Sirunyan, A. M.

Link to this page

Authority KeyName Variants
26a76252-ba44-44e8-855c-7d853e47391d
  • Sirunyan, A. M. (74)
  • Sirunyan, A.M. (13)
  • Sirunyan, A M (12)
  • Sirunyan, A. (4)
  • Sirunyan, A. M. (4)
Projects
BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), SENESCYT (Ecuador), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), BUAP (Mexico), CINVESTAV (Mexico), CONACYT (Mexico), LNS (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), RAEP (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), PCTI (Spain), FEDER (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA) Austrian Federal Ministry of Science, Research and Economy, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Secretariat for Higher Education, Science, Technology and Innovation, Ecuador, Ministry of Education and Research, Estonian Research Council, Estonia [IUT23-4, IUT23-6], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, France, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Germany, Deutsche Forschungsgemeinschaft, Germany, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, Hungary, National Innovation Office, Hungary, Department of Atomic Energy, India, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Science, ICT and Future Planning, Republic of Korea, National Research Foundation (NRF), Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education (Malaysia), University of Malaya (Malaysia), BUAP, CINVESTAV, CONACYT, LNS, SEP, UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, Poland, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, NRNU MEPhI, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Programa Consolider-Ingenio, Plan de Ciencia, Tecnologia e Innovacion del Principado de Asturias, Spain, Fondo Europeo de Desarrollo Regional, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, U.K., US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, Horizon Grant [675440], Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Scientific and Industrial Research, India, HOMING PLUS programme of the Foundation for Polish Science, European Union, Mobility Plus programme of the Ministry of Science and Higher Education, National Science Center (Poland), contract Harmonia [2014/14/M/ST2/00428], National Science Center (Poland), contract Opus [2014/13/B/ST2/02543, 2014/15/B/ST2/03998, 2015/19/B/ST2/02861], National Science Center (Poland), contract Sonata-bis [2012/07/E/ST2/01406], National Priorities Research Program by Qatar National Research Fund, Programa Clarin-COFUND del Principado de Asturias, Thalis programme, Aristeia programme, EU-ESF, Greek NSRF, Chulalongkorn University, Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845], Fonds voor Wetenschappelijk Onderzoek, Regional Development Fund, Rachadapisek Sompot Fund
Austrian Federal Ministry of Science, Research and Economy, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, Brazilian Funding Agency (CNPq), Brazilian Funding Agency (CAPES), Brazilian Funding Agency (FAPERJ), Brazilian Funding Agency (FAPESP), Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research, Estonia, European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, France, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Germany, Deutsche Forschungsgemeinschaft, Germany, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, Hungary, National Innovation Office, Hungary, Department of Atomic Energy, India, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Science, ICT and Future Planning, Republic of Korea, National Research Foundation (NRF), Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education, and University of Malaya (Malaysia), Mexican Funding Agency (CINVESTAV), Mexican Funding Agency (CONACYT), Mexican Funding Agency (SEP), Mexican Funding Agency (UASLP-FAI), Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, Poland, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, Swiss Funding Agency (ETH Board), Swiss Funding Agency (ETH Zurich), Swiss Funding Agency (PSI), Swiss Funding Agency (SNF), Swiss Funding Agency (UniZH), Swiss Funding Agency (Canton Zurich), Swiss Funding Agency (SER), Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics of Thailand, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research of Thailand, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, Marie-Curie program, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS program of Foundation for Polish Science, European Union, Regional Development Fund, Compagnia di San Paolo (Torino), Consorzio per la Fisica (Trieste), MIUR project (Italy) [20108T4XTM], Thalis program - EU-ESF, Aristeia program - EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund, Estonian Research Council [IUT23-4, IUT23-6] Austrian Federal Ministry of Science, Research and Economy, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, Brazilian Funding Agency (CNPq), Brazilian Funding Agency (CAPES), Brazilian Funding Agency (FAPERJ), Brazilian Funding Agency (FAPESP), Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Secretariat for Higher Education, Science, Technology and Innovation, Ecuador, Ministry of Education and Research, Estonia, Estonian Research Council, Estonia [IUT23-4, IUT23-6], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, France, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung and Forschung, Germany, Deutsche Forschungsgemeinschaft, Germany, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, Hungary, National