Ristić, Mira

Link to this page

Authority KeyName Variants
orcid::0000-0003-0033-9840
  • Ristić, Mira (9)
Projects
Croatian Science Foundation [IP-2016-06-8254] Bilateral Croatian-Serbian scientific project
Magnetic and radionuclide labeled nanostructured materials for medical applications Bilateral Croatian-Chinese scientific project “Iron oxide nanostructures for environmental and energy applications”
bilateral Croatian-Chinese scientific project "Synthesis and characterization of iron oxide nanoparticles and nanofibers and their application in environmental catalysis" bilateral Croatian-Serbian [IP-2016-06-8254]
bilateral Croatian-Serbian scientific project " Nanostructured iron oxides for environmental applications" Bilateral Croatian-Serbian scientific project “Nanostructured iron oxides for environmental applications”
Croatian Centre of Excellence for Advanced Materials and Sensing Devices Croatian Science Foundation [IP-2016-06-825]
Croatian Science Foundation (IP-2016-06-8254) Hungarian Academy of Sciences [LP2013-59 - ‘Lendület’ (Momentum) Program]
Rational design and synthesis of biologically active and coordination compounds and functional materials, relevant for (bio)nanotechnology Magmatism and geodynamics of the Balkan Peninsula from Mesozoic to present day: significance for the formation of metallic and non-metallic mineral deposits
Zero- to Three-Dimensional Nanostructures for Application in Electronics and Renewable Energy Sources: Synthesis, Characterization and Processing Ministry of Education, Science and Technological Development of the Republic of Serbia
Ministry of Science and Education of the Republic of Croatia Ministry of Science and Technology of the People's Republic of China (bilateral Croatian-Serbian and Croatian-Chinese scientific projects)
National Research, Development and Innovation Fund [NKFIH FK 124460] Natural Science Foundation of China (21476232)
Natural Science Foundation of China [21476232] Natural Science Foundation of China (21576258)
Natural Science Foundation of China [21576258] SAFU (KK.01.1.1.01.0001)
SAFU [KK.01.1.1.01.0001] Strategic Priority Research Program of the Chinese Academy of Sciences (XDA09030104)
Strategic Priority Research Program of the Chinese Academy of Sciences [XDA09030104] Swiss National Science Foundation [IZ73Z0_1 27961]

Author's Bibliography

Influence of Sn doping on the structural, magnetic, optical and photocatalytic properties of hematite (α-Fe2O3) nanoparticles

Popov, Nina; Ristić, Mira; Bošković, Marko; Perović, Marija; Musić, Svetozar; Stanković, Dalibor M.; Krehula, Stjepko

(2022)

TY  - JOUR
AU  - Popov, Nina
AU  - Ristić, Mira
AU  - Bošković, Marko
AU  - Perović, Marija
AU  - Musić, Svetozar
AU  - Stanković, Dalibor M.
AU  - Krehula, Stjepko
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9929
AB  - Sn-doped hematite (α-Fe2O3) nanoparticles of fairly uniform and Sn-dependent size and shape were synthesized via a simple combination of hydrothermal co-precipitation and calcination. The effects of Sn doping on the unit cell size, crystallinity, particle size and shape, as well as the magnetic, optical and photocatalytic properties of hematite nanoparticles were analyzed. The incorporation of Sn4+ ions into the crystal structure of hematite was confirmed by determination of the unit cell expansion due to the replacement of octahedrally coordinated Fe3+ ions by significantly larger Sn4+ ions, as well as a substantially reduced hyperfine magnetic field due to magnetic dilution upon the substitution of non-magnetic Sn4+ ions for magnetic high-spin Fe3+ ions. Sn doping caused a decrease in length and width and an increase in thickness of elongated hematite nanoparticles. Fairly uniform Sn-doped hematite nanoellipsoids or nanocuboids were formed, depending on the Sn content. Temperature dependence of magnetization measurements showed the disappearance of the magnetic phase transition (Morin transition) in hematite upon Sn doping. Magnetic coercivity decreased upon Sn doping due to a decrease in shape anisotropy induced by the change in particle shape from nanorods to nanoellipsoids and nanocuboids. The optical and electronic properties of hematite nanoparticles were significantly affected by Sn doping – the absorption edge was shifted to higher wavelengths, while direct and indirect optical band gaps narrowed with the increasing Sn4+-for-Fe3+ substitution. Sn-doped hematite nanoellipsoids containing 4.3 mol% Sn exhibited a substantial visible light photocatalytic activity in the heterogeneous photo-Fenton process, but this activity significantly decreased with higher Sn doping.
T2  - Journal of Physics and Chemistry of Solids
T1  - Influence of Sn doping on the structural, magnetic, optical and photocatalytic properties of hematite (α-Fe2O3) nanoparticles
VL  - 161
SP  - 110372
DO  - 10.1016/j.jpcs.2021.110372
ER  - 
@article{
author = "Popov, Nina and Ristić, Mira and Bošković, Marko and Perović, Marija and Musić, Svetozar and Stanković, Dalibor M. and Krehula, Stjepko",
year = "2022",
abstract = "Sn-doped hematite (α-Fe2O3) nanoparticles of fairly uniform and Sn-dependent size and shape were synthesized via a simple combination of hydrothermal co-precipitation and calcination. The effects of Sn doping on the unit cell size, crystallinity, particle size and shape, as well as the magnetic, optical and photocatalytic properties of hematite nanoparticles were analyzed. The incorporation of Sn4+ ions into the crystal structure of hematite was confirmed by determination of the unit cell expansion due to the replacement of octahedrally coordinated Fe3+ ions by significantly larger Sn4+ ions, as well as a substantially reduced hyperfine magnetic field due to magnetic dilution upon the substitution of non-magnetic Sn4+ ions for magnetic high-spin Fe3+ ions. Sn doping caused a decrease in length and width and an increase in thickness of elongated hematite nanoparticles. Fairly uniform Sn-doped hematite nanoellipsoids or nanocuboids were formed, depending on the Sn content. Temperature dependence of magnetization measurements showed the disappearance of the magnetic phase transition (Morin transition) in hematite upon Sn doping. Magnetic coercivity decreased upon Sn doping due to a decrease in shape anisotropy induced by the change in particle shape from nanorods to nanoellipsoids and nanocuboids. The optical and electronic properties of hematite nanoparticles were significantly affected by Sn doping – the absorption edge was shifted to higher wavelengths, while direct and indirect optical band gaps narrowed with the increasing Sn4+-for-Fe3+ substitution. Sn-doped hematite nanoellipsoids containing 4.3 mol% Sn exhibited a substantial visible light photocatalytic activity in the heterogeneous photo-Fenton process, but this activity significantly decreased with higher Sn doping.",
journal = "Journal of Physics and Chemistry of Solids",
title = "Influence of Sn doping on the structural, magnetic, optical and photocatalytic properties of hematite (α-Fe2O3) nanoparticles",
volume = "161",
pages = "110372",
doi = "10.1016/j.jpcs.2021.110372"
}
Popov, N., Ristić, M., Bošković, M., Perović, M., Musić, S., Stanković, D. M.,& Krehula, S.. (2022). Influence of Sn doping on the structural, magnetic, optical and photocatalytic properties of hematite (α-Fe2O3) nanoparticles. in Journal of Physics and Chemistry of Solids, 161, 110372.
https://doi.org/10.1016/j.jpcs.2021.110372
Popov N, Ristić M, Bošković M, Perović M, Musić S, Stanković DM, Krehula S. Influence of Sn doping on the structural, magnetic, optical and photocatalytic properties of hematite (α-Fe2O3) nanoparticles. in Journal of Physics and Chemistry of Solids. 2022;161:110372.
doi:10.1016/j.jpcs.2021.110372 .
Popov, Nina, Ristić, Mira, Bošković, Marko, Perović, Marija, Musić, Svetozar, Stanković, Dalibor M., Krehula, Stjepko, "Influence of Sn doping on the structural, magnetic, optical and photocatalytic properties of hematite (α-Fe2O3) nanoparticles" in Journal of Physics and Chemistry of Solids, 161 (2022):110372,
https://doi.org/10.1016/j.jpcs.2021.110372 . .

