Jovanović, Sonja

Link to this page

Authority KeyName Variants
orcid::0000-0003-3577-5060
  • Jovanović, Sonja (9)
Projects

Author's Bibliography

Self-limiting interactions in 2D–0D systems: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite

Jovanović, Zoran M.; Mravik, Željko; Bajuk-Bogdanović, Danica V.; Jovanović, Sonja; Marković, Smilja; Vujković, Milica; Kovač, Janez; Vengust, Damjan; Uskoković-Marković, Snežana; Holclajtner-Antunović, Ivanka D.

(2020)

TY  - JOUR
AU  - Jovanović, Zoran M.
AU  - Mravik, Željko
AU  - Bajuk-Bogdanović, Danica V.
AU  - Jovanović, Sonja
AU  - Marković, Smilja
AU  - Vujković, Milica
AU  - Kovač, Janez
AU  - Vengust, Damjan
AU  - Uskoković-Marković, Snežana
AU  - Holclajtner-Antunović, Ivanka D.
PY  - 2020
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8520
AB  - In the present study we investigated the interaction between 12-tungstophosphoric acid (WPA) and graphene oxide (GO) in their nanocomposite by utilizing the loading of WPA as an intrinsic parameter for interaction tuning. The Fourier-transform infrared spectroscopy, temperature-programmed desorption, X-ray photoelectron spectroscopy, zeta-potential measurements, thermogravimetric analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy methods revealed that ∼5–13 wt% of WPA represents critical loading that separates two distinct contributions to GO-WPA interaction. This was explained by the self-limiting nature of GO-WPA interaction, initially controlled by high dispersion of WPA on GO (up to 13 wt%), that is eventually overpowered by WPA-WPA interaction as loading increases. As a result, the WPA agglomerates are being formed because of which the hybrid character of the nanocomposite diminishes, i.e., the properties of independent components start to be manifested to greater extent. The obtained results provide an important framework for considering possible outcomes in other 2D-0D systems, whose interaction is relevant both from fundamental and applicative point of view. Thus, the GO/WPA nanocomposite illustrates how the interactions between the components can be used for tuning the properties of nanocomposite as a whole. © 2019 Elsevier Ltd
T2  - Carbon
T1  - Self-limiting interactions in 2D–0D systems: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite
VL  - 156
SP  - 166
EP  - 178
DO  - 10.1016/j.carbon.2019.09.072
ER  - 
@article{
author = "Jovanović, Zoran M. and Mravik, Željko and Bajuk-Bogdanović, Danica V. and Jovanović, Sonja and Marković, Smilja and Vujković, Milica and Kovač, Janez and Vengust, Damjan and Uskoković-Marković, Snežana and Holclajtner-Antunović, Ivanka D.",
year = "2020",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/8520",
abstract = "In the present study we investigated the interaction between 12-tungstophosphoric acid (WPA) and graphene oxide (GO) in their nanocomposite by utilizing the loading of WPA as an intrinsic parameter for interaction tuning. The Fourier-transform infrared spectroscopy, temperature-programmed desorption, X-ray photoelectron spectroscopy, zeta-potential measurements, thermogravimetric analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy methods revealed that ∼5–13 wt% of WPA represents critical loading that separates two distinct contributions to GO-WPA interaction. This was explained by the self-limiting nature of GO-WPA interaction, initially controlled by high dispersion of WPA on GO (up to 13 wt%), that is eventually overpowered by WPA-WPA interaction as loading increases. As a result, the WPA agglomerates are being formed because of which the hybrid character of the nanocomposite diminishes, i.e., the properties of independent components start to be manifested to greater extent. The obtained results provide an important framework for considering possible outcomes in other 2D-0D systems, whose interaction is relevant both from fundamental and applicative point of view. Thus, the GO/WPA nanocomposite illustrates how the interactions between the components can be used for tuning the properties of nanocomposite as a whole. © 2019 Elsevier Ltd",
journal = "Carbon",
title = "Self-limiting interactions in 2D–0D systems: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite",
volume = "156",
pages = "166-178",
doi = "10.1016/j.carbon.2019.09.072"
}
Jovanović, Z. M., Mravik, Ž., Bajuk-Bogdanović, D. V., Jovanović, S., Marković, S., Vujković, M., Kovač, J., Vengust, D., Uskoković-Marković, S.,& Holclajtner-Antunović, I. D. (2020). Self-limiting interactions in 2D–0D systems: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite.
Carbon, 156, 166-178.
https://doi.org/10.1016/j.carbon.2019.09.072
Jovanović ZM, Mravik Ž, Bajuk-Bogdanović DV, Jovanović S, Marković S, Vujković M, Kovač J, Vengust D, Uskoković-Marković S, Holclajtner-Antunović ID. Self-limiting interactions in 2D–0D systems: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite. Carbon. 2020;156:166-178
Jovanović Zoran M., Mravik Željko, Bajuk-Bogdanović Danica V., Jovanović Sonja, Marković Smilja, Vujković Milica, Kovač Janez, Vengust Damjan, Uskoković-Marković Snežana, Holclajtner-Antunović Ivanka D., "Self-limiting interactions in 2D–0D systems: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite" Carbon, 156 (2020):166-178,
https://doi.org/10.1016/j.carbon.2019.09.072 .
3
3