Innovation Office, Hungary, Department of Atomic Energy, India, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Science, ICT and Future Planning, Republic of Korea, National Research Foundation (NRF), Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education (Malaysia), University of Malaya (Malaysia), Mexican Funding Agency (BUAP), Mexican Funding Agency (CINVESTAV), Mexican Funding Agency (CONACYT), Mexican Funding Agency (LNS), Mexican Funding Agency (SEP), Mexican Funding Agency (UASLP-FAI), Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, Poland, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Russian Competitiveness Program of NRNU ?MEPhI?, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Spain, Programa Consolider-Ingenio, Spain, Plan de Ciencia, Tecnologia e Innovacion del Principado de Asturias, Spain, Fondo Europeo de Desarrollo Regional, Spain, Swiss Funding Agency (ETH Board), Swiss Funding Agency (ETH Zurich), Swiss Funding Agency (PSI), Swiss Funding Agency (SNF), Swiss Funding Agency (UniZH), Swiss Funding Agency (Canton Zurich), Swiss Funding Agency (SER), Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, U.K., U.S. Department of Energy, U.S. National Science Foundation, Marie-Curie programme (European Union), European Research Council (European Union), EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS programme of the Foundation for Polish Science from European Union, Regional Development Fund, Mobility Plus programme of the Ministry of Science and Higher Education, National Science Center (Poland) [Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406], National Priorities Research Program by Qatar National Research Fund, Programa Clarin-COFUND del Principado de Asturias, Thalis programme - EU-ESF, Aristeia programme - EU-ESF, Greek NSRF, Rachadapisek Sompot Fund for Postdoctoral Fellowship (Thailand), Chulalongkorn University (Thailand), Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845]
Austrian Federal Ministry of Science, Research and Economy, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, Brazilian Funding Agency (CNPq), Brazilian Funding Agency (CAPES), Brazilian Funding Agency (FAPERJ), Brazilian Funding Agency (FAPESP), Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Secretariat for Higher Education, Science, Technology and Innovation, Ecuador, Ministry of Education and Research, Estonia, Estonian Research Council, Estonia [IUT23-4, IUT23-6], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, France, Commissariat a lEngergie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung, Germany, Deutsche Forschungsgemeinschaft, Germany, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, Hungary, National Innovation Office, Hungary, Department of Atomic Energy, India, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Science, ICT and Future Planning, Republic of Korea, National Research Foundation (NRF), Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education, (Malaysia), University of Malaya (Malaysia), Mexican Funding Agency (BUAP), Mexican Funding Agency (CINVESTAV), Mexican Funding Agency (CONACYT), Mexican Funding Agency (LNS), Mexican Funding Agency (SEP), Mexican Funding Agency (UASLP-FAI), Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, Poland, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation (M.H.U.), Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences (M.H.U.), Russian Foundation for Basic Research (M.H.U.), Russian Competitiveness Program of NRNU MEPhI (M.H.U.), Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, Swiss Funding Agency (ETH Board), Swiss Funding Agency (ETH Zurich), Swiss Funding Agency (PSI), Swiss Funding Agency (SNF), Swiss Funding Agency (UniZH), Swiss Funding Agency (Canton Zurich), Swiss Funding Agency (SER), Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council (European Union), EPLANET(European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS programme of the Foundation for Polish Science, European Union, Regional Development Fund, Mobility Plus programme of the Ministry of Science and Higher Education, National Science Center (Poland) [Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406], Thalis programme - EU-ESF, Thalis programme - Greek NSRF, Aristeia programme - EU-ESF, Aristeia programme - Greek NSRF, National Priorities Research Program by Qatar National Research Fund, Programa Clarin-COFUND del Principado de Asturias, Rachadapisek Sompot Fund for Post-doctoral Fellowship, Chulalongkorn University (Thailand), Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845] Austrian Federal Ministry of Science, Research and Economy, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, Brazilian Funding Agency CNPq, Brazilian Funding Agency CAPES, Brazilian Funding Agency FAPERJ, Brazilian Funding Agency FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Secretariat for Higher Education, Science, Technology and Innovation, Ecuador, Ministry of Education and Research, Estonian Research Council, Estonia [IUT23-4, IUT23-6], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, France, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Germany, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, Hungary, National Innovation Office, Hungary, Department of Atomic Energy, India, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Science, ICT and Future Planning, Republic of Korea, National Research