50; 0.75; 1.0) spinel solid solutions. It is demonstrated that the gradual replacement of Zn by Mg, which transforms the normal spinel ZnAl2O4 into the inverse spinel MgAl2O4, leads to an enhancement of the Cr3+ red emission. In addition, the Cr3+ decay rate (inverse to the emitting excited state lifetime) increases linearly when Zn is gradually replaced by Mg. These observations are explained by the lifting of the parity selection rule due to the random distribution of the Zn and Mg cations in the second coordination sphere around the emitting ion, which lowers the local symmetry at the impurity ion site. The strategy of deliberately creating disorder in the crystalline lattice is a successful way of increasing brightness and decreasing the excited state lifetime of the impurity ions, which can be applied for improving emission properties of the phosphor materials used in solid state lighting.",
journal = "Journal of Luminescence",
title = "Influence of composition on the emission properties of impurities in solids: Case study of Mg1-xZnxAl2O4:Cr3+ with the spinel structure",
volume = "264",
pages = "120190",
doi = "10.1016/j.jlumin.2023.120190"
}
Antić, Ž., Đorđević, V. R., Ristić, Z., Srivastava, A.M., Beers, W.W., Dramićanin, M.,& Brik, M. G.. (2023). Influence of composition on the emission properties of impurities in solids: Case study of Mg1-xZnxAl2O4:Cr3+ with the spinel structure. in Journal of Luminescence, 264, 120190.
https://doi.org/10.1016/j.jlumin.2023.120190
Antić Ž, Đorđević VR, Ristić Z, Srivastava A, Beers W, Dramićanin M, Brik MG. Influence of composition on the emission properties of impurities in solids: Case study of Mg1-xZnxAl2O4:Cr3+ with the spinel structure. in Journal of Luminescence. 2023;264:120190.
doi:10.1016/j.jlumin.2023.120190 .
Antić, Željka, Đorđević, Vesna R., Ristić, Zoran, Srivastava, A.M., Beers, W.W., Dramićanin, Miroslav, Brik, Mikhail G., "Influence of composition on the emission properties of impurities in solids: Case study of Mg1-xZnxAl2O4:Cr3+ with the spinel structure" in Journal of Luminescence, 264 (2023):120190,
https://doi.org/10.1016/j.jlumin.2023.120190 . .

Luminescence Thermometry with Nanoparticles: A Review

Đačanin Far, Ljubica; Dramićanin, Miroslav

(2023)