Tracking of the electronic re-ordering in Fe3O4/OA nanoparticles using magnetometry

Nikolić, Violeta N.; Tadić, Marin; Jovanović, Sonja; Spasojević, Vojislav

(2019)

TY  - JOUR
AU  - Nikolić, Violeta N.
AU  - Tadić, Marin
AU  - Jovanović, Sonja
AU  - Spasojević, Vojislav
PY  - 2019
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0272884219314166
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8220
AB  - We performed structural and magnetic investigation of Fe3O4/OA nanoparticles prepared by solvothermal method. Based on XRD, TEM and FTIR examination, investigated sample contained monodisperse, 5 nm-sized spherical magnetite nanoparticles coated with oleic acid. Magnetic measurement of the hysteretic curves at 5 K in zero-field cooled (ZFC) and field-cooled (FC) regime confirmed presence of exchange bias effect. ZFC/FC measurements were performed in applied magnetic fields: 10 Oe, 100 Oe, 200 Oe, 500 Oe and 1000 Oe. Zero-field cooled magnetization curves recorded in 10 Oe and 100 Oe exhibited behavior characteristic for low coercivity Nanomaterials. Same sample exposed to the ZFC/FC measurement protocol in 200 Oe, 500 Oe and 1000 Oe showed increase in ZFC magnetization in the certain temperature range. The observed feature is attributed to the local changes in the magnetite electronic structure, occurred through the spin reorientation process. © 2019 Elsevier Ltd and Techna Group S.r.l.
T2  - Ceramics International
T1  - Tracking of the electronic re-ordering in Fe3O4/OA nanoparticles using magnetometry
VL  - 45
IS  - 14
SP  - 17429
EP  - 17437
DO  - 10.1016/j.ceramint.2019.05.303
ER  - 
@article{
author = "Nikolić, Violeta N. and Tadić, Marin and Jovanović, Sonja and Spasojević, Vojislav",
year = "2019",
url = "https://linkinghub.elsevier.com/retrieve/pii/S0272884219314166, http://vinar.vin.bg.ac.rs/handle/123456789/8220",
abstract = "We performed structural and magnetic investigation of Fe3O4/OA nanoparticles prepared by solvothermal method. Based on XRD, TEM and FTIR examination, investigated sample contained monodisperse, 5 nm-sized spherical magnetite nanoparticles coated with oleic acid. Magnetic measurement of the hysteretic curves at 5 K in zero-field cooled (ZFC) and field-cooled (FC) regime confirmed presence of exchange bias effect. ZFC/FC measurements were performed in applied magnetic fields: 10 Oe, 100 Oe, 200 Oe, 500 Oe and 1000 Oe. Zero-field cooled magnetization curves recorded in 10 Oe and 100 Oe exhibited behavior characteristic for low coercivity Nanomaterials. Same sample exposed to the ZFC/FC measurement protocol in 200 Oe, 500 Oe and 1000 Oe showed increase in ZFC magnetization in the certain temperature range. The observed feature is attributed to the local changes in the magnetite electronic structure, occurred through the spin reorientation process. © 2019 Elsevier Ltd and Techna Group S.r.l.",
journal = "Ceramics International",
title = "Tracking of the electronic re-ordering in Fe3O4/OA nanoparticles using magnetometry",
volume = "45",
number = "14",
pages = "17429-17437",
doi = "10.1016/j.ceramint.2019.05.303"
}
Nikolić, V. N., Tadić, M., Jovanović, S.,& Spasojević, V. (2019). Tracking of the electronic re-ordering in Fe3O4/OA nanoparticles using magnetometry.
Ceramics International, 45(14), 17429-17437.
https://doi.org/10.1016/j.ceramint.2019.05.303
Nikolić VN, Tadić M, Jovanović S, Spasojević V. Tracking of the electronic re-ordering in Fe3O4/OA nanoparticles using magnetometry. Ceramics International. 2019;45(14):17429-17437
Nikolić Violeta N., Tadić Marin, Jovanović Sonja, Spasojević Vojislav, "Tracking of the electronic re-ordering in Fe3O4/OA nanoparticles using magnetometry" Ceramics International, 45, no. 14 (2019):17429-17437,
https://doi.org/10.1016/j.ceramint.2019.05.303 .

Colloids or powders: Which nanoparticle formulations do cells like more?

Uskoković, Vuk; Huynh, Eric; Tang, Sean; Jovanović, Sonja; Wu, Victoria

(2019)