Influence of low-spin Co3+ for high-spin Fe3+ substitution on the structural, magnetic, optical and catalytic properties of hematite (α-Fe2O3) nanorods

Popov, Nina; Bošković, Marko; Perović, Marija M.; Németh, Zoltán; Wang, Junhu; Kuang, Zhichong; Reissner, Michael; Kuzmann, Ernő; Homonnay, Zoltán; Kubuki, Shiro; Marciuš, Marijan; Ristić, Mira; Musić, Svetozar; Stanković, Dalibor M.; Krehula, Stjepko

(2021)

TY  - JOUR
AU  - Popov, Nina
AU  - Bošković, Marko
AU  - Perović, Marija M.
AU  - Németh, Zoltán
AU  - Wang, Junhu
AU  - Kuang, Zhichong
AU  - Reissner, Michael
AU  - Kuzmann, Ernő
AU  - Homonnay, Zoltán
AU  - Kubuki, Shiro
AU  - Marciuš, Marijan
AU  - Ristić, Mira
AU  - Musić, Svetozar
AU  - Stanković, Dalibor M.
AU  - Krehula, Stjepko
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9516
AB  - Pure hematite nanorods and very long and thin cobalt-doped hematite nanorods (nanoneedles) were prepared by a combined precipitation and annealing method. The influence of the level of cobalt doping on different properties of hematite nanorods was investigated. Incorporation of cobalt in the form of low-spin Co3+ ions into the structure of hematite by substitution for high-spin Fe3+ ions was proved by determination of a significant unit cell contraction by powder X-ray diffraction (PXRD) and characteristic positions of the absorption edge in X-ray absorption near edge structure (XANES) spectra and peaks in X-ray emission (XES) spectra. Cobalt doping caused a gradual elongation and thinning of hematite nanorods – very long and thin 1D nanoparticles (nanoneedles) were formed in the presence of 10 and 12 mol% Co. Magnetic measurements showed a strong increase in low-temperature remanent magnetization and coercivity upon cobalt doping, as well as a disappearance of the Morin transition, which was also confirmed by Mössbauer spectroscopy. Cobalt doping significantly affected optical properties of hematite nanorods – absorption in the visible and NIR ranges increased, which was accompanied by narrowing of the optical band gap. Compared with pure hematite nanorods cobalt-doped hematite nanoneedles showed a significantly better electrocatalytic activity for the oxygen evolution reaction (OER). © 2020 Elsevier Ltd
T2  - Journal of Physics and Chemistry of Solids
T1  - Influence of low-spin Co3+ for high-spin Fe3+ substitution on the structural, magnetic, optical and catalytic properties of hematite (α-Fe2O3) nanorods
VL  - 152
SP  - 109929
DO  - 10.1016/j.jpcs.2020.109929
ER  - 
@article{
author = "Popov, Nina and Bošković, Marko and Perović, Marija M. and Németh, Zoltán and Wang, Junhu and Kuang, Zhichong and Reissner, Michael and Kuzmann, Ernő and Homonnay, Zoltán and Kubuki, Shiro and Marciuš, Marijan and Ristić, Mira and Musić, Svetozar and Stanković, Dalibor M. and Krehula, Stjepko",
year = "2021",
abstract = "Pure hematite nanorods and very long and thin cobalt-doped hematite nanorods (nanoneedles) were prepared by a combined precipitation and annealing method. The influence of the level of cobalt doping on different properties of hematite nanorods was investigated. Incorporation of cobalt in the form of low-spin Co3+ ions into the structure of hematite by substitution for high-spin Fe3+ ions was proved by determination of a significant unit cell contraction by powder X-ray diffraction (PXRD) and characteristic positions of the absorption edge in X-ray absorption near edge structure (XANES) spectra and peaks in X-ray emission (XES) spectra. Cobalt doping caused a gradual elongation and thinning of hematite nanorods – very long and thin 1D nanoparticles (nanoneedles) were formed in the presence of 10 and 12 mol% Co. Magnetic measurements showed a strong increase in low-temperature remanent magnetization and coercivity upon cobalt doping, as well as a disappearance of the Morin transition, which was also confirmed by Mössbauer spectroscopy. Cobalt doping significantly affected optical properties of hematite nanorods – absorption in the visible and NIR ranges increased, which was accompanied by narrowing of the optical band gap. Compared with pure hematite nanorods cobalt-doped hematite nanoneedles showed a significantly better electrocatalytic activity for the oxygen evolution reaction (OER). © 2020 Elsevier Ltd",
journal = "Journal of Physics and Chemistry of Solids",
title = "Influence of low-spin Co3+ for high-spin Fe3+ substitution on the structural, magnetic, optical and catalytic properties of hematite (α-Fe2O3) nanorods",
volume = "152",
pages = "109929",
doi = "10.1016/j.jpcs.2020.109929"
}
Popov, N., Bošković, M., Perović, M. M., Németh, Z., Wang, J., Kuang, Z., Reissner, M., Kuzmann, E., Homonnay, Z., Kubuki, S., Marciuš, M., Ristić, M., Musić, S., Stanković, D. M.,& Krehula, S.. (2021). Influence of low-spin Co3+ for high-spin Fe3+ substitution on the structural, magnetic, optical and catalytic properties of hematite (α-Fe2O3) nanorods. in Journal of Physics and Chemistry of Solids, 152, 109929.
https://doi.org/10.1016/j.jpcs.2020.109929
Popov N, Bošković M, Perović MM, Németh Z, Wang J, Kuang Z, Reissner M, Kuzmann E, Homonnay Z, Kubuki S, Marciuš M, Ristić M, Musić S, Stanković DM, Krehula S. Influence of low-spin Co3+ for high-spin Fe3+ substitution on the structural, magnetic, optical and catalytic properties of hematite (α-Fe2O3) nanorods. in Journal of Physics and Chemistry of Solids. 2021;152:109929.
doi:10.1016/j.jpcs.2020.109929 .
Popov, Nina, Bošković, Marko, Perović, Marija M., Németh, Zoltán, Wang, Junhu, Kuang, Zhichong, Reissner, Michael, Kuzmann, Ernő, Homonnay, Zoltán, Kubuki, Shiro, Marciuš, Marijan, Ristić, Mira, Musić, Svetozar, Stanković, Dalibor M., Krehula, Stjepko, "Influence of low-spin Co3+ for high-spin Fe3+ substitution on the structural, magnetic, optical and catalytic properties of hematite (α-Fe2O3) nanorods" in Journal of Physics and Chemistry of Solids, 152 (2021):109929,
https://doi.org/10.1016/j.jpcs.2020.109929 . .
2
2
2