TY  - JOUR
AU  - Đačanin Far, Ljubica
AU  - Dramićanin, Miroslav
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12043
AB  - Luminescence thermometry has emerged as a very versatile optical technique for remote temperature measurements, exhibiting a wide range of applicability spanning from cryogenic temperatures to 2000 K. This technology has found extensive utilization across many disciplines. In the last thirty years, there has been significant growth in the field of luminous thermometry. This growth has been accompanied by the development of temperature read-out procedures, the creation of luminescent materials for very sensitive temperature probes, and advancements in theoretical understanding. This review article primarily centers on luminescent nanoparticles employed in the field of luminescence thermometry. In this paper, we provide a comprehensive survey of the recent literature pertaining to the utilization of lanthanide and transition metal nanophosphors, semiconductor quantum dots, polymer nanoparticles, carbon dots, and nanodiamonds for luminescence thermometry. In addition, we engage in a discussion regarding the benefits and limitations of nanoparticles in comparison with conventional, microsized probes for their application in luminescent thermometry.
T2  - Nanomaterials
T1  - Luminescence Thermometry with Nanoparticles: A Review
VL  - 13
IS  - 21
SP  - 2904
DO  - 10.3390/nano13212904
ER  - 
@article{
author = "Đačanin Far, Ljubica and Dramićanin, Miroslav",
year = "2023",
abstract = "Luminescence thermometry has emerged as a very versatile optical technique for remote temperature measurements, exhibiting a wide range of applicability spanning from cryogenic temperatures to 2000 K. This technology has found extensive utilization across many disciplines. In the last thirty years, there has been significant growth in the field of luminous thermometry. This growth has been accompanied by the development of temperature read-out procedures, the creation of luminescent materials for very sensitive temperature probes, and advancements in theoretical understanding. This review article primarily centers on luminescent nanoparticles employed in the field of luminescence thermometry. In this paper, we provide a comprehensive survey of the recent literature pertaining to the utilization of lanthanide and transition metal nanophosphors, semiconductor quantum dots, polymer nanoparticles, carbon dots, and nanodiamonds for luminescence thermometry. In addition, we engage in a discussion regarding the benefits and limitations of nanoparticles in comparison with conventional, microsized probes for their application in luminescent thermometry.",
journal = "Nanomaterials",
title = "Luminescence Thermometry with Nanoparticles: A Review",
volume = "13",
number = "21",
pages = "2904",
doi = "10.3390/nano13212904"
}
Đačanin Far, L.,& Dramićanin, M.. (2023). Luminescence Thermometry with Nanoparticles: A Review. in Nanomaterials, 13(21), 2904.
https://doi.org/10.3390/nano13212904
Đačanin Far L, Dramićanin M. Luminescence Thermometry with Nanoparticles: A Review. in Nanomaterials. 2023;13(21):2904.
doi:10.3390/nano13212904 .
Đačanin Far, Ljubica, Dramićanin, Miroslav, "Luminescence Thermometry with Nanoparticles: A Review" in Nanomaterials, 13, no. 21 (2023):2904,
https://doi.org/10.3390/nano13212904 . .
1

How Can We Benefit From the Optical Properties of Mn5+ to Make Pigments and Near-Infrared Phosphors?

Dramićanin, Miroslav

(2023)

TY  - CONF
AU  - Dramićanin, Miroslav
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12417