TY  - JOUR
AU  - Uskoković, Vuk
AU  - Huynh, Eric
AU  - Tang, Sean
AU  - Jovanović, Sonja
AU  - Wu, Victoria
PY  - 2019
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0927776519303182
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8202
AB  - Understanding the difference in physicochemical properties and biological response between colloidal and powder formulations of identical materials is important before the given materials are used in a medical milieu. In this study we compared a set of biological effects of colloidal and powder formulations of composite nanoparticles comprising superparamagnetic iron oxide cores and silicate/carbon shells. Magnetic dipole interaction between adjacent nanoparticles was more pronounced in their powders than in their colloidal formulations. Nanoparticles delivered as powders were thus more responsive to the magnetic field, but exhibited reduced uptake in bone and brain cancer cells, including K7M2 osteosarcoma line and U87 and E297 glioblastoma lines. Specifically, while the alternate magnetic field elicited a more rapid heat generation in cell culture media supplemented with the magnetic powders, the nanoparticles dispersed in the same media were uptaken by the cancer cells more copiously. The cellular uptake proved to be more crucial in defining the effect on cell survival, given that suspended formulations elicited a greater degree of cancer cell death in the magnetic field compared to the powder-containing formulations. Because of this effect, colloidal formulations were able to target cancer cells more effectively than the powders: they reduced the viability of all three tested cancer cell lines to a significantly greater degree that the viability of the normal, MDCK-MDR1 cell line. It is concluded that better uptake profile can make up for the lower heating rate in the AC field and lead to a more effective magnetic hyperthermia therapy. These results also demonstrate that the direct delivery of ferrofluids is more optimal than the administration of their constitutive particles as powders. © 2019 Elsevier B.V.
T2  - Colloids and Surfaces B: Biointerfaces
T1  - Colloids or powders: Which nanoparticle formulations do cells like more?
VL  - 181
SP  - 39
EP  - 47
DO  - 10.1016/j.colsurfb.2019.05.019
ER  - 
@article{
author = "Uskoković, Vuk and Huynh, Eric and Tang, Sean and Jovanović, Sonja and Wu, Victoria",
year = "2019",
url = "https://linkinghub.elsevier.com/retrieve/pii/S0927776519303182, http://vinar.vin.bg.ac.rs/handle/123456789/8202",
abstract = "Understanding the difference in physicochemical properties and biological response between colloidal and powder formulations of identical materials is important before the given materials are used in a medical milieu. In this study we compared a set of biological effects of colloidal and powder formulations of composite nanoparticles comprising superparamagnetic iron oxide cores and silicate/carbon shells. Magnetic dipole interaction between adjacent nanoparticles was more pronounced in their powders than in their colloidal formulations. Nanoparticles delivered as powders were thus more responsive to the magnetic field, but exhibited reduced uptake in bone and brain cancer cells, including K7M2 osteosarcoma line and U87 and E297 glioblastoma lines. Specifically, while the alternate magnetic field elicited a more rapid heat generation in cell culture media supplemented with the magnetic powders, the nanoparticles dispersed in the same media were uptaken by the cancer cells more copiously. The cellular uptake proved to be more crucial in defining the effect on cell survival, given that suspended formulations elicited a greater degree of cancer cell death in the magnetic field compared to the powder-containing formulations. Because of this effect, colloidal formulations were able to target cancer cells more effectively than the powders: they reduced the viability of all three tested cancer cell lines to a significantly greater degree that the viability of the normal, MDCK-MDR1 cell line. It is concluded that better uptake profile can make up for the lower heating rate in the AC field and lead to a more effective magnetic hyperthermia therapy. These results also demonstrate that the direct delivery of ferrofluids is more optimal than the administration of their constitutive particles as powders. © 2019 Elsevier B.V.",
journal = "Colloids and Surfaces B: Biointerfaces",
title = "Colloids or powders: Which nanoparticle formulations do cells like more?",
volume = "181",
pages = "39-47",
doi = "10.1016/j.colsurfb.2019.05.019"
}
Uskoković, V., Huynh, E., Tang, S., Jovanović, S.,& Wu, V. (2019). Colloids or powders: Which nanoparticle formulations do cells like more?.
Colloids and Surfaces B: Biointerfaces, 181, 39-47.
https://doi.org/10.1016/j.colsurfb.2019.05.019
Uskoković V, Huynh E, Tang S, Jovanović S, Wu V. Colloids or powders: Which nanoparticle formulations do cells like more?. Colloids and Surfaces B: Biointerfaces. 2019;181:39-47
Uskoković Vuk, Huynh Eric, Tang Sean, Jovanović Sonja, Wu Victoria, "Colloids or powders: Which nanoparticle formulations do cells like more?" Colloids and Surfaces B: Biointerfaces, 181 (2019):39-47,
https://doi.org/10.1016/j.colsurfb.2019.05.019 .
2
1
3

Zn-doped cobalt ferrite: Tuning the interactions by chemical composition

Muscas, Giuseppe; Jovanović, Sonja; Vukomanović, Marija; Spreitzer, Matjaž; Peddis, Davide

(2019)