Influence of Cr doping on the structural, magnetic, optical and photocatalytic properties of α-Fe2O3 nanorods

Popov, Nina; Krehula, Stjepko; Ristić, Mira; Kuzmann, Erno; Homonnay, Zoltan; Bošković, Marko; Stanković, Dalibor M.; Kubuki, Shiro; Musić, Svetozar

(2021)

TY  - JOUR
AU  - Popov, Nina
AU  - Krehula, Stjepko
AU  - Ristić, Mira
AU  - Kuzmann, Erno
AU  - Homonnay, Zoltan
AU  - Bošković, Marko
AU  - Stanković, Dalibor M.
AU  - Kubuki, Shiro
AU  - Musić, Svetozar
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9619
AB  - Pure and Cr-doped hematite (α-(Fe1-xCrx)2O3, x = 0, 0.026, 0.039, 0.085 or 0.135) nanorods were prepared by a simple co-precipitation and calcination method. Influence of different levels of Cr doping on the change of properties of long and thin pure hematite nanorods was investigated. Cr3+-for-Fe3+ substitution in the crystal structure of hematite was proved by measuring a gradual contraction of the unit cell and a gradual decrease of the hyperfine magnetic field by increasing the Cr molar fraction. Cr doping induced an increase in the width and thickness of hematite nanorods, as well as a decrease in the overall surface area. Low temperature 57Fe Mössbauer spectroscopy showed that the Morin transition in hematite was suppressed by Cr doping to temperatures below 80 K. Magnetic measurements confirmed the suppression of the Morin transition in Cr-doped hematite down to 5 K. Infrared spectra of Cr-doped hematite samples showed shifts of IR bands by Cr3+-for-Fe3+ substitution. Optical properties of α-Fe2O3 nanorods changed significantly by Cr doping – the absorption edge was shifted to higher wavelengths, accompanied by a greater absorption in the visible range and narrowed direct and indirect optical band gaps. The improved visible light photocatalytic activity of hematite nanorods in the heterogeneous photo-Fenton process by moderate Cr doping was measured, which can be attributed to the modifications in electronic structure and optical properties. © 2020 Elsevier Ltd
T2  - Journal of Physics and Chemistry of Solids
T1  - Influence of Cr doping on the structural, magnetic, optical and photocatalytic properties of α-Fe2O3 nanorods
VL  - 148
DO  - 10.1016/j.jpcs.2020.109699
ER  - 
@article{
author = "Popov, Nina and Krehula, Stjepko and Ristić, Mira and Kuzmann, Erno and Homonnay, Zoltan and Bošković, Marko and Stanković, Dalibor M. and Kubuki, Shiro and Musić, Svetozar",
year = "2021",
abstract = "Pure and Cr-doped hematite (α-(Fe1-xCrx)2O3, x = 0, 0.026, 0.039, 0.085 or 0.135) nanorods were prepared by a simple co-precipitation and calcination method. Influence of different levels of Cr doping on the change of properties of long and thin pure hematite nanorods was investigated. Cr3+-for-Fe3+ substitution in the crystal structure of hematite was proved by measuring a gradual contraction of the unit cell and a gradual decrease of the hyperfine magnetic field by increasing the Cr molar fraction. Cr doping induced an increase in the width and thickness of hematite nanorods, as well as a decrease in the overall surface area. Low temperature 57Fe Mössbauer spectroscopy showed that the Morin transition in hematite was suppressed by Cr doping to temperatures below 80 K. Magnetic measurements confirmed the suppression of the Morin transition in Cr-doped hematite down to 5 K. Infrared spectra of Cr-doped hematite samples showed shifts of IR bands by Cr3+-for-Fe3+ substitution. Optical properties of α-Fe2O3 nanorods changed significantly by Cr doping – the absorption edge was shifted to higher wavelengths, accompanied by a greater absorption in the visible range and narrowed direct and indirect optical band gaps. The improved visible light photocatalytic activity of hematite nanorods in the heterogeneous photo-Fenton process by moderate Cr doping was measured, which can be attributed to the modifications in electronic structure and optical properties. © 2020 Elsevier Ltd",
journal = "Journal of Physics and Chemistry of Solids",
title = "Influence of Cr doping on the structural, magnetic, optical and photocatalytic properties of α-Fe2O3 nanorods",
volume = "148",
doi = "10.1016/j.jpcs.2020.109699"
}
Popov, N., Krehula, S., Ristić, M., Kuzmann, E., Homonnay, Z., Bošković, M., Stanković, D. M., Kubuki, S.,& Musić, S.. (2021). Influence of Cr doping on the structural, magnetic, optical and photocatalytic properties of α-Fe2O3 nanorods. in Journal of Physics and Chemistry of Solids, 148.
https://doi.org/10.1016/j.jpcs.2020.109699
Popov N, Krehula S, Ristić M, Kuzmann E, Homonnay Z, Bošković M, Stanković DM, Kubuki S, Musić S. Influence of Cr doping on the structural, magnetic, optical and photocatalytic properties of α-Fe2O3 nanorods. in Journal of Physics and Chemistry of Solids. 2021;148.
doi:10.1016/j.jpcs.2020.109699 .
Popov, Nina, Krehula, Stjepko, Ristić, Mira, Kuzmann, Erno, Homonnay, Zoltan, Bošković, Marko, Stanković, Dalibor M., Kubuki, Shiro, Musić, Svetozar, "Influence of Cr doping on the structural, magnetic, optical and photocatalytic properties of α-Fe2O3 nanorods" in Journal of Physics and Chemistry of Solids, 148 (2021),
https://doi.org/10.1016/j.jpcs.2020.109699 . .
4
3
3

Effect of Ru3+ ions on the formation, structural, magnetic and optical properties of hematite (α-Fe2O3) nanorods

Popov, Nina; Bošković, Marko; Perović, Marija; Zadro, Krešo; Gilja, Vanja; Kratofil Krenula, Ljerka; Robić, Marko; Marijan, Marciuš; Ristić, Mira; Musić, Svetozar; Stanković, Dalibor M.; Krehula, Stjepko

(2021)

