Scheurer, Andreas

Link to this page

Authority KeyName Variants
09b1ab86-2e97-4fc1-9ddf-3c2a3ee871a6
  • Scheurer, Andreas (1)
Projects

Author's Bibliography

New gold pincer-type complexes: synthesis, characterization, DNA binding studies and cytotoxicity

Radisavljević, Snežana; Bratsos, Ioannis; Scheurer, Andreas; Korzekwa, Jana; Masnikosa, Romana; Tot, Aleksandar; Gligorijević, Nevenka N.; Radulović, Siniša S.; Rilak Simović, Ana

(2018)

TY  - JOUR
AU  - Radisavljević, Snežana
AU  - Bratsos, Ioannis
AU  - Scheurer, Andreas
AU  - Korzekwa, Jana
AU  - Masnikosa, Romana
AU  - Tot, Aleksandar
AU  - Gligorijević, Nevenka N.
AU  - Radulović, Siniša S.
AU  - Rilak Simović, Ana
PY  - 2018
UR  - http://xlink.rsc.org/?DOI=C8DT02903B
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7894
AB  - With the aim of assessing whether Au(iii) compounds with pincer type ligands might be utilized as potential antitumor agents, three new monofunctional Au(iii) complexes of the general formula [Au(N-N'-N)Cl]Cl-2, where N-N'-N = 2,6-bis(5-tert-butyl-1H-pyrazol-3-yl)pyridine (H2LtBu, 1), 2,6-bis(5-tert-butyl-1-methyl-1H-pyrazol-3-yl)pyridine (Me2LtBu, 2) or 2,6-bis((4S,7R)-1,7,8,8-tetramethyl-4,5,6,7-tetrahydro-1H-4,7-methanoindazol-3-yl)pyridine (Me-2*L, 3) were synthesized. All complexes were characterized by elemental analysis, spectroscopic techniques (IR, UV-Vis, 1D and 2D NMR) and mass spectrometry (MALDI TOF MS). The chemical behavior of the complexes under physiological conditions was studied by UV-Vis spectroscopy, which showed that all compounds were remarkably stable and that the gold center remained in the 3+ oxidation state. The kinetics and the mechanism of the reaction of complexes 1-3 with guanine derivatives (i.e. guanosine (Guo) and guanosine-5-monophosphate (5-GMP)) and calf thymus DNA (CT DNA) were studied by stopped-flow spectroscopy. The three complexes displayed moderately different rate constants in their reactions with Guo, 5-GMP and CT DNA, which can be explained by the steric hindrance and sigma-donicity of the methyl substituent on the bis-pyrazolylpyridine fragment in complexes 2 and 3. The measured enthalpies and entropies of activation (Delta H-not equal > 0, Delta S-not equal < 0) supported an associative mechanism for the substitution process. The interaction of the newly synthesized complexes 1-3 with CT DNA was investigated by UV-Vis and fluorescence spectroscopy, and also by viscosity measurements, which all indicated that complexes 1-3 bound to CT DNA with moderate binding affinity (K-b = 1.6-5.7 x 10(3) M-1) and stabilized the duplex of CT DNA. Molecular docking indicated that complexes 1-3 interacted with DNA via intercalation. Complex 1 reduced the cell survival of all the investigated cell lines (A549, A375, and LS-174) with IC50 values being up to 20 mu M. We have shown that 1 induced perturbations of the cell cycle and led to apoptosis in human melanoma A375 cells. Complex 1 also affected the level of reactive oxygen species (ROS) in the same cells. However, pre-treatment of A375 cells with NAC (ROS scavenger) reversed the effect of 1 on their survival.
T2  - Dalton Transactions
T1  - New gold pincer-type complexes: synthesis, characterization, DNA binding studies and cytotoxicity
VL  - 47
IS  - 38
SP  - 13696
EP  - 13712
DO  - 10.1039/C8DT02903B
ER  - 
@article{
author = "Radisavljević, Snežana and Bratsos, Ioannis and Scheurer, Andreas and Korzekwa, Jana and Masnikosa, Romana and Tot, Aleksandar and Gligorijević, Nevenka N. and Radulović, Siniša S. and Rilak Simović, Ana",
year = "2018",