TY  - JOUR
AU  - Muscas, Giuseppe
AU  - Jovanović, Sonja
AU  - Vukomanović, Marija
AU  - Spreitzer, Matjaž
AU  - Peddis, Davide
PY  - 2019
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0925838819316147
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8194
AB  - Magnetic nanoparticles represent complex but very interesting objects. They combine the bulk properties with novel phenomena emerging at the nanoscale due to finite-size effects. The recent development of the synthetic procedures allows having a strong control on the size and shape of individual particles and on their physical-chemical structure. Among different magnetic materials, spinel ferrite nanoparticles offer strong chemical and physical stability as well as tunable magnetic properties. In the present article, we investigate the effect of Zn substitution in cobalt ferrite nanoparticles. The technological development of nanoparticle-based magnetic materials aims to find a balance between a well-defined magnetic behavior of individual elements and their strong interactions, which arise from the need of miniaturization that leads to dense ensembles of the system's constituents. Within this complex context, we provide one route to optimize the properties of small spinel ferrite particles by tuning their chemical composition without compromise their structural properties, and with full control of their size and shape. Furthermore, we propose an advanced analysis of their magnetic properties in the framework of the random anisotropy model. We will show that the chemical composition not only determines the intrinsic anisotropy energy of each nanoparticle but also owns a profound effect on the interparticle interactions. © 2019 Elsevier B.V.
T2  - Journal of Alloys and Compounds
T1  - Zn-doped cobalt ferrite: Tuning the interactions by chemical composition
VL  - 796
SP  - 203
EP  - 209
DO  - 10.1016/j.jallcom.2019.04.308
ER  - 
@article{
author = "Muscas, Giuseppe and Jovanović, Sonja and Vukomanović, Marija and Spreitzer, Matjaž and Peddis, Davide",
year = "2019",
url = "https://linkinghub.elsevier.com/retrieve/pii/S0925838819316147, http://vinar.vin.bg.ac.rs/handle/123456789/8194",
abstract = "Magnetic nanoparticles represent complex but very interesting objects. They combine the bulk properties with novel phenomena emerging at the nanoscale due to finite-size effects. The recent development of the synthetic procedures allows having a strong control on the size and shape of individual particles and on their physical-chemical structure. Among different magnetic materials, spinel ferrite nanoparticles offer strong chemical and physical stability as well as tunable magnetic properties. In the present article, we investigate the effect of Zn substitution in cobalt ferrite nanoparticles. The technological development of nanoparticle-based magnetic materials aims to find a balance between a well-defined magnetic behavior of individual elements and their strong interactions, which arise from the need of miniaturization that leads to dense ensembles of the system's constituents. Within this complex context, we provide one route to optimize the properties of small spinel ferrite particles by tuning their chemical composition without compromise their structural properties, and with full control of their size and shape. Furthermore, we propose an advanced analysis of their magnetic properties in the framework of the random anisotropy model. We will show that the chemical composition not only determines the intrinsic anisotropy energy of each nanoparticle but also owns a profound effect on the interparticle interactions. © 2019 Elsevier B.V.",
journal = "Journal of Alloys and Compounds",
title = "Zn-doped cobalt ferrite: Tuning the interactions by chemical composition",
volume = "796",
pages = "203-209",
doi = "10.1016/j.jallcom.2019.04.308"
}
Muscas, G., Jovanović, S., Vukomanović, M., Spreitzer, M.,& Peddis, D. (2019). Zn-doped cobalt ferrite: Tuning the interactions by chemical composition.
Journal of Alloys and Compounds, 796, 203-209.
https://doi.org/10.1016/j.jallcom.2019.04.308
Muscas G, Jovanović S, Vukomanović M, Spreitzer M, Peddis D. Zn-doped cobalt ferrite: Tuning the interactions by chemical composition. Journal of Alloys and Compounds. 2019;796:203-209
Muscas Giuseppe, Jovanović Sonja, Vukomanović Marija, Spreitzer Matjaž, Peddis Davide, "Zn-doped cobalt ferrite: Tuning the interactions by chemical composition" Journal of Alloys and Compounds, 796 (2019):203-209,
https://doi.org/10.1016/j.jallcom.2019.04.308 .
15
12
13

Rare-earth (Gd3+,Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging

Ignjatović, Nenad L.; Mančić, Lidija; Vuković, Marina; Stojanović, Zoran S.; Nikolić, Marko G.; Škapin, Srečo Davor; Jovanović, Sonja; Veselinović, Ljiljana M.; Uskoković, Vuk; Lazić, Snežana; Marković, Smilja; Lazarević, Miloš M.; Uskoković, Dragan

(2019)