TY  - JOUR
AU  - Popov, Nina
AU  - Bošković, Marko
AU  - Perović, Marija
AU  - Zadro, Krešo
AU  - Gilja, Vanja
AU  - Kratofil Krenula, Ljerka
AU  - Robić, Marko
AU  - Marijan, Marciuš
AU  - Ristić, Mira
AU  - Musić, Svetozar
AU  - Stanković, Dalibor M.
AU  - Krehula, Stjepko
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9882
AB  - Nanosized hematite (α-Fe2O3) is a widely investigated material due to its favourable properties (chemically stable, environmentally safe, inexpensive) and very good performance in several advanced applications. Properties and performance of hematite nanoparticles can be adjusted and improved by modification of particle size and shape, as well as by substitution of Fe3+ ions in the crystal structure of hematite with other metal ions. Ru3+ ions are potentially suitable metal ions for the substitution of Fe3+ ions in hematite because of the same charge and similar ionic radii. In the present work, the effects of Ru3+ ions on the formation and properties of hematite nanorods prepared by combination of hydrothermal precipitation and calcination were investigated. The influence of the molar fraction of Ru3+ ions in the hydrothermal precipitation system on the formation and properties of iron oxide phases was studied. Single-phase goethite (α-FeOOH) nanorods containing incorporated Ru3+ ions were formed in the presence of low levels of Ru3+ ions (<3 mol%), while at higher levels (4 and 5 mol% Ru) hematite nanocylinders, consisting of self-assembled and fused nanoparticles, were obtained. The mechanism of the formation of these iron oxide nanostructures in the presence of Ru3+ ions was explained and compared with the effect of other metal cations reported in the literature. Ru-doped hematite nanorods were formed after calcination of Ru-doped goethite nanorods at 500 °C. A gradual elongation of hematite nanorods with increased Ru doping to highly elongated Ru-doped hematite nanoneedles at 2 mol% Ru was observed and explained. The influence of the Ru doping level on the magnetic properties of hematite nanorods was investigated using Mössbauer spectroscopy and magnetic measurements. Temperature of the transition between antiferromagnetic (AFM) and weakly ferromagnetic (WFM) spin ordering state (Morin transition) gradually rose with increasing Ru3+-for-Fe3+ substitution in hematite. Besides, magnetization of the WFM hematite gradually decreased with Ru doping which was attributed to the reduced canting of two almost antiparallel spin sublattices in this phase. The optical band gap in hematite nanorods was found to get gradually narrower with increased Ru doping due to the modified electronic structure.
T2  - Journal of magnetism and magnetic materials
T2  - Journal of magnetism and magnetic materials
T1  - Effect of Ru3+ ions on the formation, structural, magnetic and optical properties of hematite (α-Fe2O3) nanorods
VL  - 538
SP  - 168316
EP  - 168321
DO  - 10.1016/j.jmmm.2021.168316
ER  - 
@article{
author = "Popov, Nina and Bošković, Marko and Perović, Marija and Zadro, Krešo and Gilja, Vanja and Kratofil Krenula, Ljerka and Robić, Marko and Marijan, Marciuš and Ristić, Mira and Musić, Svetozar and Stanković, Dalibor M. and Krehula, Stjepko",
year = "2021",
abstract = "Nanosized hematite (α-Fe2O3) is a widely investigated material due to its favourable properties (chemically stable, environmentally safe, inexpensive) and very good performance in several advanced applications. Properties and performance of hematite nanoparticles can be adjusted and improved by modification of particle size and shape, as well as by substitution of Fe3+ ions in the crystal structure of hematite with other metal ions. Ru3+ ions are potentially suitable metal ions for the substitution of Fe3+ ions in hematite because of the same charge and similar ionic radii. In the present work, the effects of Ru3+ ions on the formation and properties of hematite nanorods prepared by combination of hydrothermal precipitation and calcination were investigated. The influence of the molar fraction of Ru3+ ions in the hydrothermal precipitation system on the formation and properties of iron oxide phases was studied. Single-phase goethite (α-FeOOH) nanorods containing incorporated Ru3+ ions were formed in the presence of low levels of Ru3+ ions (<3 mol%), while at higher levels (4 and 5 mol% Ru) hematite nanocylinders, consisting of self-assembled and fused nanoparticles, were obtained. The mechanism of the formation of these iron oxide nanostructures in the presence of Ru3+ ions was explained and compared with the effect of other metal cations reported in the literature. Ru-doped hematite nanorods were formed after calcination of Ru-doped goethite nanorods at 500 °C. A gradual elongation of hematite nanorods with increased Ru doping to highly elongated Ru-doped hematite nanoneedles at 2 mol% Ru was observed and explained. The influence of the Ru doping level on the magnetic properties of hematite nanorods was investigated using Mössbauer spectroscopy and magnetic measurements. Temperature of the transition between antiferromagnetic (AFM) and weakly ferromagnetic (WFM) spin ordering state (Morin transition) gradually rose with increasing Ru3+-for-Fe3+ substitution in hematite. Besides, magnetization of the WFM hematite gradually decreased with Ru doping which was attributed to the reduced canting of two almost antiparallel spin sublattices in this phase. The optical band gap in hematite nanorods was found to get gradually narrower with increased Ru doping due to the modified electronic structure.",
journal = "Journal of magnetism and magnetic materials, Journal of magnetism and magnetic materials",
title = "Effect of Ru3+ ions on the formation, structural, magnetic and optical properties of hematite (α-Fe2O3) nanorods",
volume = "538",
pages = "168316-168321",
doi = "10.1016/j.jmmm.2021.168316"
}
Popov, N., Bošković, M., Perović, M., Zadro, K., Gilja, V., Kratofil Krenula, L., Robić, M., Marijan, M., Ristić, M., Musić, S., Stanković, D. M.,& Krehula, S.. (2021). Effect of Ru3+ ions on the formation, structural, magnetic and optical properties of hematite (α-Fe2O3) nanorods. in Journal of magnetism and magnetic materials, 538, 168316-168321.
https://doi.org/10.1016/j.jmmm.2021.168316
Popov N, Bošković M, Perović M, Zadro K, Gilja V, Kratofil Krenula L, Robić M, Marijan M, Ristić M, Musić S, Stanković DM, Krehula S. Effect of Ru3+ ions on the formation, structural, magnetic and optical properties of hematite (α-Fe2O3) nanorods. in Journal of magnetism and magnetic materials. 2021;538:168316-168321.
doi:10.1016/j.jmmm.2021.168316 .
Popov, Nina, Bošković, Marko, Perović, Marija, Zadro, Krešo, Gilja, Vanja, Kratofil Krenula, Ljerka, Robić, Marko, Marijan, Marciuš, Ristić, Mira, Musić, Svetozar, Stanković, Dalibor M., Krehula, Stjepko, "Effect of Ru3+ ions on the formation, structural, magnetic and optical properties of hematite (α-Fe2O3) nanorods" in Journal of magnetism and magnetic materials, 538 (2021):168316-168321,
https://doi.org/10.1016/j.jmmm.2021.168316 . .
2
2

Influence of Fe(III) doping on the crystal structure and properties of hydrothermally prepared β-Ni(OH) 2 nanostructures

Krehula, Stjepko; Ristić, Mira; Wu, Chuchu; Li, Xuning; Jiang, Luhua; Wang, Junhu H.; Sun, Gongquan; Zhang, Tao; Perović, Marija M.; Bošković, Marko; Antić, Bratislav; Kratofil Krehula, Ljerka; Kobzi, Balazs; Kubuki, Shiro; Musić, Svetozar

(2018)