AB  - When tetrahedrally coordinated in crystals, Mn5+ optical centers ([Ar]3d2 electron configuration) always encounter a strong crystal field. Their lower electronic states have an energy progression of 3A2 < 1E < 1A1 < 3T2 < 3T1. The ground state (3A2) is not orbitally degenerate, and the first excited state 1E has almost no nuclear displacement relative to the ground state and can be separated by the low-symmetry ligand field. For these reasons, Mn5+-doped compounds may provide a strong and narrow (FHWM < 5 nm) phosphorescence emission in the near-infrared (1110–1300 nm) which is significantly affected by a nephelauxetic effect. Their strong absorption in the red spectral region, associated with the 3A2 → 3T1(3F) electronic transition, provides intensive turquoise/blue coloration of the materials. Herein, we propose the way to engineer pigments and efficient near-infrared phosphors and demonstrate optical properties of several of them (Mn5+-activated Ca6Ba(PO4)4O [1], Sr3(PO4)2, Ba3(PO4)2, and Ba3(VO4)2). In addition, recent applications of these materials are highlighted, including luminescence thermometry [2] based on phosphors steady-state [1] and time-resolved [3] near-infrared emission, the latter of which has been demonstrated for biomedical applications.
C3  - SFKM : 21. Simpozijum fizike kondenzovane materije = SCMP : the 21st symposium on condensed matter physics : book of abstracts
T1  - How Can We Benefit From the Optical Properties of Mn5+ to Make Pigments and Near-Infrared Phosphors?
SP  - 14
EP  - 14
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12417
ER  - 
@conference{
author = "Dramićanin, Miroslav",
year = "2023",
abstract = "When tetrahedrally coordinated in crystals, Mn5+ optical centers ([Ar]3d2 electron configuration) always encounter a strong crystal field. Their lower electronic states have an energy progression of 3A2 < 1E < 1A1 < 3T2 < 3T1. The ground state (3A2) is not orbitally degenerate, and the first excited state 1E has almost no nuclear displacement relative to the ground state and can be separated by the low-symmetry ligand field. For these reasons, Mn5+-doped compounds may provide a strong and narrow (FHWM < 5 nm) phosphorescence emission in the near-infrared (1110–1300 nm) which is significantly affected by a nephelauxetic effect. Their strong absorption in the red spectral region, associated with the 3A2 → 3T1(3F) electronic transition, provides intensive turquoise/blue coloration of the materials. Herein, we propose the way to engineer pigments and efficient near-infrared phosphors and demonstrate optical properties of several of them (Mn5+-activated Ca6Ba(PO4)4O [1], Sr3(PO4)2, Ba3(PO4)2, and Ba3(VO4)2). In addition, recent applications of these materials are highlighted, including luminescence thermometry [2] based on phosphors steady-state [1] and time-resolved [3] near-infrared emission, the latter of which has been demonstrated for biomedical applications.",
journal = "SFKM : 21. Simpozijum fizike kondenzovane materije = SCMP : the 21st symposium on condensed matter physics : book of abstracts",
title = "How Can We Benefit From the Optical Properties of Mn5+ to Make Pigments and Near-Infrared Phosphors?",
pages = "14-14",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12417"
}
Dramićanin, M.. (2023). How Can We Benefit From the Optical Properties of Mn5+ to Make Pigments and Near-Infrared Phosphors?. in SFKM : 21. Simpozijum fizike kondenzovane materije = SCMP : the 21st symposium on condensed matter physics : book of abstracts, 14-14.
https://hdl.handle.net/21.15107/rcub_vinar_12417
Dramićanin M. How Can We Benefit From the Optical Properties of Mn5+ to Make Pigments and Near-Infrared Phosphors?. in SFKM : 21. Simpozijum fizike kondenzovane materije = SCMP : the 21st symposium on condensed matter physics : book of abstracts. 2023;:14-14.
https://hdl.handle.net/21.15107/rcub_vinar_12417 .
Dramićanin, Miroslav, "How Can We Benefit From the Optical Properties of Mn5+ to Make Pigments and Near-Infrared Phosphors?" in SFKM : 21. Simpozijum fizike kondenzovane materije = SCMP : the 21st symposium on condensed matter physics : book of abstracts (2023):14-14,
https://hdl.handle.net/21.15107/rcub_vinar_12417 .

