Damnjanović, Zvonko

Link to this page

Authority KeyName Variants
433fbefb-5db0-4177-be34-4471a07d2dbf
  • Damnjanović, Zvonko (1)
Projects

Author's Bibliography

Microstructural and basic mechanical characteristics of ZA27 alloy-based nanocomposites synthesized by mechanical milling and compocasting

Bobić, Biljana M.; Vencl, Aleksandar; Ružić, Jovana; Bobić, Ilija; Damnjanović, Zvonko

(2019)

TY  - JOUR
AU  - Bobić, Biljana M.
AU  - Vencl, Aleksandar
AU  - Ružić, Jovana
AU  - Bobić, Ilija
AU  - Damnjanović, Zvonko
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8491
AB  - Particulate nanocomposites with the base of ZA27 alloy were synthesized using an innovative route, which includes mechanical milling and compocasting. Scrap from the matrix alloy and ceramic nanoreinforcements were mechanically milled using the ball-milling technique, which led to the formation of composite microparticles. The use of these particles in the compocasting process provided better wettability of ceramic nanoreinforcements in the semi-solid metal matrix, which resulted in a relatively good dispersion of the nanoreinforcements in nanocomposite castings. The presence of nanoreinforcements led to the grain refinement in the matrix of nanocomposites. The mechanical properties of the synthesized nanocomposites are improved and compared with the properties of the metal matrix. The observed increase in the hardness of nanocomposites with Al2O3 nanoreinforcements (20–30 nm) was 6.5% to 10.8%, while the yield strength of these nanocomposites has increased by 12.2% to 23.2%. The hardness and compressive yield strength of the nanocomposites with Al2O3 nanoparticles (100 nm) increased by 1.7% to 8.0% and 2.3% to 8.3%, respectively. The increase in hardness of the nanocomposites with SiC nanoparticles (50 nm) was 11.5% to 20.6%, while the increase in the yield strength was 15.6% to 24.5%. The greatest contribution to the overall strengthening in the synthesized nanocomposites is the result of increased dislocation density due to the difference in coefficients of thermal expansion for the matrix alloy and nanoreinforcements. © The Author(s) 2018.
T2  - Journal of Composite Materials
T1  - Microstructural and basic mechanical characteristics of ZA27 alloy-based nanocomposites synthesized by mechanical milling and compocasting
VL  - 53
IS  - 15
SP  - 2033
EP  - 2046
DO  - 10.1177/0021998318817876
ER  - 
@article{
author = "Bobić, Biljana M. and Vencl, Aleksandar and Ružić, Jovana and Bobić, Ilija and Damnjanović, Zvonko",
year = "2019",
abstract = "Particulate nanocomposites with the base of ZA27 alloy were synthesized using an innovative route, which includes mechanical milling and compocasting. Scrap from the matrix alloy and ceramic nanoreinforcements were mechanically milled using the ball-milling technique, which led to the formation of composite microparticles. The use of these particles in the compocasting process provided better wettability of ceramic nanoreinforcements in the semi-solid metal matrix, which resulted in a relatively good dispersion of the nanoreinforcements in nanocomposite castings. The presence of nanoreinforcements led to the grain refinement in the matrix of nanocomposites. The mechanical properties of the synthesized nanocomposites are improved and compared with the properties of the metal matrix. The observed increase in the hardness of nanocomposites with Al2O3 nanoreinforcements (20–30 nm) was 6.5% to 10.8%, while the yield strength of these nanocomposites has increased by 12.2% to 23.2%. The hardness and compressive yield strength of the nanocomposites with Al2O3 nanoparticles (100 nm) increased by 1.7% to 8.0% and 2.3% to 8.3%, respectively. The increase in hardness of the nanocomposites with SiC nanoparticles (50 nm) was 11.5% to 20.6%, while the increase in the yield strength was 15.6% to 24.5%. The greatest contribution to the overall strengthening in the synthesized nanocomposites is the result of increased dislocation density due to the difference in coefficients of thermal expansion for the matrix alloy and nanoreinforcements. © The Author(s) 2018.",
journal = "Journal of Composite Materials",
title = "Microstructural and basic mechanical characteristics of ZA27 alloy-based nanocomposites synthesized by mechanical milling and compocasting",
volume = "53",
number = "15",
pages = "2033-2046",
doi = "10.1177/0021998318817876"
}
Bobić, B. M., Vencl, A., Ružić, J., Bobić, I.,& Damnjanović, Z.. (2019). Microstructural and basic mechanical characteristics of ZA27 alloy-based nanocomposites synthesized by mechanical milling and compocasting. in Journal of Composite Materials, 53(15), 2033-2046.
https://doi.org/10.1177/0021998318817876
Bobić BM, Vencl A, Ružić J, Bobić I, Damnjanović Z. Microstructural and basic mechanical characteristics of ZA27 alloy-based nanocomposites synthesized by mechanical milling and compocasting. in Journal of Composite Materials. 2019;53(15):2033-2046.
doi:10.1177/0021998318817876 .
Bobić, Biljana M., Vencl, Aleksandar, Ružić, Jovana, Bobić, Ilija, Damnjanović, Zvonko, "Microstructural and basic mechanical characteristics of ZA27 alloy-based nanocomposites synthesized by mechanical milling and compocasting" in Journal of Composite Materials, 53, no. 15 (2019):2033-2046,
https://doi.org/10.1177/0021998318817876 . .
24
8
19