TY  - JOUR
AU  - Ignjatović, Nenad L.
AU  - Mančić, Lidija
AU  - Vuković, Marina
AU  - Stojanović, Zoran S.
AU  - Nikolić, Marko G.
AU  - Škapin, Srečo Davor
AU  - Jovanović, Sonja
AU  - Veselinović, Ljiljana M.
AU  - Uskoković, Vuk
AU  - Lazić, Snežana
AU  - Marković, Smilja
AU  - Lazarević, Miloš M.
AU  - Uskoković, Dragan
PY  - 2019
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8625
AB  - Taking advantage of the flexibility of the apatite structure, nano- and micro-particles of hydroxyapatite (HAp) were doped with different combinations of rare earth ions (RE3+ = Gd, Eu, Yb, Tm) to achieve a synergy among their magnetic and optical properties and to enable their application in preventive medicine, particularly diagnostics based on multimodal imaging. All powders were synthesized through hydrothermal processing at T ≤ 200 °C. An X-ray powder diffraction analysis showed that all powders crystallized in P63/m space group of the hexagonal crystal structure. The refined unit-cell parameters reflected a decrease in the unit cell volume as a result of the partial substitution of Ca2+ with smaller RE3+ ions at both cation positions. The FTIR analysis additionally suggested that a synergy may exist solely in the triply doped system, where the lattice symmetry and vibration modes become more coherent than in the singly or doubly doped systems. HAp:RE3+ optical characterization revealed a change in the energy band gap and the appearance of a weak blue luminescence (λex = 370 nm) due to an increased concentration of defects. The “up”- and the “down”-conversion spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders showed characteristic transitions of Tm3+ and Eu3+, respectively. Furthermore, in contrast to diamagnetic HAp, all HAp:RE3+ powders exhibited paramagnetic behavior. Cell viability tests of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders in human dental pulp stem cell cultures indicated their good biocompatibility. © 2019, The Author(s).
T2  - Scientific Reports
T1  - Rare-earth (Gd3+,Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging
VL  - 9
IS  - 1
SP  - 16305
DO  - 10.1038/s41598-019-52885-0
ER  - 
@article{
author = "Ignjatović, Nenad L. and Mančić, Lidija and Vuković, Marina and Stojanović, Zoran S. and Nikolić, Marko G. and Škapin, Srečo Davor and Jovanović, Sonja and Veselinović, Ljiljana M. and Uskoković, Vuk and Lazić, Snežana and Marković, Smilja and Lazarević, Miloš M. and Uskoković, Dragan",
year = "2019",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/8625",
abstract = "Taking advantage of the flexibility of the apatite structure, nano- and micro-particles of hydroxyapatite (HAp) were doped with different combinations of rare earth ions (RE3+ = Gd, Eu, Yb, Tm) to achieve a synergy among their magnetic and optical properties and to enable their application in preventive medicine, particularly diagnostics based on multimodal imaging. All powders were synthesized through hydrothermal processing at T ≤ 200 °C. An X-ray powder diffraction analysis showed that all powders crystallized in P63/m space group of the hexagonal crystal structure. The refined unit-cell parameters reflected a decrease in the unit cell volume as a result of the partial substitution of Ca2+ with smaller RE3+ ions at both cation positions. The FTIR analysis additionally suggested that a synergy may exist solely in the triply doped system, where the lattice symmetry and vibration modes become more coherent than in the singly or doubly doped systems. HAp:RE3+ optical characterization revealed a change in the energy band gap and the appearance of a weak blue luminescence (λex = 370 nm) due to an increased concentration of defects. The “up”- and the “down”-conversion spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders showed characteristic transitions of Tm3+ and Eu3+, respectively. Furthermore, in contrast to diamagnetic HAp, all HAp:RE3+ powders exhibited paramagnetic behavior. Cell viability tests of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders in human dental pulp stem cell cultures indicated their good biocompatibility. © 2019, The Author(s).",
journal = "Scientific Reports",
title = "Rare-earth (Gd3+,Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging",
volume = "9",
number = "1",
pages = "16305",
doi = "10.1038/s41598-019-52885-0"
}
Ignjatović, N. L., Mančić, L., Vuković, M., Stojanović, Z. S., Nikolić, M. G., Škapin, S. D., Jovanović, S., Veselinović, L. M., Uskoković, V., Lazić, S., Marković, S., Lazarević, M. M.,& Uskoković, D. (2019). Rare-earth (Gd3+,Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging.
Scientific Reports, 9(1), 16305.
https://doi.org/10.1038/s41598-019-52885-0
Ignjatović NL, Mančić L, Vuković M, Stojanović ZS, Nikolić MG, Škapin SD, Jovanović S, Veselinović LM, Uskoković V, Lazić S, Marković S, Lazarević MM, Uskoković D. Rare-earth (Gd3+,Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging. Scientific Reports. 2019;9(1):16305
Ignjatović Nenad L., Mančić Lidija, Vuković Marina, Stojanović Zoran S., Nikolić Marko G., Škapin Srečo Davor, Jovanović Sonja, Veselinović Ljiljana M., Uskoković Vuk, Lazić Snežana, Marković Smilja, Lazarević Miloš M., Uskoković Dragan, "Rare-earth (Gd3+,Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging" Scientific Reports, 9, no. 1 (2019):16305,
https://doi.org/10.1038/s41598-019-52885-0 .
1
23
13
18

Effect of thermal treatment on the charge storage properties of graphene oxide/12-tungstophosphoric acid nanocomposite

Jovanović, Zoran M.; Holclajtner-Antunović, Ivanka D.; Bajuk-Bogdanović, Danica V.; Jovanović, Sonja; Mravik, Željko; Vujković, Milica

(2017)