Infrared Photoluminescence of Nd-Doped Sesquioxide and Fluoride Nanocrystals: A Comparative Study

Gennari, Fulvia; Sekulić, Milica; Barudžija, Tanja; Antić, Željka; Dramićanin, Miroslav; Toncelli, Alessandra

(2022)

TY  - JOUR
AU  - Gennari, Fulvia
AU  - Sekulić, Milica
AU  - Barudžija, Tanja
AU  - Antić, Željka
AU  - Dramićanin, Miroslav
AU  - Toncelli, Alessandra
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10413
AB  - Lanthanide ions possess various emission channels in the near-infrared region that are well known in bulk crystals but are far less studied in samples with nanometric size. In this work, we present the infrared spectroscopic characterization of various Nd-doped fluoride and sesquioxide nanocrystals, namely Nd:Y2O3, Nd:Lu2O3, Nd:Sc2O3, Nd:YF3, and Nd:LuF3. Emissions from the three main emission bands in the near-infrared region have been observed and the emission cross-sections have been calculated. Moreover, another decay channel at around 2 μm has been observed and ascribed to the 4F3/2→4I15/2 transition. The lifetime of the 4F3/2 level has been measured under LED pumping. Emission cross-sections for the various compounds are calculated in the 1 μm, 900 nm, and 1.3 μm regions and are of the order of 10−20 cm2 in agreement with the literature results. Those in the 2 μm region are of the order of 10−21 cm2.
T2  - Crystals
T1  - Infrared Photoluminescence of Nd-Doped Sesquioxide and Fluoride Nanocrystals: A Comparative Study
VL  - 12
IS  - 8
SP  - 1071
DO  - 10.3390/cryst12081071
ER  - 
@article{
author = "Gennari, Fulvia and Sekulić, Milica and Barudžija, Tanja and Antić, Željka and Dramićanin, Miroslav and Toncelli, Alessandra",
year = "2022",
abstract = "Lanthanide ions possess various emission channels in the near-infrared region that are well known in bulk crystals but are far less studied in samples with nanometric size. In this work, we present the infrared spectroscopic characterization of various Nd-doped fluoride and sesquioxide nanocrystals, namely Nd:Y2O3, Nd:Lu2O3, Nd:Sc2O3, Nd:YF3, and Nd:LuF3. Emissions from the three main emission bands in the near-infrared region have been observed and the emission cross-sections have been calculated. Moreover, another decay channel at around 2 μm has been observed and ascribed to the 4F3/2→4I15/2 transition. The lifetime of the 4F3/2 level has been measured under LED pumping. Emission cross-sections for the various compounds are calculated in the 1 μm, 900 nm, and 1.3 μm regions and are of the order of 10−20 cm2 in agreement with the literature results. Those in the 2 μm region are of the order of 10−21 cm2.",
journal = "Crystals",
title = "Infrared Photoluminescence of Nd-Doped Sesquioxide and Fluoride Nanocrystals: A Comparative Study",
volume = "12",
number = "8",
pages = "1071",
doi = "10.3390/cryst12081071"
}
Gennari, F., Sekulić, M., Barudžija, T., Antić, Ž., Dramićanin, M.,& Toncelli, A.. (2022). Infrared Photoluminescence of Nd-Doped Sesquioxide and Fluoride Nanocrystals: A Comparative Study. in Crystals, 12(8), 1071.
https://doi.org/10.3390/cryst12081071
Gennari F, Sekulić M, Barudžija T, Antić Ž, Dramićanin M, Toncelli A. Infrared Photoluminescence of Nd-Doped Sesquioxide and Fluoride Nanocrystals: A Comparative Study. in Crystals. 2022;12(8):1071.
doi:10.3390/cryst12081071 .
Gennari, Fulvia, Sekulić, Milica, Barudžija, Tanja, Antić, Željka, Dramićanin, Miroslav, Toncelli, Alessandra, "Infrared Photoluminescence of Nd-Doped Sesquioxide and Fluoride Nanocrystals: A Comparative Study" in Crystals, 12, no. 8 (2022):1071,
https://doi.org/10.3390/cryst12081071 . .
1

Near-Infrared Luminescent Lifetime-Based Thermometry with Mn5+-Activated Sr3(PO4)2and Ba3(PO4)2Phosphors

Ristić, Zoran; Piotrowski, Wojciech; Medić, Mina M.; Periša, Jovana; Antić, Željka; Marciniak, Lukasz; Dramićanin, Miroslav

(2022)

