Pantelić, Dejan

Link to this page

Authority KeyName Variants
94fff61e-357a-4e5f-bc89-285cd8351e24
  • Pantelić, Dejan (5)
Projects

Author's Bibliography

Laser-induced parallel structures on multilayer thin films of Ni, Pd, Ti, Ta and W

Kovačević, Aleksander G.; Petrović, Suzana; Potočnik, Jelena; Lekić, Marina; Salatić, Branislav; Lazović, Vladimir; Pantelić, Dejan; Jelenković, Branislav

(Belgrade : Institute of Physics, 2021)

TY  - CONF
AU  - Kovačević, Aleksander G.
AU  - Petrović, Suzana
AU  - Potočnik, Jelena
AU  - Lekić, Marina
AU  - Salatić, Branislav
AU  - Lazović, Vladimir
AU  - Pantelić, Dejan
AU  - Jelenković, Branislav
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11087
AB  - The interaction of ultrashort laser beam with metal surfaces may induce the generation of periodic structures (LIPSS) with period less than the incoming wavelength, opening wide area of application [1, 2]. The presence of the underneath layer influences the quality of the LIPSS [3] . We have exposed multilayer thin films Ni/Ti, Ni/Pd, W/Ti, Ti/Ta to femtosecond beams of various wavelengths and powers. The interactions have been performed by Mira900 fs laser of Coherent. Detailed surface morphology after irradiation was examined firstly by optical microscopy, and then by scanning electron microscopy (JEOL JSM-7500F, Tokyo, Japan). Two types of structures have been noticed. Their appearance differ in the direction against the polarization direction, in pronounced ablation and in the spatial period, enabling their grouping into LIPSS of higher and lower spatial frequencies. Surface plasmon polariton is seen as the most probable cause of periodic distribution of energy at the surface and consequently to LIPSS.
PB  - Belgrade : Institute of Physics
C3  - 14th Photonics Workshop : Conference : Book of abstracts; March 14-17, 2021; Kopaonik, Serbia
T1  - Laser-induced parallel structures on multilayer thin films of Ni, Pd, Ti, Ta and W
SP  - 13
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11087
ER  - 
@conference{
author = "Kovačević, Aleksander G. and Petrović, Suzana and Potočnik, Jelena and Lekić, Marina and Salatić, Branislav and Lazović, Vladimir and Pantelić, Dejan and Jelenković, Branislav",
year = "2021",
abstract = "The interaction of ultrashort laser beam with metal surfaces may induce the generation of periodic structures (LIPSS) with period less than the incoming wavelength, opening wide area of application [1, 2]. The presence of the underneath layer influences the quality of the LIPSS [3] . We have exposed multilayer thin films Ni/Ti, Ni/Pd, W/Ti, Ti/Ta to femtosecond beams of various wavelengths and powers. The interactions have been performed by Mira900 fs laser of Coherent. Detailed surface morphology after irradiation was examined firstly by optical microscopy, and then by scanning electron microscopy (JEOL JSM-7500F, Tokyo, Japan). Two types of structures have been noticed. Their appearance differ in the direction against the polarization direction, in pronounced ablation and in the spatial period, enabling their grouping into LIPSS of higher and lower spatial frequencies. Surface plasmon polariton is seen as the most probable cause of periodic distribution of energy at the surface and consequently to LIPSS.",
publisher = "Belgrade : Institute of Physics",
journal = "14th Photonics Workshop : Conference : Book of abstracts; March 14-17, 2021; Kopaonik, Serbia",
title = "Laser-induced parallel structures on multilayer thin films of Ni, Pd, Ti, Ta and W",
pages = "13",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11087"
}
Kovačević, A. G., Petrović, S., Potočnik, J., Lekić, M., Salatić, B., Lazović, V., Pantelić, D.,& Jelenković, B.. (2021). Laser-induced parallel structures on multilayer thin films of Ni, Pd, Ti, Ta and W. in 14th Photonics Workshop : Conference : Book of abstracts; March 14-17, 2021; Kopaonik, Serbia
Belgrade : Institute of Physics., 13.
https://hdl.handle.net/21.15107/rcub_vinar_11087
Kovačević AG, Petrović S, Potočnik J, Lekić M, Salatić B, Lazović V, Pantelić D, Jelenković B. Laser-induced parallel structures on multilayer thin films of Ni, Pd, Ti, Ta and W. in 14th Photonics Workshop : Conference : Book of abstracts; March 14-17, 2021; Kopaonik, Serbia. 2021;:13.
https://hdl.handle.net/21.15107/rcub_vinar_11087 .
Kovačević, Aleksander G., Petrović, Suzana, Potočnik, Jelena, Lekić, Marina, Salatić, Branislav, Lazović, Vladimir, Pantelić, Dejan, Jelenković, Branislav, "Laser-induced parallel structures on multilayer thin films of Ni, Pd, Ti, Ta and W" in 14th Photonics Workshop : Conference : Book of abstracts; March 14-17, 2021; Kopaonik, Serbia (2021):13,
https://hdl.handle.net/21.15107/rcub_vinar_11087 .

Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations

Kovačević, Aleksander; Petrović, Suzana; Salatić, Branislav; Lekić, Marina; Vasić, Borislav Z.; Gajić, Radoš; Pantelić, Dejan; Jelenković, Branislav

(2020)

TY  - JOUR
AU  - Kovačević, Aleksander
AU  - Petrović, Suzana
AU  - Salatić, Branislav
AU  - Lekić, Marina
AU  - Vasić, Borislav Z.
AU  - Gajić, Radoš
AU  - Pantelić, Dejan
AU  - Jelenković, Branislav
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9015
AB  - The occurrence of laser-induced periodic surface structures (LIPSS) has been known for a while. Multilayer thin films, like Al/Ti, are suitable for LIPSS formation and attractive for applications—due to their wearing behavior and corrosion resistance; LIPSS generation may improve their properties as well. LIPSS properties depend not only on the material but also on the beam characteristics, like wavelength, polarization and scanning directions, etc. After exposing with NIR femtosecond pulses from Coherent Mira 900 laser system in several beam exposures, we have analyzed the samples of thin metal film systems with Tescan Mira3 SEM and NTegra AFM. The formation of LIPSS is most probably due to the generation of surface plasmon polariton, through the periodic distribution of energy in the interaction zone which lead to thermal processes in layers and interfaces. Two types of LIPSS were generated, which differ in shape, orientation and in ablation pronounced or not. For consecutive interactions in the same direction, LIPSS maintained its orientation, while for orthogonal passes LIPSS with mutually orthogonal orientation were generated. LIPSS period fluctuated between 320 and 380 nm and structures with pronounced ablation have significantly smaller width. Probable mechanism is that for greater accumulated energy pronounced ablation takes place giving LIPSS in the form of trenches or grooves, while for less accumulated energy the buildup of the material—probably due to pronounced oxidation—lead to LIPSS in the form of hills or ridges.
T2  - Optical and Quantum Electronics
T1  - Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations
VL  - 52
IS  - 6
SP  - 301
DO  - 10.1007/s11082-020-02398-2
ER  - 
@article{
author = "Kovačević, Aleksander and Petrović, Suzana and Salatić, Branislav and Lekić, Marina and Vasić, Borislav Z. and Gajić, Radoš and Pantelić, Dejan and Jelenković, Branislav",
year = "2020",
abstract = "The occurrence of laser-induced periodic surface structures (LIPSS) has been known for a while. Multilayer thin films, like Al/Ti, are suitable for LIPSS formation and attractive for applications—due to their wearing behavior and corrosion resistance; LIPSS generation may improve their properties as well. LIPSS properties depend not only on the material but also on the beam characteristics, like wavelength, polarization and scanning directions, etc. After exposing with NIR femtosecond pulses from Coherent Mira 900 laser system in several beam exposures, we have analyzed the samples of thin metal film systems with Tescan Mira3 SEM and NTegra AFM. The formation of LIPSS is most probably due to the generation of surface plasmon polariton, through the periodic distribution of energy in the interaction zone which lead to thermal processes in layers and interfaces. Two types of LIPSS were generated, which differ in shape, orientation and in ablation pronounced or not. For consecutive interactions in the same direction, LIPSS maintained its orientation, while for orthogonal passes LIPSS with mutually orthogonal orientation were generated. LIPSS period fluctuated between 320 and 380 nm and structures with pronounced ablation have significantly smaller width. Probable mechanism is that for greater accumulated energy pronounced ablation takes place giving LIPSS in the form of trenches or grooves, while for less accumulated energy the buildup of the material—probably due to pronounced oxidation—lead to LIPSS in the form of hills or ridges.",
journal = "Optical and Quantum Electronics",
title = "Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations",
volume = "52",
number = "6",
pages = "301",
doi = "10.1007/s11082-020-02398-2"
}
Kovačević, A., Petrović, S., Salatić, B., Lekić, M., Vasić, B. Z., Gajić, R., Pantelić, D.,& Jelenković, B.. (2020). Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations. in Optical and Quantum Electronics, 52(6), 301.
https://doi.org/10.1007/s11082-020-02398-2
Kovačević A, Petrović S, Salatić B, Lekić M, Vasić BZ, Gajić R, Pantelić D, Jelenković B. Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations. in Optical and Quantum Electronics. 2020;52(6):301.
doi:10.1007/s11082-020-02398-2 .
Kovačević, Aleksander, Petrović, Suzana, Salatić, Branislav, Lekić, Marina, Vasić, Borislav Z., Gajić, Radoš, Pantelić, Dejan, Jelenković, Branislav, "Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations" in Optical and Quantum Electronics, 52, no. 6 (2020):301,
https://doi.org/10.1007/s11082-020-02398-2 . .
3
3