TY  - JOUR
AU  - Krehula, Stjepko
AU  - Ristić, Mira
AU  - Wu, Chuchu
AU  - Li, Xuning
AU  - Jiang, Luhua
AU  - Wang, Junhu H.
AU  - Sun, Gongquan
AU  - Zhang, Tao
AU  - Perović, Marija M.
AU  - Bošković, Marko
AU  - Antić, Bratislav
AU  - Kratofil Krehula, Ljerka
AU  - Kobzi, Balazs
AU  - Kubuki, Shiro
AU  - Musić, Svetozar
PY  - 2018
UR  - http://linkinghub.elsevier.com/retrieve/pii/S0925838818313197
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7744
AB  - This paper systematically examines the influence of the level of Fe(III) doping on the crystal structure and other properties of Ni(OH)(2). Reference beta-Ni(OH)(2) and Fe-doped Ni(OH)(2) samples were synthesized by hydrothermal precipitation of mixed Ni(II) and Fe(III) nitrate aqueous solutions in a highly alkaline medium. The samples were investigated using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (FE-SEM and TEM), energy dispersive X-ray spectroscopy (EDS), Mossbauer spectroscopy, magnetic measurements, Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy, thermogravimetric analysis (TGA) and electrochemical measurements. Incorporation of Fe in beta-Ni(OH)(2) by cation substitution was confirmed from the shifts in position of XRPD lines due to the difference in the ionic radius of Fe3+ and Ni-2. The Fe-3-for-Ni2+ substitution in beta-Ni(OH)(2) caused formation of an interstratifled structure with beta-Ni(OH)(2) and alpha-Ni(OH)(2) structural units interconnected within the same structural layers and crystallites. Mossbauer spectra revealed the presence of Fe3+ ions in highly distorted octahedral sites, presumably at the boundary between the alpha-Ni(OH)(2) and beta-Ni(OH)(2) structural units within the same structural layer. Electrochemical measurements showed significant increase in oxygen evolution reaction (OER) catalytic activity of Fe-doped Ni(OH)(2) compared to pure phase. (C) 2018 Elsevier B.V. All rights reserved.
T2  - Journal of Alloys and Compounds
T1  - Influence of Fe(III) doping on the crystal structure and properties of hydrothermally prepared β-Ni(OH) 2 nanostructures
VL  - 750
SP  - 687
EP  - 695
DO  - 10.1016/j.jallcom.2018.04.032
ER  - 
@article{
author = "Krehula, Stjepko and Ristić, Mira and Wu, Chuchu and Li, Xuning and Jiang, Luhua and Wang, Junhu H. and Sun, Gongquan and Zhang, Tao and Perović, Marija M. and Bošković, Marko and Antić, Bratislav and Kratofil Krehula, Ljerka and Kobzi, Balazs and Kubuki, Shiro and Musić, Svetozar",
year = "2018",
abstract = "This paper systematically examines the influence of the level of Fe(III) doping on the crystal structure and other properties of Ni(OH)(2). Reference beta-Ni(OH)(2) and Fe-doped Ni(OH)(2) samples were synthesized by hydrothermal precipitation of mixed Ni(II) and Fe(III) nitrate aqueous solutions in a highly alkaline medium. The samples were investigated using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (FE-SEM and TEM), energy dispersive X-ray spectroscopy (EDS), Mossbauer spectroscopy, magnetic measurements, Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy, thermogravimetric analysis (TGA) and electrochemical measurements. Incorporation of Fe in beta-Ni(OH)(2) by cation substitution was confirmed from the shifts in position of XRPD lines due to the difference in the ionic radius of Fe3+ and Ni-2. The Fe-3-for-Ni2+ substitution in beta-Ni(OH)(2) caused formation of an interstratifled structure with beta-Ni(OH)(2) and alpha-Ni(OH)(2) structural units interconnected within the same structural layers and crystallites. Mossbauer spectra revealed the presence of Fe3+ ions in highly distorted octahedral sites, presumably at the boundary between the alpha-Ni(OH)(2) and beta-Ni(OH)(2) structural units within the same structural layer. Electrochemical measurements showed significant increase in oxygen evolution reaction (OER) catalytic activity of Fe-doped Ni(OH)(2) compared to pure phase. (C) 2018 Elsevier B.V. All rights reserved.",
journal = "Journal of Alloys and Compounds",
title = "Influence of Fe(III) doping on the crystal structure and properties of hydrothermally prepared β-Ni(OH) 2 nanostructures",
volume = "750",
pages = "687-695",
doi = "10.1016/j.jallcom.2018.04.032"
}
Krehula, S., Ristić, M., Wu, C., Li, X., Jiang, L., Wang, J. H., Sun, G., Zhang, T., Perović, M. M., Bošković, M., Antić, B., Kratofil Krehula, L., Kobzi, B., Kubuki, S.,& Musić, S.. (2018). Influence of Fe(III) doping on the crystal structure and properties of hydrothermally prepared β-Ni(OH) 2 nanostructures. in Journal of Alloys and Compounds, 750, 687-695.
https://doi.org/10.1016/j.jallcom.2018.04.032
Krehula S, Ristić M, Wu C, Li X, Jiang L, Wang JH, Sun G, Zhang T, Perović MM, Bošković M, Antić B, Kratofil Krehula L, Kobzi B, Kubuki S, Musić S. Influence of Fe(III) doping on the crystal structure and properties of hydrothermally prepared β-Ni(OH) 2 nanostructures. in Journal of Alloys and Compounds. 2018;750:687-695.
doi:10.1016/j.jallcom.2018.04.032 .
Krehula, Stjepko, Ristić, Mira, Wu, Chuchu, Li, Xuning, Jiang, Luhua, Wang, Junhu H., Sun, Gongquan, Zhang, Tao, Perović, Marija M., Bošković, Marko, Antić, Bratislav, Kratofil Krehula, Ljerka, Kobzi, Balazs, Kubuki, Shiro, Musić, Svetozar, "Influence of Fe(III) doping on the crystal structure and properties of hydrothermally prepared β-Ni(OH) 2 nanostructures" in Journal of Alloys and Compounds, 750 (2018):687-695,
https://doi.org/10.1016/j.jallcom.2018.04.032 . .
19
18
19

Synthesis and Properties of Ni-doped Goethite and Ni-doped Hematite Nanorods

Krehula, Stjepko; Ristić, Mira; Mitar, Ivana; Wu, Chuchu; Li, Xuning; Jiang, Luhua; Wang, Junhu H.; Sun, Gongquan; Zhang, Tao; Perović, Marija M.; Bošković, Marko; Antić, Bratislav; Musić, Svetozar

(2018)