TY  - JOUR
AU  - Ristić, Zoran
AU  - Piotrowski, Wojciech
AU  - Medić, Mina M.
AU  - Periša, Jovana
AU  - Antić, Željka
AU  - Marciniak, Lukasz
AU  - Dramićanin, Miroslav
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10225
AB  - This paper describes Mn5+-activated Sr3(PO4)2and Ba3(PO4)2phosphors as near-infrared lifetime-based luminescence thermometry probes. Materials were prepared by a solid-state method, and their rhombohedral structures were confirmed by X-ray diffraction analysis. Diffuse reflectance measurements showed broad and strong absorption between 650 and 950 nm covering the first biological transparency window and having an absorption maximum at ∼660 nm. By switching Sr with Ba, the following changes in the photoluminescent properties were observed: (i) a red shift of the emission maximum (1173 nm → 1191 nm) and (ii) a decrease in the excited-state lifetime. Thermometric properties of the phosphors were assessed by measuring and analyzing the temperature dependence of the Mn5+excited-state lifetime. Lifetime-based luminescence thermometry revealed a relative sensitivity of 0.5% K-1at 310 K (physiologically relevant range) and a maximal value of ∼1% K-1at temperatures between 400 and 500 K. © 2022 American Chemical Society.
T2  - ACS Applied Electronic Materials
T1  - Near-Infrared Luminescent Lifetime-Based Thermometry with Mn5+-Activated Sr3(PO4)2and Ba3(PO4)2Phosphors
VL  - 4
IS  - 3
SP  - 1057
EP  - 1062
DO  - 10.1021/acsaelm.1c01207
ER  - 
@article{
author = "Ristić, Zoran and Piotrowski, Wojciech and Medić, Mina M. and Periša, Jovana and Antić, Željka and Marciniak, Lukasz and Dramićanin, Miroslav",
year = "2022",
abstract = "This paper describes Mn5+-activated Sr3(PO4)2and Ba3(PO4)2phosphors as near-infrared lifetime-based luminescence thermometry probes. Materials were prepared by a solid-state method, and their rhombohedral structures were confirmed by X-ray diffraction analysis. Diffuse reflectance measurements showed broad and strong absorption between 650 and 950 nm covering the first biological transparency window and having an absorption maximum at ∼660 nm. By switching Sr with Ba, the following changes in the photoluminescent properties were observed: (i) a red shift of the emission maximum (1173 nm → 1191 nm) and (ii) a decrease in the excited-state lifetime. Thermometric properties of the phosphors were assessed by measuring and analyzing the temperature dependence of the Mn5+excited-state lifetime. Lifetime-based luminescence thermometry revealed a relative sensitivity of 0.5% K-1at 310 K (physiologically relevant range) and a maximal value of ∼1% K-1at temperatures between 400 and 500 K. © 2022 American Chemical Society.",
journal = "ACS Applied Electronic Materials",
title = "Near-Infrared Luminescent Lifetime-Based Thermometry with Mn5+-Activated Sr3(PO4)2and Ba3(PO4)2Phosphors",
volume = "4",
number = "3",
pages = "1057-1062",
doi = "10.1021/acsaelm.1c01207"
}
Ristić, Z., Piotrowski, W., Medić, M. M., Periša, J., Antić, Ž., Marciniak, L.,& Dramićanin, M.. (2022). Near-Infrared Luminescent Lifetime-Based Thermometry with Mn5+-Activated Sr3(PO4)2and Ba3(PO4)2Phosphors. in ACS Applied Electronic Materials, 4(3), 1057-1062.
https://doi.org/10.1021/acsaelm.1c01207
Ristić Z, Piotrowski W, Medić MM, Periša J, Antić Ž, Marciniak L, Dramićanin M. Near-Infrared Luminescent Lifetime-Based Thermometry with Mn5+-Activated Sr3(PO4)2and Ba3(PO4)2Phosphors. in ACS Applied Electronic Materials. 2022;4(3):1057-1062.
doi:10.1021/acsaelm.1c01207 .
Ristić, Zoran, Piotrowski, Wojciech, Medić, Mina M., Periša, Jovana, Antić, Željka, Marciniak, Lukasz, Dramićanin, Miroslav, "Near-Infrared Luminescent Lifetime-Based Thermometry with Mn5+-Activated Sr3(PO4)2and Ba3(PO4)2Phosphors" in ACS Applied Electronic Materials, 4, no. 3 (2022):1057-1062,
https://doi.org/10.1021/acsaelm.1c01207 . .
17
2
14

Luminescence intensity ratio squared - A new luminescence thermometry method for enhanced sensitivity

Ćirić, Aleksandar; Marciniak, Lukasz; Dramićanin, Miroslav

(2022)