Molding Wetting by Laser-Induced Nanostructures

Kovačević, Aleksander; Petrović, Suzana; Mimidis, Alexandros; Stratakis, Emmanuel; Pantelić, Dejan; Kolarić, Branko

(2020)

TY  - JOUR
AU  - Kovačević, Aleksander
AU  - Petrović, Suzana
AU  - Mimidis, Alexandros
AU  - Stratakis, Emmanuel
AU  - Pantelić, Dejan
AU  - Kolarić, Branko
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9632
AB  - The influence of material characteristics—i.e., type or surface texture—to wetting properties is nowadays increased by the implementation of ultrafast lasers for nanostructuring. In this account, we exposed multilayer thin metal film samples of different materials to a femtosecond laser beam at a 1030 nm wavelength. The interaction generated high-quality laser-induced periodic surface structures (LIPSS) of spatial periods between 740 and 790 nm and with maximal average corrugation height below 100 nm. The contact angle (CA) values of the water droplets on the surface were estimated and the values between unmodified and modified samples were compared. Even though the laser interaction changed both the surface morphology and the chemical composition, the wetting properties were predominantly influenced by the small change in morphology causing the increase in the contact angle of ~80%, which could not be explained classically. The influence of both surface corrugation and chemical composition to the wetting properties has been thoroughly investigated, discussed and explained. The presented results clearly confirm that femtosecond patterning can be used to mold wetting properties.
T2  - Applied Sciences
T1  - Molding Wetting by Laser-Induced Nanostructures
VL  - 10
IS  - 17
SP  - 6008
DO  - 10.3390/app10176008
ER  - 
@article{
author = "Kovačević, Aleksander and Petrović, Suzana and Mimidis, Alexandros and Stratakis, Emmanuel and Pantelić, Dejan and Kolarić, Branko",
year = "2020",
abstract = "The influence of material characteristics—i.e., type or surface texture—to wetting properties is nowadays increased by the implementation of ultrafast lasers for nanostructuring. In this account, we exposed multilayer thin metal film samples of different materials to a femtosecond laser beam at a 1030 nm wavelength. The interaction generated high-quality laser-induced periodic surface structures (LIPSS) of spatial periods between 740 and 790 nm and with maximal average corrugation height below 100 nm. The contact angle (CA) values of the water droplets on the surface were estimated and the values between unmodified and modified samples were compared. Even though the laser interaction changed both the surface morphology and the chemical composition, the wetting properties were predominantly influenced by the small change in morphology causing the increase in the contact angle of ~80%, which could not be explained classically. The influence of both surface corrugation and chemical composition to the wetting properties has been thoroughly investigated, discussed and explained. The presented results clearly confirm that femtosecond patterning can be used to mold wetting properties.",
journal = "Applied Sciences",
title = "Molding Wetting by Laser-Induced Nanostructures",
volume = "10",
number = "17",
pages = "6008",
doi = "10.3390/app10176008"
}
Kovačević, A., Petrović, S., Mimidis, A., Stratakis, E., Pantelić, D.,& Kolarić, B.. (2020). Molding Wetting by Laser-Induced Nanostructures. in Applied Sciences, 10(17), 6008.
https://doi.org/10.3390/app10176008
Kovačević A, Petrović S, Mimidis A, Stratakis E, Pantelić D, Kolarić B. Molding Wetting by Laser-Induced Nanostructures. in Applied Sciences. 2020;10(17):6008.
doi:10.3390/app10176008 .
Kovačević, Aleksander, Petrović, Suzana, Mimidis, Alexandros, Stratakis, Emmanuel, Pantelić, Dejan, Kolarić, Branko, "Molding Wetting by Laser-Induced Nanostructures" in Applied Sciences, 10, no. 17 (2020):6008,
https://doi.org/10.3390/app10176008 . .
1
4
4

Formation of LIPSS on Al/Ti thin metal films by scanning of low-fluence femtosecond beam during cross-directional scanning