TY  - JOUR
AU  - Krehula, Stjepko
AU  - Ristić, Mira
AU  - Mitar, Ivana
AU  - Wu, Chuchu
AU  - Li, Xuning
AU  - Jiang, Luhua
AU  - Wang, Junhu H.
AU  - Sun, Gongquan
AU  - Zhang, Tao
AU  - Perović, Marija M.
AU  - Bošković, Marko
AU  - Antić, Bratislav
AU  - Musić, Svetozar
PY  - 2018
UR  - https://hrcak.srce.hr/file/309798
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8100
AB  - Ni-doped goethite (α-FeOOH) nanorods were synthesized from mixed Fe(III)-Ni(II) nitrate solutions with various Ni/(Ni+Fe) ratios (0, 5, 10, 20, 33 and 50 mol % Ni) by hydrothermal precipitation in a highly alkaline medium using the strong organic alkali, tetramethylammonium hydroxide (TMAH). Ni-doped hematite (α-Fe2O3) nanorods were obtained by calcination of Ni-doped goethite nanorods at 400 °C. The Ni 2+ -for-Fe 3+ substitution in goethite and hematite was confirmed by determination of the unit cell expansion (due to the difference in the ionic radii of Fe 3+ and Ni 2+ ) using XRPD and determination of the reduction of a hyperfine magnetic field (due to the difference in magnetic moments of Fe 3+ and Ni 2+ ) using Mössbauer spectroscopy. Single-phase goethite nanorods were found in samples containing 0 or 5 mol % Ni. A higher Ni content in the precipitation system (10 mol % or more) resulted in a higher Ni 2+ -for-Fe 3+ substitution in goethite, and larger Ni-doped goethite nanorods, though with the presence of low crystalline Ni-containing ferrihydrite and Ni ferrite (NiFe2O4) as additional phases. Significant changes in FT-IR and UV-Vis-NIR spectra of prepared samples were observed with increasing Ni content. Electrochemical measurements of samples showed a strong increase in oxygen evolution reaction (OER) electrocatalytic activity with increasing Ni content. © 2018 Croatian Chemical Society. All Rights Reserved.
T2  - Croatica Chemica Acta
T1  - Synthesis and Properties of Ni-doped Goethite and Ni-doped Hematite Nanorods
VL  - 91
IS  - 3
SP  - 389
EP  - 401
DO  - 10.5562/cca3402
ER  - 
@article{
author = "Krehula, Stjepko and Ristić, Mira and Mitar, Ivana and Wu, Chuchu and Li, Xuning and Jiang, Luhua and Wang, Junhu H. and Sun, Gongquan and Zhang, Tao and Perović, Marija M. and Bošković, Marko and Antić, Bratislav and Musić, Svetozar",
year = "2018",
abstract = "Ni-doped goethite (α-FeOOH) nanorods were synthesized from mixed Fe(III)-Ni(II) nitrate solutions with various Ni/(Ni+Fe) ratios (0, 5, 10, 20, 33 and 50 mol % Ni) by hydrothermal precipitation in a highly alkaline medium using the strong organic alkali, tetramethylammonium hydroxide (TMAH). Ni-doped hematite (α-Fe2O3) nanorods were obtained by calcination of Ni-doped goethite nanorods at 400 °C. The Ni 2+ -for-Fe 3+ substitution in goethite and hematite was confirmed by determination of the unit cell expansion (due to the difference in the ionic radii of Fe 3+ and Ni 2+ ) using XRPD and determination of the reduction of a hyperfine magnetic field (due to the difference in magnetic moments of Fe 3+ and Ni 2+ ) using Mössbauer spectroscopy. Single-phase goethite nanorods were found in samples containing 0 or 5 mol % Ni. A higher Ni content in the precipitation system (10 mol % or more) resulted in a higher Ni 2+ -for-Fe 3+ substitution in goethite, and larger Ni-doped goethite nanorods, though with the presence of low crystalline Ni-containing ferrihydrite and Ni ferrite (NiFe2O4) as additional phases. Significant changes in FT-IR and UV-Vis-NIR spectra of prepared samples were observed with increasing Ni content. Electrochemical measurements of samples showed a strong increase in oxygen evolution reaction (OER) electrocatalytic activity with increasing Ni content. © 2018 Croatian Chemical Society. All Rights Reserved.",
journal = "Croatica Chemica Acta",
title = "Synthesis and Properties of Ni-doped Goethite and Ni-doped Hematite Nanorods",
volume = "91",
number = "3",
pages = "389-401",
doi = "10.5562/cca3402"
}
Krehula, S., Ristić, M., Mitar, I., Wu, C., Li, X., Jiang, L., Wang, J. H., Sun, G., Zhang, T., Perović, M. M., Bošković, M., Antić, B.,& Musić, S.. (2018). Synthesis and Properties of Ni-doped Goethite and Ni-doped Hematite Nanorods. in Croatica Chemica Acta, 91(3), 389-401.
https://doi.org/10.5562/cca3402
Krehula S, Ristić M, Mitar I, Wu C, Li X, Jiang L, Wang JH, Sun G, Zhang T, Perović MM, Bošković M, Antić B, Musić S. Synthesis and Properties of Ni-doped Goethite and Ni-doped Hematite Nanorods. in Croatica Chemica Acta. 2018;91(3):389-401.
doi:10.5562/cca3402 .
Krehula, Stjepko, Ristić, Mira, Mitar, Ivana, Wu, Chuchu, Li, Xuning, Jiang, Luhua, Wang, Junhu H., Sun, Gongquan, Zhang, Tao, Perović, Marija M., Bošković, Marko, Antić, Bratislav, Musić, Svetozar, "Synthesis and Properties of Ni-doped Goethite and Ni-doped Hematite Nanorods" in Croatica Chemica Acta, 91, no. 3 (2018):389-401,
https://doi.org/10.5562/cca3402 . .
6
6
6

Synthesis and microstructural properties of mixed iron-gallium oxides

Krehula, Stjepko; Ristić, Mira; Kubuki, Shiro; Iida, Yusuke; Perović, Marija M.; Fabian, Martin; Musić, Svetozar

(2015)