TY  - JOUR
AU  - Ćirić, Aleksandar
AU  - Marciniak, Lukasz
AU  - Dramićanin, Miroslav
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10228
AB  - In response to the sensitivity limitation of ratiometric luminescence thermometers, herein we propose a novel temperature readout, which exploits two pairs of thermalized energy levels in trivalent lanthanide ion-activated phosphors, to provide significantly enhanced sensitivity. This method is called the luminescence intensity ratio squared (LIR2) method. It is a combination of the dual-excitation single emission band ratiometric (SBR) and conventional (Boltzmann) luminescence intensity ratio (LIR) techniques. The relative sensitivity of LIR2 is the sum of the sensitivities of each method, and its thermal dependence is predicted theoretically. We explain the LIR2 method in detail and identify the perspective of lanthanide-activated probes. The performance of the proposed approach was evaluated using YVO4:Eu3+ and YNbO4:Eu3+ powders and compared with those of the SBR and LIR techniques. The LIR2 method displayed significantly better thermometric performance than SBR and LIR over a wide temperature range (300–850 K)
T2  - Journal of Applied Physics
T1  - Luminescence intensity ratio squared - A new luminescence thermometry method for enhanced sensitivity
VL  - 131
IS  - 11
SP  - 114501
DO  - 10.1063/5.0086807
ER  - 
@article{
author = "Ćirić, Aleksandar and Marciniak, Lukasz and Dramićanin, Miroslav",
year = "2022",
abstract = "In response to the sensitivity limitation of ratiometric luminescence thermometers, herein we propose a novel temperature readout, which exploits two pairs of thermalized energy levels in trivalent lanthanide ion-activated phosphors, to provide significantly enhanced sensitivity. This method is called the luminescence intensity ratio squared (LIR2) method. It is a combination of the dual-excitation single emission band ratiometric (SBR) and conventional (Boltzmann) luminescence intensity ratio (LIR) techniques. The relative sensitivity of LIR2 is the sum of the sensitivities of each method, and its thermal dependence is predicted theoretically. We explain the LIR2 method in detail and identify the perspective of lanthanide-activated probes. The performance of the proposed approach was evaluated using YVO4:Eu3+ and YNbO4:Eu3+ powders and compared with those of the SBR and LIR techniques. The LIR2 method displayed significantly better thermometric performance than SBR and LIR over a wide temperature range (300–850 K)",
journal = "Journal of Applied Physics",
title = "Luminescence intensity ratio squared - A new luminescence thermometry method for enhanced sensitivity",
volume = "131",
number = "11",
pages = "114501",
doi = "10.1063/5.0086807"
}
Ćirić, A., Marciniak, L.,& Dramićanin, M.. (2022). Luminescence intensity ratio squared - A new luminescence thermometry method for enhanced sensitivity. in Journal of Applied Physics, 131(11), 114501.
https://doi.org/10.1063/5.0086807
Ćirić A, Marciniak L, Dramićanin M. Luminescence intensity ratio squared - A new luminescence thermometry method for enhanced sensitivity. in Journal of Applied Physics. 2022;131(11):114501.
doi:10.1063/5.0086807 .
Ćirić, Aleksandar, Marciniak, Lukasz, Dramićanin, Miroslav, "Luminescence intensity ratio squared - A new luminescence thermometry method for enhanced sensitivity" in Journal of Applied Physics, 131, no. 11 (2022):114501,
https://doi.org/10.1063/5.0086807 . .
2
21
1
18

Photoluminescence of the Eu3+-Activated YxLu1−xNbO4 (x = 0, 0.25, 0.5, 0.75, 1) Solid-Solution Phosphors

Sekulić, Milica; Dramićanin, Tatjana; Ćirić, Aleksandar; Đačanin Far, Ljubica; Dramićanin, Miroslav; Đorđević, Vesna R.