Kovačević, Aleksander G.; Petrović, Suzana; Lekić, Marina; Peruško, Davor; Lazović, Vladimir; Savić-Šević, Svetlana; Vasić, Borislav; Salatić, Branislav; Gajić, Radoš; Pantelić, Dejan; Jelenković, Branislav

(Belgrade : Institute of physics, 2018)

TY  - CONF
AU  - Kovačević, Aleksander G.
AU  - Petrović, Suzana
AU  - Lekić, Marina
AU  - Peruško, Davor
AU  - Lazović, Vladimir
AU  - Savić-Šević, Svetlana
AU  - Vasić, Borislav
AU  - Salatić, Branislav
AU  - Gajić, Radoš
AU  - Pantelić, Dejan
AU  - Jelenković, Branislav
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12275
PB  - Belgrade : Institute of physics
C3  - 11th Workshop on PHOTONICS : Book of abstracts
T1  - Formation of LIPSS on Al/Ti thin metal films by scanning of low-fluence femtosecond beam during cross-directional scanning
SP  - 34
EP  - 34
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12275
ER  - 
@conference{
author = "Kovačević, Aleksander G. and Petrović, Suzana and Lekić, Marina and Peruško, Davor and Lazović, Vladimir and Savić-Šević, Svetlana and Vasić, Borislav and Salatić, Branislav and Gajić, Radoš and Pantelić, Dejan and Jelenković, Branislav",
year = "2018",
publisher = "Belgrade : Institute of physics",
journal = "11th Workshop on PHOTONICS : Book of abstracts",
title = "Formation of LIPSS on Al/Ti thin metal films by scanning of low-fluence femtosecond beam during cross-directional scanning",
pages = "34-34",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12275"
}
Kovačević, A. G., Petrović, S., Lekić, M., Peruško, D., Lazović, V., Savić-Šević, S., Vasić, B., Salatić, B., Gajić, R., Pantelić, D.,& Jelenković, B.. (2018). Formation of LIPSS on Al/Ti thin metal films by scanning of low-fluence femtosecond beam during cross-directional scanning. in 11th Workshop on PHOTONICS : Book of abstracts
Belgrade : Institute of physics., 34-34.
https://hdl.handle.net/21.15107/rcub_vinar_12275
Kovačević AG, Petrović S, Lekić M, Peruško D, Lazović V, Savić-Šević S, Vasić B, Salatić B, Gajić R, Pantelić D, Jelenković B. Formation of LIPSS on Al/Ti thin metal films by scanning of low-fluence femtosecond beam during cross-directional scanning. in 11th Workshop on PHOTONICS : Book of abstracts. 2018;:34-34.
https://hdl.handle.net/21.15107/rcub_vinar_12275 .
Kovačević, Aleksander G., Petrović, Suzana, Lekić, Marina, Peruško, Davor, Lazović, Vladimir, Savić-Šević, Svetlana, Vasić, Borislav, Salatić, Branislav, Gajić, Radoš, Pantelić, Dejan, Jelenković, Branislav, "Formation of LIPSS on Al/Ti thin metal films by scanning of low-fluence femtosecond beam during cross-directional scanning" in 11th Workshop on PHOTONICS : Book of abstracts (2018):34-34,
https://hdl.handle.net/21.15107/rcub_vinar_12275 .

Inducing periodic structures on multilayers of Ti and Ta by femtosecond laser beam

Kovačević, Aleksander; Petrović, Suzana; Peruško, Davor; Lazović, Vladimir; Bogdanović-Radović, Iva; Pavlović, Vladimir B.; Pantelić, Dejan; Jelenković, Branislav

(Belgrade : Institute of Physics Belgrade, 2017)