TY  - JOUR
AU  - Krehula, Stjepko
AU  - Ristić, Mira
AU  - Kubuki, Shiro
AU  - Iida, Yusuke
AU  - Perović, Marija M.
AU  - Fabian, Martin
AU  - Musić, Svetozar
PY  - 2015
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/265
AB  - Various mixed Fe-Ga oxides were prepared by the calcination of mixed Fe-Ga oxyhydroxide precursors (alpha-Fe1 xGaxOOH solid solutions, 0 LT = x LT = 1) at 500 or 1000 degrees C. Isostructural corundum-type oxides alpha-Fe2O3 and alpha-Ga2O3, as well as their solid solutions alpha-Fe-2 xGaxO3 in the entire concentration range (x = 0, 0.4, 1, 1.6 and 2) were prepared by calcination at 500 degrees C. An increase in the Ga content in alpha-Fe2 xGaxO3 resulted in a reduction of the unit cell size, a weakened hyperfine magnetic field, a disappearance of the Morin transition, an increase of magnetization at low temperatures, a shift in the position of IR bands to higher wavenumbers, and a lower intensity of absorption bands in the UV-Vis-NIR spectra. The calcination of Fe-Ga oxyhydroxides at 1000 degrees C resulted in the formation of a rhombohedral alpha-Fe-2 xGaxO3 phase for x = 0 and 0.4. An orthorhombic GaFeO3 phase with Fe3+ cations located in 3 different octahedral sites was obtained by the calcination at 1000 degrees C of mixed Fe-Ga oxyhydroxide with the Fe:Ga ratio of 1:1. A monoclinic phase b-Fe-2 xGaxO3 (x = 1.6 and 2) was obtained by the calcination at 1000 degrees C of Fe-Ga oxyhydroxides with 80 and 100 mol% Ga. The monoclinic beta-Ga1.6Fe0.4O3 showed two strong luminescence peaks in the blue region of the PL spectrum. (C) 2015 Elsevier B.V. All rights reserved.
T2  - Journal of Alloys and Compounds
T1  - Synthesis and microstructural properties of mixed iron-gallium oxides
VL  - 634
SP  - 130
EP  - 141
DO  - 10.1016/j.jallcom.2015.02.065
ER  - 
@article{
author = "Krehula, Stjepko and Ristić, Mira and Kubuki, Shiro and Iida, Yusuke and Perović, Marija M. and Fabian, Martin and Musić, Svetozar",
year = "2015",
abstract = "Various mixed Fe-Ga oxides were prepared by the calcination of mixed Fe-Ga oxyhydroxide precursors (alpha-Fe1 xGaxOOH solid solutions, 0 LT = x LT = 1) at 500 or 1000 degrees C. Isostructural corundum-type oxides alpha-Fe2O3 and alpha-Ga2O3, as well as their solid solutions alpha-Fe-2 xGaxO3 in the entire concentration range (x = 0, 0.4, 1, 1.6 and 2) were prepared by calcination at 500 degrees C. An increase in the Ga content in alpha-Fe2 xGaxO3 resulted in a reduction of the unit cell size, a weakened hyperfine magnetic field, a disappearance of the Morin transition, an increase of magnetization at low temperatures, a shift in the position of IR bands to higher wavenumbers, and a lower intensity of absorption bands in the UV-Vis-NIR spectra. The calcination of Fe-Ga oxyhydroxides at 1000 degrees C resulted in the formation of a rhombohedral alpha-Fe-2 xGaxO3 phase for x = 0 and 0.4. An orthorhombic GaFeO3 phase with Fe3+ cations located in 3 different octahedral sites was obtained by the calcination at 1000 degrees C of mixed Fe-Ga oxyhydroxide with the Fe:Ga ratio of 1:1. A monoclinic phase b-Fe-2 xGaxO3 (x = 1.6 and 2) was obtained by the calcination at 1000 degrees C of Fe-Ga oxyhydroxides with 80 and 100 mol% Ga. The monoclinic beta-Ga1.6Fe0.4O3 showed two strong luminescence peaks in the blue region of the PL spectrum. (C) 2015 Elsevier B.V. All rights reserved.",
journal = "Journal of Alloys and Compounds",
title = "Synthesis and microstructural properties of mixed iron-gallium oxides",
volume = "634",
pages = "130-141",
doi = "10.1016/j.jallcom.2015.02.065"
}
Krehula, S., Ristić, M., Kubuki, S., Iida, Y., Perović, M. M., Fabian, M.,& Musić, S.. (2015). Synthesis and microstructural properties of mixed iron-gallium oxides. in Journal of Alloys and Compounds, 634, 130-141.
https://doi.org/10.1016/j.jallcom.2015.02.065
Krehula S, Ristić M, Kubuki S, Iida Y, Perović MM, Fabian M, Musić S. Synthesis and microstructural properties of mixed iron-gallium oxides. in Journal of Alloys and Compounds. 2015;634:130-141.
doi:10.1016/j.jallcom.2015.02.065 .
Krehula, Stjepko, Ristić, Mira, Kubuki, Shiro, Iida, Yusuke, Perović, Marija M., Fabian, Martin, Musić, Svetozar, "Synthesis and microstructural properties of mixed iron-gallium oxides" in Journal of Alloys and Compounds, 634 (2015):130-141,
https://doi.org/10.1016/j.jallcom.2015.02.065 . .
11
12
12

Carboxylic acids and polyethylene glycol assisted synthesis of nanocrystalline nickel ferrites

Nikolić, Aleksandar S.; Jović, Nataša G.; Rogan, Jelena R.; Kremenović, Aleksandar S.; Ristić, Mira; Meden, A.; Antić, Bratislav

(2013)

TY  - JOUR
AU  - Nikolić, Aleksandar S.
AU  - Jović, Nataša G.
AU  - Rogan, Jelena R.
AU  - Kremenović, Aleksandar S.
AU  - Ristić, Mira
AU  - Meden, A.
AU  - Antić, Bratislav
PY  - 2013
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5544
AB  - Different synthesis methods for the preparation of nanocrystalline nickel ferrites are reported: the thermal decomposition of precursors, made of: (i) metal-nitrate salts with carboxylic acids (citric, malonic and tartaric), and (ii) metal-nitrate salts and polyethylene glycol (PEG), in the presence of potassium chloride as a capping agent. The as-prepared gel precursors were characterized by TGA/DTA, while the samples obtained after annealing at 450 degrees C were investigated by FTIR, FESEM, XRD and Mossbauer spectroscopy. Regardless of the type of carboxylic acid used, nanocrystallites prepared by (i) method are similar in size (11-16 nm), while the method (ii) gives crystallites similar to 33 nm in size with negligible microstrain. The differences in the lattice parameter, ranging from 8.3369(2) to 8.3574(2) angstrom, result from cation distribution, nonstoichiometry and structural imperfections in the nickel ferrite nanoparticles. The Mossbauer spectra analysis indicates existence of large distortions of tetrahedral and octahedral sites in these spinel compounds. (C) 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
T2  - Ceramics International
T1  - Carboxylic acids and polyethylene glycol assisted synthesis of nanocrystalline nickel ferrites
VL  - 39
IS  - 6
SP  - 6681
EP  - 6688
DO  - 10.1016/j.ceramint.2013.01.106
ER  - 
@article{
author = "Nikolić, Aleksandar S. and Jović, Nataša G. and Rogan, Jelena R. and Kremenović, Aleksandar S. and Ristić, Mira and Meden, A. and Antić, Bratislav",
year = "2013",
abstract = "Different synthesis methods for the preparation of nanocrystalline nickel ferrites are reported: the thermal decomposition of precursors, made of: (i) metal-nitrate salts with carboxylic acids (citric, malonic and tartaric), and (ii) metal-nitrate salts and polyethylene glycol (PEG), in the presence of potassium chloride as a capping agent. The as-prepared gel precursors were characterized by TGA/DTA, while the samples obtained after annealing at 450 degrees C were investigated by FTIR, FESEM, XRD and Mossbauer spectroscopy. Regardless of the type of carboxylic acid used, nanocrystallites prepared by (i) method are similar in size (11-16 nm), while the method (ii) gives crystallites similar to 33 nm in size with negligible microstrain. The differences in the lattice parameter, ranging from 8.3369(2) to 8.3574(2) angstrom, result from cation distribution, nonstoichiometry and structural imperfections in the nickel ferrite nanoparticles. The Mossbauer spectra analysis indicates existence of large distortions of tetrahedral and octahedral sites in these spinel compounds. (C) 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved.",
journal = "Ceramics International",
title = "Carboxylic acids and polyethylene glycol assisted synthesis of nanocrystalline nickel ferrites",
volume = "39",
number = "6",
pages = "6681-6688",
doi = "10.1016/j.ceramint.2013.01.106"
}
Nikolić, A. S., Jović, N. G., Rogan, J. R., Kremenović, A. S., Ristić, M., Meden, A.,& Antić, B.. (2013). Carboxylic acids and polyethylene glycol assisted synthesis of nanocrystalline nickel ferrites. in Ceramics International, 39(6), 6681-6688.
https://doi.org/10.1016/j.ceramint.2013.01.106
Nikolić AS, Jović NG, Rogan JR, Kremenović AS, Ristić M, Meden A, Antić B. Carboxylic acids and polyethylene glycol assisted synthesis of nanocrystalline nickel ferrites. in Ceramics International. 2013;39(6):6681-6688.
doi:10.1016/j.ceramint.2013.01.106 .
Nikolić, Aleksandar S., Jović, Nataša G., Rogan, Jelena R., Kremenović, Aleksandar S., Ristić, Mira, Meden, A., Antić, Bratislav, "Carboxylic acids and polyethylene glycol assisted synthesis of nanocrystalline nickel ferrites" in Ceramics International, 39, no. 6 (2013):6681-6688,
https://doi.org/10.1016/j.ceramint.2013.01.106 . .
14
16
14