abstract = "With the aim of assessing whether Au(iii) compounds with pincer type ligands might be utilized as potential antitumor agents, three new monofunctional Au(iii) complexes of the general formula [Au(N-N'-N)Cl]Cl-2, where N-N'-N = 2,6-bis(5-tert-butyl-1H-pyrazol-3-yl)pyridine (H2LtBu, 1), 2,6-bis(5-tert-butyl-1-methyl-1H-pyrazol-3-yl)pyridine (Me2LtBu, 2) or 2,6-bis((4S,7R)-1,7,8,8-tetramethyl-4,5,6,7-tetrahydro-1H-4,7-methanoindazol-3-yl)pyridine (Me-2*L, 3) were synthesized. All complexes were characterized by elemental analysis, spectroscopic techniques (IR, UV-Vis, 1D and 2D NMR) and mass spectrometry (MALDI TOF MS). The chemical behavior of the complexes under physiological conditions was studied by UV-Vis spectroscopy, which showed that all compounds were remarkably stable and that the gold center remained in the 3+ oxidation state. The kinetics and the mechanism of the reaction of complexes 1-3 with guanine derivatives (i.e. guanosine (Guo) and guanosine-5-monophosphate (5-GMP)) and calf thymus DNA (CT DNA) were studied by stopped-flow spectroscopy. The three complexes displayed moderately different rate constants in their reactions with Guo, 5-GMP and CT DNA, which can be explained by the steric hindrance and sigma-donicity of the methyl substituent on the bis-pyrazolylpyridine fragment in complexes 2 and 3. The measured enthalpies and entropies of activation (Delta H-not equal > 0, Delta S-not equal < 0) supported an associative mechanism for the substitution process. The interaction of the newly synthesized complexes 1-3 with CT DNA was investigated by UV-Vis and fluorescence spectroscopy, and also by viscosity measurements, which all indicated that complexes 1-3 bound to CT DNA with moderate binding affinity (K-b = 1.6-5.7 x 10(3) M-1) and stabilized the duplex of CT DNA. Molecular docking indicated that complexes 1-3 interacted with DNA via intercalation. Complex 1 reduced the cell survival of all the investigated cell lines (A549, A375, and LS-174) with IC50 values being up to 20 mu M. We have shown that 1 induced perturbations of the cell cycle and led to apoptosis in human melanoma A375 cells. Complex 1 also affected the level of reactive oxygen species (ROS) in the same cells. However, pre-treatment of A375 cells with NAC (ROS scavenger) reversed the effect of 1 on their survival.",
journal = "Dalton Transactions",
title = "New gold pincer-type complexes: synthesis, characterization, DNA binding studies and cytotoxicity",
volume = "47",
number = "38",
pages = "13696-13712",
doi = "10.1039/C8DT02903B"
}
Radisavljević, S., Bratsos, I., Scheurer, A., Korzekwa, J., Masnikosa, R., Tot, A., Gligorijević, N. N., Radulović, S. S.,& Rilak Simović, A.. (2018). New gold pincer-type complexes: synthesis, characterization, DNA binding studies and cytotoxicity. in Dalton Transactions, 47(38), 13696-13712.
https://doi.org/10.1039/C8DT02903B
Radisavljević S, Bratsos I, Scheurer A, Korzekwa J, Masnikosa R, Tot A, Gligorijević NN, Radulović SS, Rilak Simović A. New gold pincer-type complexes: synthesis, characterization, DNA binding studies and cytotoxicity. in Dalton Transactions. 2018;47(38):13696-13712.
doi:10.1039/C8DT02903B .
Radisavljević, Snežana, Bratsos, Ioannis, Scheurer, Andreas, Korzekwa, Jana, Masnikosa, Romana, Tot, Aleksandar, Gligorijević, Nevenka N., Radulović, Siniša S., Rilak Simović, Ana, "New gold pincer-type complexes: synthesis, characterization, DNA binding studies and cytotoxicity" in Dalton Transactions, 47, no. 38 (2018):13696-13712,
https://doi.org/10.1039/C8DT02903B . .
2
27
20
30