TY  - CONF
AU  - Kovačević, Aleksander
AU  - Petrović, Suzana
AU  - Peruško, Davor
AU  - Lazović, Vladimir
AU  - Bogdanović-Radović, Iva
AU  - Pavlović, Vladimir B.
AU  - Pantelić, Dejan
AU  - Jelenković, Branislav
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10947
AB  - Nanostructuring of surfaces by femtosecond (fs) laser beam interaction is the topic of research for some time [1]. The emergence of the laser-induced periodic surface structures (LIPSS) on metal-dielectric surfaces is of interest from fundamental and application points of view. The interaction of fs beam with thin films can also generate LIPSS, with the arrangement of thin films in multi-layer structure being important for the quality of the LIPSS [2]. Excellent properties of titanium (Ti) and tantalum (Ta), like corrosion resistance, heat transfer properties and workability, recommend them as useful materials for a wide range of applications - heat exchangers, reactors, and others exposed to extremely corrosive fluids. Combining Ti and Ta could be attractive for applications, but challenging, as they have great difference in melting point and density, therefore, TiTa alloys are still not widely adopted in applications [3]. We have performed the interaction of fs laser beam with multilayer Ti/Ta samples in order to investigate the effects of interaction with ultra-short pulses to surface morphology and to both surface and bulk chemistry of newly generated compounds. Each layer of the sample was 17 nm thick. The interactions were in two regimes: dynamic and static, depending whether the beam scanned over the sample surface or not. SEM and PIXE RBS analyses have shown the LIPSS formed with or without ablation depending on the beam fluence. The LIPSS orientation is dependent on the input beam polarization. Both types of LIPSS were formed, low- and highspatial frequency LIPSS, with periods being as low as 120 nm.
PB  - Belgrade : Institute of Physics Belgrade
C3  - PHOTONICA2017 : 6th International School and Conference on Photonics and COST actions: MP1406 and MP1402 : Program and the book of abstracts
T1  - Inducing periodic structures on multilayers of Ti and Ta by femtosecond laser beam
SP  - 179
UR  - https://hdl.handle.net/21.15107/rcub_vinar_10947
ER  - 
@conference{
author = "Kovačević, Aleksander and Petrović, Suzana and Peruško, Davor and Lazović, Vladimir and Bogdanović-Radović, Iva and Pavlović, Vladimir B. and Pantelić, Dejan and Jelenković, Branislav",
year = "2017",
abstract = "Nanostructuring of surfaces by femtosecond (fs) laser beam interaction is the topic of research for some time [1]. The emergence of the laser-induced periodic surface structures (LIPSS) on metal-dielectric surfaces is of interest from fundamental and application points of view. The interaction of fs beam with thin films can also generate LIPSS, with the arrangement of thin films in multi-layer structure being important for the quality of the LIPSS [2]. Excellent properties of titanium (Ti) and tantalum (Ta), like corrosion resistance, heat transfer properties and workability, recommend them as useful materials for a wide range of applications - heat exchangers, reactors, and others exposed to extremely corrosive fluids. Combining Ti and Ta could be attractive for applications, but challenging, as they have great difference in melting point and density, therefore, TiTa alloys are still not widely adopted in applications [3]. We have performed the interaction of fs laser beam with multilayer Ti/Ta samples in order to investigate the effects of interaction with ultra-short pulses to surface morphology and to both surface and bulk chemistry of newly generated compounds. Each layer of the sample was 17 nm thick. The interactions were in two regimes: dynamic and static, depending whether the beam scanned over the sample surface or not. SEM and PIXE RBS analyses have shown the LIPSS formed with or without ablation depending on the beam fluence. The LIPSS orientation is dependent on the input beam polarization. Both types of LIPSS were formed, low- and highspatial frequency LIPSS, with periods being as low as 120 nm.",
publisher = "Belgrade : Institute of Physics Belgrade",
journal = "PHOTONICA2017 : 6th International School and Conference on Photonics and COST actions: MP1406 and MP1402 : Program and the book of abstracts",
title = "Inducing periodic structures on multilayers of Ti and Ta by femtosecond laser beam",
pages = "179",
url = "https://hdl.handle.net/21.15107/rcub_vinar_10947"
}
Kovačević, A., Petrović, S., Peruško, D., Lazović, V., Bogdanović-Radović, I., Pavlović, V. B., Pantelić, D.,& Jelenković, B.. (2017). Inducing periodic structures on multilayers of Ti and Ta by femtosecond laser beam. in PHOTONICA2017 : 6th International School and Conference on Photonics and COST actions: MP1406 and MP1402 : Program and the book of abstracts
Belgrade : Institute of Physics Belgrade., 179.
https://hdl.handle.net/21.15107/rcub_vinar_10947
Kovačević A, Petrović S, Peruško D, Lazović V, Bogdanović-Radović I, Pavlović VB, Pantelić D, Jelenković B. Inducing periodic structures on multilayers of Ti and Ta by femtosecond laser beam. in PHOTONICA2017 : 6th International School and Conference on Photonics and COST actions: MP1406 and MP1402 : Program and the book of abstracts. 2017;:179.
https://hdl.handle.net/21.15107/rcub_vinar_10947 .
Kovačević, Aleksander, Petrović, Suzana, Peruško, Davor, Lazović, Vladimir, Bogdanović-Radović, Iva, Pavlović, Vladimir B., Pantelić, Dejan, Jelenković, Branislav, "Inducing periodic structures on multilayers of Ti and Ta by femtosecond laser beam" in PHOTONICA2017 : 6th International School and Conference on Photonics and COST actions: MP1406 and MP1402 : Program and the book of abstracts (2017):179,
https://hdl.handle.net/21.15107/rcub_vinar_10947 .