TY  - JOUR
AU  - Jovanović, Zoran M.
AU  - Holclajtner-Antunović, Ivanka D.
AU  - Bajuk-Bogdanović, Danica V.
AU  - Jovanović, Sonja
AU  - Mravik, Željko
AU  - Vujković, Milica
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1737
AB  - The influence of thermal treatment in an inert atmosphere on the charge storage properties of graphene oxide (GO)/12-tungstophosphoric acid (WPA) nanocomposite was examined. The transmission electron microscopy analysis revealed high dispersion of WPA on GO matrix, while the surface analysis showed thermal activation of structural changes of WPA and desorption of oxygen functional groups from GO and GO/WPA nanocomposite. Initial GO/WPA nanocomposite had approximately two times higher capacitance compared to initial GO. The thermal treatment of initial GO and GO/WPA to 500 degrees C induced twofold increase of capacitance of GO and 40% increase of GO/WPA, accompanied with significant increase of operating voltage compared to GO (for 300 mV). Above 500 degrees C, a decrease of capacitance of both GO and GO/WPA was observed. The results suggest that understanding of structural changes of components and their interaction is crucial for improvement of electrochemical properties of considered composite.
T2  - Electrochemistry Communications
T1  - Effect of thermal treatment on the charge storage properties of graphene oxide/12-tungstophosphoric acid nanocomposite
VL  - 83
SP  - 36
EP  - 40
DO  - 10.1016/j.elecom.2017.08.017
ER  - 
@article{
author = "Jovanović, Zoran M. and Holclajtner-Antunović, Ivanka D. and Bajuk-Bogdanović, Danica V. and Jovanović, Sonja and Mravik, Željko and Vujković, Milica",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1737",
abstract = "The influence of thermal treatment in an inert atmosphere on the charge storage properties of graphene oxide (GO)/12-tungstophosphoric acid (WPA) nanocomposite was examined. The transmission electron microscopy analysis revealed high dispersion of WPA on GO matrix, while the surface analysis showed thermal activation of structural changes of WPA and desorption of oxygen functional groups from GO and GO/WPA nanocomposite. Initial GO/WPA nanocomposite had approximately two times higher capacitance compared to initial GO. The thermal treatment of initial GO and GO/WPA to 500 degrees C induced twofold increase of capacitance of GO and 40% increase of GO/WPA, accompanied with significant increase of operating voltage compared to GO (for 300 mV). Above 500 degrees C, a decrease of capacitance of both GO and GO/WPA was observed. The results suggest that understanding of structural changes of components and their interaction is crucial for improvement of electrochemical properties of considered composite.",
journal = "Electrochemistry Communications",
title = "Effect of thermal treatment on the charge storage properties of graphene oxide/12-tungstophosphoric acid nanocomposite",
volume = "83",
pages = "36-40",
doi = "10.1016/j.elecom.2017.08.017"
}
Jovanović, Z. M., Holclajtner-Antunović, I. D., Bajuk-Bogdanović, D. V., Jovanović, S., Mravik, Ž.,& Vujković, M. (2017). Effect of thermal treatment on the charge storage properties of graphene oxide/12-tungstophosphoric acid nanocomposite.
Electrochemistry Communications, 83, 36-40.
https://doi.org/10.1016/j.elecom.2017.08.017
Jovanović ZM, Holclajtner-Antunović ID, Bajuk-Bogdanović DV, Jovanović S, Mravik Ž, Vujković M. Effect of thermal treatment on the charge storage properties of graphene oxide/12-tungstophosphoric acid nanocomposite. Electrochemistry Communications. 2017;83:36-40
Jovanović Zoran M., Holclajtner-Antunović Ivanka D., Bajuk-Bogdanović Danica V., Jovanović Sonja, Mravik Željko, Vujković Milica, "Effect of thermal treatment on the charge storage properties of graphene oxide/12-tungstophosphoric acid nanocomposite" Electrochemistry Communications, 83 (2017):36-40,
https://doi.org/10.1016/j.elecom.2017.08.017 .
9
8
8

The role of surface chemistry in the charge storage properties of graphene oxide

Jovanović, Zoran M.; Bajuk-Bogdanović, Danica V.; Jovanović, Sonja; Mravik, Željko; Kovač, Janez; Holclajtner-Antunović, Ivanka D.; Vujković, Milica

(2017)

TY  - JOUR
AU  - Jovanović, Zoran M.
AU  - Bajuk-Bogdanović, Danica V.
AU  - Jovanović, Sonja
AU  - Mravik, Željko
AU  - Kovač, Janez
AU  - Holclajtner-Antunović, Ivanka D.
AU  - Vujković, Milica
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1879
AB  - In the present study we have evaluated the contribution of particular oxygen functional groups in the charge storage properties of graphene oxide (GO). This was achieved by a gradual thermal reduction of GO in an inert atmosphere (up to 800 degrees C) and thorough examination of functional groups which remained after each de-functionalization step. After identification of functional groups, the character of additional cyclovoltammetric peak, less pronounced than the main redox quinone/hydroquinone pair, and overall charge storage properties of GO were discussed from the perspective of different thermal stability of its surface groups. The results indicated three-stage deoxidation process of GO, each comprising of specific surface chemistry, structural changes and electrochemical behavior. The low capacitance, similar to 50 F g(-1), at T LT = 300 degrees C was attributed to the presence of epoxy and carboxyl groups. The highest capacitance (120-130 F g(-1)) was observed in the case of GO reduced at 400 and 500 degrees C, which we attributed to positive effects of phenol and carbonyl/quinone groups, while at high temperatures (T GT = 600 degrees C, similar to 30 F g(-1)) the extensive desorption of functional groups and structural changes were emphasized as the main reasons for additional decrease of capacitance. Our results highlight the cases where the duality of interpretation of surface functional groups is likely to happen and indicate that not all functional groups play a positive role in charge storage behavior of graphene oxide. (C) 2017 Elsevier Ltd. All rights reserved.
T2  - Electrochimica Acta
T1  - The role of surface chemistry in the charge storage properties of graphene oxide
VL  - 258
SP  - 1228
EP  - 1243
DO  - 10.1016/j.electacta.2017.11.178
ER  - 
@article{
author = "Jovanović, Zoran M. and Bajuk-Bogdanović, Danica V. and Jovanović, Sonja and Mravik, Željko and Kovač, Janez and Holclajtner-Antunović, Ivanka D. and Vujković, Milica",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1879",
abstract = "In the present study we have evaluated the contribution of particular oxygen functional groups in the charge storage properties of graphene oxide (GO). This was achieved by a gradual thermal reduction of GO in an inert atmosphere (up to 800 degrees C) and thorough examination of functional groups which remained after each de-functionalization step. After identification of functional groups, the character of additional cyclovoltammetric peak, less pronounced than the main redox quinone/hydroquinone pair, and overall charge storage properties of GO were discussed from the perspective of different thermal stability of its surface groups. The results indicated three-stage deoxidation process of GO, each comprising of specific surface chemistry, structural changes and electrochemical behavior. The low capacitance, similar to 50 F g(-1), at T LT = 300 degrees C was attributed to the presence of epoxy and carboxyl groups. The highest capacitance (120-130 F g(-1)) was observed in the case of GO reduced at 400 and 500 degrees C, which we attributed to positive effects of phenol and carbonyl/quinone groups, while at high temperatures (T GT = 600 degrees C, similar to 30 F g(-1)) the extensive desorption of functional groups and structural changes were emphasized as the main reasons for additional decrease of capacitance. Our results highlight the cases where the duality of interpretation of surface functional groups is likely to happen and indicate that not all functional groups play a positive role in charge storage behavior of graphene oxide. (C) 2017 Elsevier Ltd. All rights reserved.",
journal = "Electrochimica Acta",
title = "The role of surface chemistry in the charge storage properties of graphene oxide",
volume = "258",
pages = "1228-1243",
doi = "10.1016/j.electacta.2017.11.178"
}
Jovanović, Z. M., Bajuk-Bogdanović, D. V., Jovanović, S., Mravik, Ž., Kovač, J., Holclajtner-Antunović, I. D.,& Vujković, M. (2017). The role of surface chemistry in the charge storage properties of graphene oxide.
Electrochimica Acta, 258, 1228-1243.
https://doi.org/10.1016/j.electacta.2017.11.178
Jovanović ZM, Bajuk-Bogdanović DV, Jovanović S, Mravik Ž, Kovač J, Holclajtner-Antunović ID, Vujković M. The role of surface chemistry in the charge storage properties of graphene oxide. Electrochimica Acta. 2017;258:1228-1243
Jovanović Zoran M., Bajuk-Bogdanović Danica V., Jovanović Sonja, Mravik Željko, Kovač Janez, Holclajtner-Antunović Ivanka D., Vujković Milica, "The role of surface chemistry in the charge storage properties of graphene oxide" Electrochimica Acta, 258 (2017):1228-1243,
https://doi.org/10.1016/j.electacta.2017.11.178 .
16
15
17