(2022)

TY  - JOUR
AU  - Sekulić, Milica
AU  - Dramićanin, Tatjana
AU  - Ćirić, Aleksandar
AU  - Đačanin Far, Ljubica
AU  - Dramićanin, Miroslav
AU  - Đorđević, Vesna R.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10238
AB  - Eu3+-doped YxLu1−xNbO4 (x = 0, 0.25, 0.5, 0.75, 1) were prepared by the solid-state reaction method. YNbO4:Eu3+ and LuNbO4:Eu3+ crystallize as beta-Fergusonite (SG no. 15) in 1–10 μm diameter particles. Photoluminescence emission spectra show a slight linear variation of emission energies and intensities with the solid-solution composition in terms of Y/Lu content. The energy difference between Stark sublevels of 5D0→7F1 emission increases, while the asymmetry ratio decreases with the composition. From the dispersion relations of pure YNbO4 and LuNbO4, the refractive index values for each concentration and emission wavelength are estimated. The Ω2 Judd–Ofelt parameter shows a linear increase from 6.75 to 7.48 × 10−20 cm2 from x = 0 to 1, respectively, and Ω4 from 2.69 to 2.95 × 10−20 cm2. The lowest non-radiative deexcitation rate was observed with x = 1, and thus LuNbO4:Eu3+ is more efficient phosphor than YNbO4:Eu3+.
T2  - Crystals
T1  - Photoluminescence of the Eu3+-Activated YxLu1−xNbO4 (x = 0, 0.25, 0.5, 0.75, 1) Solid-Solution Phosphors
VL  - 12
IS  - 3
SP  - 427
DO  - 10.3390/cryst12030427
ER  - 
@article{
author = "Sekulić, Milica and Dramićanin, Tatjana and Ćirić, Aleksandar and Đačanin Far, Ljubica and Dramićanin, Miroslav and Đorđević, Vesna R.",
year = "2022",
abstract = "Eu3+-doped YxLu1−xNbO4 (x = 0, 0.25, 0.5, 0.75, 1) were prepared by the solid-state reaction method. YNbO4:Eu3+ and LuNbO4:Eu3+ crystallize as beta-Fergusonite (SG no. 15) in 1–10 μm diameter particles. Photoluminescence emission spectra show a slight linear variation of emission energies and intensities with the solid-solution composition in terms of Y/Lu content. The energy difference between Stark sublevels of 5D0→7F1 emission increases, while the asymmetry ratio decreases with the composition. From the dispersion relations of pure YNbO4 and LuNbO4, the refractive index values for each concentration and emission wavelength are estimated. The Ω2 Judd–Ofelt parameter shows a linear increase from 6.75 to 7.48 × 10−20 cm2 from x = 0 to 1, respectively, and Ω4 from 2.69 to 2.95 × 10−20 cm2. The lowest non-radiative deexcitation rate was observed with x = 1, and thus LuNbO4:Eu3+ is more efficient phosphor than YNbO4:Eu3+.",
journal = "Crystals",
title = "Photoluminescence of the Eu3+-Activated YxLu1−xNbO4 (x = 0, 0.25, 0.5, 0.75, 1) Solid-Solution Phosphors",
volume = "12",
number = "3",
pages = "427",
doi = "10.3390/cryst12030427"
}
Sekulić, M., Dramićanin, T., Ćirić, A., Đačanin Far, L., Dramićanin, M.,& Đorđević, V. R.. (2022). Photoluminescence of the Eu3+-Activated YxLu1−xNbO4 (x = 0, 0.25, 0.5, 0.75, 1) Solid-Solution Phosphors. in Crystals, 12(3), 427.
https://doi.org/10.3390/cryst12030427
Sekulić M, Dramićanin T, Ćirić A, Đačanin Far L, Dramićanin M, Đorđević VR. Photoluminescence of the Eu3+-Activated YxLu1−xNbO4 (x = 0, 0.25, 0.5, 0.75, 1) Solid-Solution Phosphors. in Crystals. 2022;12(3):427.
doi:10.3390/cryst12030427 .
Sekulić, Milica, Dramićanin, Tatjana, Ćirić, Aleksandar, Đačanin Far, Ljubica, Dramićanin, Miroslav, Đorđević, Vesna R., "Photoluminescence of the Eu3+-Activated YxLu1−xNbO4 (x = 0, 0.25, 0.5, 0.75, 1) Solid-Solution Phosphors" in Crystals, 12, no. 3 (2022):427,
https://doi.org/10.3390/cryst12030427 . .
8
6