Huot, Jacques

Link to this page

Authority KeyName Variants
eca95d90-52fc-45f2-bb31-339e88cc5258
  • Huot, Jacques (1)
Projects

Author's Bibliography

Recent progress on the development of high entropy alloys (HEAs) for solid hydrogen storage: A review

Yang, Fusheng; Wang, Jing; Zhang, Yang; Wu, Zhen; Zhang, Zaoxiao; Zhao, Fengqi; Huot, Jacques; Grbović-Novaković, Jasmina; Novaković, Nikola

(2022)

TY  - JOUR
AU  - Yang, Fusheng
AU  - Wang, Jing
AU  - Zhang, Yang
AU  - Wu, Zhen
AU  - Zhang, Zaoxiao
AU  - Zhao, Fengqi
AU  - Huot, Jacques
AU  - Grbović-Novaković, Jasmina
AU  - Novaković, Nikola
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10168
AB  - High entropy alloys (HEA) represent a kind of materials with unique structural and functional properties, and have attracted wide attentions in many fields including hydrogen storage. Due to the huge diversity in the composition of HEAs, novel hydrogen storage materials with superior comprehensive performance are expected to be developed following the concept, with some notable progress made in the past decade. In this study, the present research status in HEAs for hydrogen storage is summarized from the aspects of theoretical guide, composition and preparation, microstructure and hydrogen storage properties. Moreover, the key issues in future development and possible application scenarios are analyzed.
T2  - International Journal of Hydrogen Energy
T1  - Recent progress on the development of high entropy alloys (HEAs) for solid hydrogen storage: A review
VL  - 47
IS  - 21
SP  - 11236
EP  - 11249
DO  - 10.1016/j.ijhydene.2022.01.141
ER  - 
@article{
author = "Yang, Fusheng and Wang, Jing and Zhang, Yang and Wu, Zhen and Zhang, Zaoxiao and Zhao, Fengqi and Huot, Jacques and Grbović-Novaković, Jasmina and Novaković, Nikola",
year = "2022",
abstract = "High entropy alloys (HEA) represent a kind of materials with unique structural and functional properties, and have attracted wide attentions in many fields including hydrogen storage. Due to the huge diversity in the composition of HEAs, novel hydrogen storage materials with superior comprehensive performance are expected to be developed following the concept, with some notable progress made in the past decade. In this study, the present research status in HEAs for hydrogen storage is summarized from the aspects of theoretical guide, composition and preparation, microstructure and hydrogen storage properties. Moreover, the key issues in future development and possible application scenarios are analyzed.",
journal = "International Journal of Hydrogen Energy",
title = "Recent progress on the development of high entropy alloys (HEAs) for solid hydrogen storage: A review",
volume = "47",
number = "21",
pages = "11236-11249",
doi = "10.1016/j.ijhydene.2022.01.141"
}
Yang, F., Wang, J., Zhang, Y., Wu, Z., Zhang, Z., Zhao, F., Huot, J., Grbović-Novaković, J.,& Novaković, N.. (2022). Recent progress on the development of high entropy alloys (HEAs) for solid hydrogen storage: A review. in International Journal of Hydrogen Energy, 47(21), 11236-11249.
https://doi.org/10.1016/j.ijhydene.2022.01.141
Yang F, Wang J, Zhang Y, Wu Z, Zhang Z, Zhao F, Huot J, Grbović-Novaković J, Novaković N. Recent progress on the development of high entropy alloys (HEAs) for solid hydrogen storage: A review. in International Journal of Hydrogen Energy. 2022;47(21):11236-11249.
doi:10.1016/j.ijhydene.2022.01.141 .
Yang, Fusheng, Wang, Jing, Zhang, Yang, Wu, Zhen, Zhang, Zaoxiao, Zhao, Fengqi, Huot, Jacques, Grbović-Novaković, Jasmina, Novaković, Nikola, "Recent progress on the development of high entropy alloys (HEAs) for solid hydrogen storage: A review" in International Journal of Hydrogen Energy, 47, no. 21 (2022):11236-11249,
https://doi.org/10.1016/j.ijhydene.2022.01.141 . .
1
70
2
67