Synthesis and characterization of nanocrystalline FexOy/Gd2O3/SiO2 composite powder

Milić, Mirjana M.; Nikolić, Violeta N.; Jovanović, Sonja

(2017)

TY  - JOUR
AU  - Milić, Mirjana M.
AU  - Nikolić, Violeta N.
AU  - Jovanović, Sonja
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1735
AB  - In this work, sol gel method was used to prepare FexOy/Gd2O3/SiO2 composite system starting from two different iron precursors: iron nitrate and iron oxide xerogel. The obtained samples were subjected to heat treatment at different temperatures under atmospheric conditions. Thermal evolution of the prepared samples has been systematically investigated by using X-ray diffraction (XRD) analysis and Fourier transform infrared spectroscopy (FTIR). Samples calcined at 1030 degrees C were also characterized by transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) experimental techniques. Effect of thermal treatment on phase formation in the prepared composite system has been discussed. It was found that iron nitrate based sample developed only alpha-Fe2O3 structural phase, while the sample based on the iron oxide xerogel developed alpha-Fe2O3 and gamma-Fe2O3 phases, with both of them remaining stable up to temperatures as high as 1030 degrees C. Gadolinium precursor crystallized directly in low-temperature triclinic B-type gadolinium disilicate Gd2Si2O7 (Gd2O3 center dot 2SiO(2)) phase at 900 degrees C, without formation of intermediate monosilicate phase. No other crystalline phases related to gadolinium were observed.
T2  - Ceramics International
T1  - Synthesis and characterization of nanocrystalline FexOy/Gd2O3/SiO2 composite powder
VL  - 43
IS  - 16
SP  - 14044
EP  - 14049
DO  - 10.1016/j.ceramint.2017.07.138
ER  - 
@article{
author = "Milić, Mirjana M. and Nikolić, Violeta N. and Jovanović, Sonja",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1735",
abstract = "In this work, sol gel method was used to prepare FexOy/Gd2O3/SiO2 composite system starting from two different iron precursors: iron nitrate and iron oxide xerogel. The obtained samples were subjected to heat treatment at different temperatures under atmospheric conditions. Thermal evolution of the prepared samples has been systematically investigated by using X-ray diffraction (XRD) analysis and Fourier transform infrared spectroscopy (FTIR). Samples calcined at 1030 degrees C were also characterized by transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) experimental techniques. Effect of thermal treatment on phase formation in the prepared composite system has been discussed. It was found that iron nitrate based sample developed only alpha-Fe2O3 structural phase, while the sample based on the iron oxide xerogel developed alpha-Fe2O3 and gamma-Fe2O3 phases, with both of them remaining stable up to temperatures as high as 1030 degrees C. Gadolinium precursor crystallized directly in low-temperature triclinic B-type gadolinium disilicate Gd2Si2O7 (Gd2O3 center dot 2SiO(2)) phase at 900 degrees C, without formation of intermediate monosilicate phase. No other crystalline phases related to gadolinium were observed.",
journal = "Ceramics International",
title = "Synthesis and characterization of nanocrystalline FexOy/Gd2O3/SiO2 composite powder",
volume = "43",
number = "16",
pages = "14044-14049",
doi = "10.1016/j.ceramint.2017.07.138"
}
Milić, M. M., Nikolić, V. N.,& Jovanović, S. (2017). Synthesis and characterization of nanocrystalline FexOy/Gd2O3/SiO2 composite powder.
Ceramics International, 43(16), 14044-14049.
https://doi.org/10.1016/j.ceramint.2017.07.138
Milić MM, Nikolić VN, Jovanović S. Synthesis and characterization of nanocrystalline FexOy/Gd2O3/SiO2 composite powder. Ceramics International. 2017;43(16):14044-14049
Milić Mirjana M., Nikolić Violeta N., Jovanović Sonja, "Synthesis and characterization of nanocrystalline FexOy/Gd2O3/SiO2 composite powder" Ceramics International, 43, no. 16 (2017):14044-14049,
https://doi.org/10.1016/j.ceramint.2017.07.138 .
3
1
2