Exchange-Bias and Grain-Surface Relaxations in Nanostructured NiO/Ni Induced by a Particle Size Reduction

Kremenović, Aleksandar S.; Jančar, Boštjan; Ristić, Mira; Vučinić-Vasić, Milica; Rogan, Jelena R.; Pacevski, Aleksandar; Antić, Bratislav

(2012)

TY  - JOUR
AU  - Kremenović, Aleksandar S.
AU  - Jančar, Boštjan
AU  - Ristić, Mira
AU  - Vučinić-Vasić, Milica
AU  - Rogan, Jelena R.
AU  - Pacevski, Aleksandar
AU  - Antić, Bratislav
PY  - 2012
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/4726
AB  - Transition-metal-oxide/transition-metal nanocomposites, such as NiO/Ni, FeO/Fe, and CoO/Co, have been the subject of much recent investigation (i) because of their potential applications and (ii) because they are good model systems for studies of some effects on the nanoscale. They are used, for example, as catalysts, fuel-cell electrodes, magnetic memories, etc. When a nanocomposite is composed of both ferromagnetic (FM) and antiferromagnetic (AFM) nanoparticles, interesting physical properties can occur, such as the phenomenon of exchange bias (EB). A Ni/NiO nanocomposite obtained by the thermal decomposition of nickel(II) acetate tetrahydrate, Ni(CH3COO)(2)center dot 4H(2)O, at 300 degrees C, is composed of NiO (62%) and Ni (38%) with crystallite sizes of 11 and 278 nm, respectively. We observed an increase in the crystallite size for NiO and decrease of crystallite size for Ni, a decrease in the microstrain for both and an increase in the NiO phase content with thermal annealing in air, while high-energy ball milling leads to a decrease of the crystallite size, an increase in the size of the agglomerates, and microstrain as well as reduction, NiO - GT Ni. The lattice parameters of the nanosized NiO and Ni show a deviation from the value for the bulk counterparts as a consequence of crystallite size reduction and the grain-surface relaxation effect. The exchange bias found in a milled sample with particles of 10 nm (NiO) and 11 nm (Ni) disappears for larger particles as a consequence of a coupling-area decrease between the antiferromagnetic and ferromagnetic particles. Due to reduction/oxidation (NiO LT - GT Ni) and size as well as surface-relaxation effects the saturation magnetization value increases/decreases with milling/annealing, respectively. Having in mind the effect of size on the exchange bias, coercivity, and magnetization values, it is possible, by annealing/milling, to tailor the composition and particle size and then control the exchange bias and improve the other magnetic properties of the Ni/NiO.
T2  - Journal of Physical Chemistry. C
T1  - Exchange-Bias and Grain-Surface Relaxations in Nanostructured NiO/Ni Induced by a Particle Size Reduction
VL  - 116
IS  - 7
SP  - 4356
EP  - 4364
DO  - 10.1021/jp206658v
ER  - 
@article{
author = "Kremenović, Aleksandar S. and Jančar, Boštjan and Ristić, Mira and Vučinić-Vasić, Milica and Rogan, Jelena R. and Pacevski, Aleksandar and Antić, Bratislav",
year = "2012",
abstract = "Transition-metal-oxide/transition-metal nanocomposites, such as NiO/Ni, FeO/Fe, and CoO/Co, have been the subject of much recent investigation (i) because of their potential applications and (ii) because they are good model systems for studies of some effects on the nanoscale. They are used, for example, as catalysts, fuel-cell electrodes, magnetic memories, etc. When a nanocomposite is composed of both ferromagnetic (FM) and antiferromagnetic (AFM) nanoparticles, interesting physical properties can occur, such as the phenomenon of exchange bias (EB). A Ni/NiO nanocomposite obtained by the thermal decomposition of nickel(II) acetate tetrahydrate, Ni(CH3COO)(2)center dot 4H(2)O, at 300 degrees C, is composed of NiO (62%) and Ni (38%) with crystallite sizes of 11 and 278 nm, respectively. We observed an increase in the crystallite size for NiO and decrease of crystallite size for Ni, a decrease in the microstrain for both and an increase in the NiO phase content with thermal annealing in air, while high-energy ball milling leads to a decrease of the crystallite size, an increase in the size of the agglomerates, and microstrain as well as reduction, NiO - GT Ni. The lattice parameters of the nanosized NiO and Ni show a deviation from the value for the bulk counterparts as a consequence of crystallite size reduction and the grain-surface relaxation effect. The exchange bias found in a milled sample with particles of 10 nm (NiO) and 11 nm (Ni) disappears for larger particles as a consequence of a coupling-area decrease between the antiferromagnetic and ferromagnetic particles. Due to reduction/oxidation (NiO LT - GT Ni) and size as well as surface-relaxation effects the saturation magnetization value increases/decreases with milling/annealing, respectively. Having in mind the effect of size on the exchange bias, coercivity, and magnetization values, it is possible, by annealing/milling, to tailor the composition and particle size and then control the exchange bias and improve the other magnetic properties of the Ni/NiO.",
journal = "Journal of Physical Chemistry. C",
title = "Exchange-Bias and Grain-Surface Relaxations in Nanostructured NiO/Ni Induced by a Particle Size Reduction",
volume = "116",
number = "7",
pages = "4356-4364",
doi = "10.1021/jp206658v"
}
Kremenović, A. S., Jančar, B., Ristić, M., Vučinić-Vasić, M., Rogan, J. R., Pacevski, A.,& Antić, B.. (2012). Exchange-Bias and Grain-Surface Relaxations in Nanostructured NiO/Ni Induced by a Particle Size Reduction. in Journal of Physical Chemistry. C, 116(7), 4356-4364.
https://doi.org/10.1021/jp206658v
Kremenović AS, Jančar B, Ristić M, Vučinić-Vasić M, Rogan JR, Pacevski A, Antić B. Exchange-Bias and Grain-Surface Relaxations in Nanostructured NiO/Ni Induced by a Particle Size Reduction. in Journal of Physical Chemistry. C. 2012;116(7):4356-4364.
doi:10.1021/jp206658v .
Kremenović, Aleksandar S., Jančar, Boštjan, Ristić, Mira, Vučinić-Vasić, Milica, Rogan, Jelena R., Pacevski, Aleksandar, Antić, Bratislav, "Exchange-Bias and Grain-Surface Relaxations in Nanostructured NiO/Ni Induced by a Particle Size Reduction" in Journal of Physical Chemistry. C, 116, no. 7 (2012):4356-4364,
https://doi.org/10.1021/jp206658v . .
45
44
45