Penov-Gaši, Katarina M.

Link to this page

Authority KeyName Variants
17ddda99-588d-4098-8ccc-95b6396f577d
  • Penov-Gaši, Katarina M. (1)
Projects

Author's Bibliography

Selective anticancer activity of hydroxyapatite/chitosan-poly(d,l)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor

Ignjatović, Nenad L.; Penov-Gaši, Katarina M.; Wu, Victoria; Ajduković, Jovana; Kojić, Vesna V.; Vasiljević-Radović, Dana; Kuzmanović, Maja D.; Uskoković, Vuk; Uskoković, Dragan

(Elsevier, 2016)

TY  - JOUR
AU  - Ignjatović, Nenad L.
AU  - Penov-Gaši, Katarina M.
AU  - Wu, Victoria
AU  - Ajduković, Jovana
AU  - Kojić, Vesna V.
AU  - Vasiljević-Radović, Dana
AU  - Kuzmanović, Maja D.
AU  - Uskoković, Vuk
AU  - Uskoković, Dragan
PY  - 2016
UR  - http://itn.sanu.ac.rs/opus4/frontdoor/index/index/docId/1242
UR  - http://dais.sanu.ac.rs/123456789/15974
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7569
AB  - In an earlier study we demonstrated that hydroxyapatite nanoparticles coated with chitosan-poly(d,l)-lactide-co-glycolide (HAp/Ch-PLGA) target lungs following their intravenous injection into mice. In this study we utilize an emulsification process and freeze drying to load the composite HAp/Ch-PLGA particles with 17β-hydroxy-17α-picolyl-androst-5-en-3β-yl-acetate (A), a chemotherapeutic derivative of androstane and a novel compound with a selective anticancer activity against lung cancer cells. 1H NMR and 13C NMR techniques confirmed the intact structure of the derivative A following its entrapment within HAp/Ch-PLGA particles. The thermogravimetric and differential thermal analyses coupled with mass spectrometry were used to assess the thermal degradation products and properties of A-loaded HAp/Ch-PLGA. The loading efficiency, as indicated by the comparison of enthalpies of phase transitions in pure A and A-loaded HAp/Ch-PLGA, equaled 7.47wt.%. The release of A from HAp/Ch-PLGA was sustained, neither exhibiting a burst release nor plateauing after three weeks. Atomic force microscopy and particle size distribution analyses were used to confirm that the particles were spherical with a uniform size distribution of d50=168nm. In vitro cytotoxicity testing of A-loaded HAp/Ch-PLGA using MTT and trypan blue dye exclusion assays demonstrated that the particles were cytotoxic to the A549 human lung carcinoma cell line (46±2%), while simultaneously preserving high viability (83±3%) of regular MRC5 human lung fibroblasts and causing no harm to primary mouse lung fibroblasts. In conclusion, composite A-loaded HAp/Ch-PLGA particles could be seen as promising drug delivery platforms for selective cancer therapies, targeting malignant cells for destruction, while having a significantly lesser cytotoxic effect on the healthy cells.
PB  - Elsevier
T2  - Colloids and Surfaces B: Biointerfaces
T1  - Selective anticancer activity of hydroxyapatite/chitosan-poly(d,l)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor
VL  - 148
SP  - 629
EP  - 639
DO  - 10.1016/j.colsurfb.2016.09.041
ER  - 
@article{
author = "Ignjatović, Nenad L. and Penov-Gaši, Katarina M. and Wu, Victoria and Ajduković, Jovana and Kojić, Vesna V. and Vasiljević-Radović, Dana and Kuzmanović, Maja D. and Uskoković, Vuk and Uskoković, Dragan",
year = "2016",
url = "http://itn.sanu.ac.rs/opus4/frontdoor/index/index/docId/1242, http://dais.sanu.ac.rs/123456789/15974, http://vinar.vin.bg.ac.rs/handle/123456789/7569",
abstract = "In an earlier study we demonstrated that hydroxyapatite nanoparticles coated with chitosan-poly(d,l)-lactide-co-glycolide (HAp/Ch-PLGA) target lungs following their intravenous injection into mice. In this study we utilize an emulsification process and freeze drying to load the composite HAp/Ch-PLGA particles with 17β-hydroxy-17α-picolyl-androst-5-en-3β-yl-acetate (A), a chemotherapeutic derivative of androstane and a novel compound with a selective anticancer activity against lung cancer cells. 1H NMR and 13C NMR techniques confirmed the intact structure of the derivative A following its entrapment within HAp/Ch-PLGA particles. The thermogravimetric and differential thermal analyses coupled with mass spectrometry were used to assess the thermal degradation products and properties of A-loaded HAp/Ch-PLGA. The loading efficiency, as indicated by the comparison of enthalpies of phase transitions in pure A and A-loaded HAp/Ch-PLGA, equaled 7.47wt.%. The release of A from HAp/Ch-PLGA was sustained, neither exhibiting a burst release nor plateauing after three weeks. Atomic force microscopy and particle size distribution analyses were used to confirm that the particles were spherical with a uniform size distribution of d50=168nm. In vitro cytotoxicity testing of A-loaded HAp/Ch-PLGA using MTT and trypan blue dye exclusion assays demonstrated that the particles were cytotoxic to the A549 human lung carcinoma cell line (46±2%), while simultaneously preserving high viability (83±3%) of regular MRC5 human lung fibroblasts and causing no harm to primary mouse lung fibroblasts. In conclusion, composite A-loaded HAp/Ch-PLGA particles could be seen as promising drug delivery platforms for selective cancer therapies, targeting malignant cells for destruction, while having a significantly lesser cytotoxic effect on the healthy cells.",
publisher = "Elsevier",
journal = "Colloids and Surfaces B: Biointerfaces",
title = "Selective anticancer activity of hydroxyapatite/chitosan-poly(d,l)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor",
volume = "148",
pages = "629-639",
doi = "10.1016/j.colsurfb.2016.09.041"
}
Ignjatović, N. L., Penov-Gaši, K. M., Wu, V., Ajduković, J., Kojić, V. V., Vasiljević-Radović, D., Kuzmanović, M. D., Uskoković, V.,& Uskoković, D. (2016). Selective anticancer activity of hydroxyapatite/chitosan-poly(d,l)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor.
Colloids and Surfaces B: Biointerfaces
Elsevier., 148, 629-639.
https://doi.org/10.1016/j.colsurfb.2016.09.041
Ignjatović NL, Penov-Gaši KM, Wu V, Ajduković J, Kojić VV, Vasiljević-Radović D, Kuzmanović MD, Uskoković V, Uskoković D. Selective anticancer activity of hydroxyapatite/chitosan-poly(d,l)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor. Colloids and Surfaces B: Biointerfaces. 2016;148:629-639
Ignjatović Nenad L., Penov-Gaši Katarina M., Wu Victoria, Ajduković Jovana, Kojić Vesna V., Vasiljević-Radović Dana, Kuzmanović Maja D., Uskoković Vuk, Uskoković Dragan, "Selective anticancer activity of hydroxyapatite/chitosan-poly(d,l)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor" Colloids and Surfaces B: Biointerfaces, 148 (2016):629-639,
https://doi.org/10.1016/j.colsurfb.2016.09.041 .
16
15
19