Platinum-mediated healing of defective graphene produced by irradiating glassy carbon with a hydrogen ion-beam

Jovanović, Zoran M.; Pašti, Igor A.; Kalijadis, Ana; Jovanović, Sonja; Laušević, Zoran

(2013)

TY  - JOUR
AU  - Jovanović, Zoran M.
AU  - Pašti, Igor A.
AU  - Kalijadis, Ana
AU  - Jovanović, Sonja
AU  - Laušević, Zoran
PY  - 2013
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/5598
AB  - The effect of platinum catalyst on the thermally activated healing of defects produced in a graphene-ribbon network by irradiating glassy carbon with a 15 key hydrogen-ion beam has been investigated by Raman spectrometry. The platinum has been incorporated into glassy carbon by hydrogen-ion beam irradiation of a thin layer of platinum salt deposited on the glassy carbon surface. The presence of platinum is beneficial because it becomes incorporated by ion-beam mixing and facilitates the structural healing of the amorphous subsurface layer by decreasing the healing temperature from 500 degrees C to 270 degrees C in comparison to irradiated glassy carbon that contains no platinum. In the case of chemically doped platinum in glassy carbon the in-plane structural ordering, demonstrated by the decreasing I-D/I-G ratio, is a linear function of the platinum added to the phenol-formaldehyde resin as precursor. The results of the density functional theory calculations showed that platinum mediates the reorganization of the bond network and the removal of defects present in the graphene layer. (c) 2013 Elsevier B.V. All rights reserved.
T2  - Materials Chemistry and Physics
T1  - Platinum-mediated healing of defective graphene produced by irradiating glassy carbon with a hydrogen ion-beam
VL  - 141
IS  - 1
SP  - 27
EP  - 34
DO  - 10.1016/j.matchemphys.2013.03.050
ER  - 
@article{
author = "Jovanović, Zoran M. and Pašti, Igor A. and Kalijadis, Ana and Jovanović, Sonja and Laušević, Zoran",
year = "2013",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/5598",
abstract = "The effect of platinum catalyst on the thermally activated healing of defects produced in a graphene-ribbon network by irradiating glassy carbon with a 15 key hydrogen-ion beam has been investigated by Raman spectrometry. The platinum has been incorporated into glassy carbon by hydrogen-ion beam irradiation of a thin layer of platinum salt deposited on the glassy carbon surface. The presence of platinum is beneficial because it becomes incorporated by ion-beam mixing and facilitates the structural healing of the amorphous subsurface layer by decreasing the healing temperature from 500 degrees C to 270 degrees C in comparison to irradiated glassy carbon that contains no platinum. In the case of chemically doped platinum in glassy carbon the in-plane structural ordering, demonstrated by the decreasing I-D/I-G ratio, is a linear function of the platinum added to the phenol-formaldehyde resin as precursor. The results of the density functional theory calculations showed that platinum mediates the reorganization of the bond network and the removal of defects present in the graphene layer. (c) 2013 Elsevier B.V. All rights reserved.",
journal = "Materials Chemistry and Physics",
title = "Platinum-mediated healing of defective graphene produced by irradiating glassy carbon with a hydrogen ion-beam",
volume = "141",
number = "1",
pages = "27-34",
doi = "10.1016/j.matchemphys.2013.03.050"
}
Jovanović, Z. M., Pašti, I. A., Kalijadis, A., Jovanović, S.,& Laušević, Z. (2013). Platinum-mediated healing of defective graphene produced by irradiating glassy carbon with a hydrogen ion-beam.
Materials Chemistry and Physics, 141(1), 27-34.
https://doi.org/10.1016/j.matchemphys.2013.03.050
Jovanović ZM, Pašti IA, Kalijadis A, Jovanović S, Laušević Z. Platinum-mediated healing of defective graphene produced by irradiating glassy carbon with a hydrogen ion-beam. Materials Chemistry and Physics. 2013;141(1):27-34
Jovanović Zoran M., Pašti Igor A., Kalijadis Ana, Jovanović Sonja, Laušević Zoran, "Platinum-mediated healing of defective graphene produced by irradiating glassy carbon with a hydrogen ion-beam" Materials Chemistry and Physics, 141, no. 1 (2013):27-34,
https://doi.org/10.1016/j.matchemphys.2013.03.050 .
7
7
8