Foundation (NRF), Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education (Malaysia), University of Malaya (Malaysia), Mexican Funding Agency BUAP, Mexican Funding Agency CINVESTAV, Mexican Funding Agency CONACYT, Mexican Funding Agency LNS, Mexican Funding Agency SEP, Mexican Funding Agency UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, Poland, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, Swiss Funding Agency ETH Board, Swiss Funding Agency ETH Zurich, Swiss Funding Agency PSI, Swiss Funding Agency SNF, Swiss Funding Agency UniZH, Swiss Funding Agency Canton Zurich, Swiss Funding Agency SER, Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, U.K, US Department of Energy, US National Science Foundation, Marie-Curie programme (European Union), European Research Council and EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS programme of the Foundation for Polish Science, European Union, Regional Development Fund, Mobility Plus programme of the Ministry of Science and Higher Education, National Science Center (Poland) [Harmonia 2014/14/M/ST2/00428, Opus 2013/11/B/ST2/04202, 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, Sonata-bis 2012/07/E/ST2/01406], EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund, Programa Clarin-COFUND del Principado de Asturias, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University, Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845]
Austrian Federal Ministry of Science, Research and Economy, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, Brazilian Funding Agency (CNPq), Brazilian Funding Agency (CAPES), Brazilian Funding Agency (FAPERJ), Brazilian Funding Agency (FAPESP), Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Secretariat for Higher Education, Science, Technology and Innovation, Ecuador, Ministry of Education and Research, Estonian Research Council [IUT23-4, IUT23-6], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung, Germany, Deutsche Forschungsgemeinschaft, Germany, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education, and University of Malaya (Malaysia), Mexican Funding Agency (BUAP), Mexican Funding Agency (CINVESTAV), Mexican Funding Agency (CONACYT), Mexican Funding Agency (LNS), Mexican Funding Agency (SEP), Mexican Funding Agency (UASLP-FAI), Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, Poland, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Russian Competitiveness Program of NRNU MEPhI, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Programa Consolider-Ingenio, Plan de Ciencia, Tecnologia e Innovacion del Principado de Asturias, Spain, Fondo Europeo de Desarrollo Regional, Spain, Swiss Funding Agency (ETH Board), Swiss Funding Agency (ETH Zurich), Swiss Funding Agency (PSI), Swiss Funding Agency (SNF), Swiss Funding Agency (UniZH), Swiss Funding Agency (Canton Zurich), Swiss Funding Agency (SER), Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, UK, U.S. Department of Energy, U.S. National Science Foundation, Marie-Curie program, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Scientific and Industrial Research, India, HOMING PLUS program of the Foundation for Polish Science, European Union, Regional Development Fund, Mobility Plus program of the Ministry of Science and Higher Education, National Science Center (Poland) [2014/14/M/ST2/00428, 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, 2015/19/B/ST2/02861, 2012/07/E/ST2/01406], National Priorities Research Program by Qatar National Research Fund, Programa Clarin-COFUND del Principado de Asturias, Thalis program - EU-ESF, Aristeia program - EU-ESF, Greek NSRF, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University, Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845] Austrian Federal Ministry of Science, Research and Economy, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, Brazilian Funding Agency (CNPq), Brazilian Funding Agency (CAPES), Brazilian Funding Agency (FAPERJ), Brazilian Funding Agency (FAPESP), Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Secretariat for Higher Education, Science, Technology and Innovation, Ecuador, Ministry of Education and Research, Estonian Research Council [IUT23-4, IUT23-6], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, France, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Germany, Deutsche Forschungsgemeinschaft, Germany, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, Hungary, National Innovation Office, Hungary, Department of Atomic Energy, India, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Science, ICT and Future Planning, Republic of Korea, National Research Foundation (NRF), Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education (Malaysia), Mexican Funding Agency (BUAP), Mexican Funding Agency (CINVESTAV), Mexican Funding Agency (CONACYT), Mexican Funding Agency (LNS), Mexican Funding Agency (SEP), Mexican Funding Agency (UASLP-FAI), Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, Poland, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Russian Competitiveness Program of NRNU MEPhI, Ministry of Education, Science and Technological Development of Serbia, Secretara de Estado de Investigacion, Desarrollo e Innovacion, Programa Consolider-Ingenio, Plan de Ciencia, Tecnologia e Innovacion del Principado de Asturias, Fondo Europeo de Desarrollo Regional, Spain, Swiss Funding Agency (ETH Board), Swiss Funding Agency (ETH Zurich), Swiss Funding Agency (PSI), Swiss Funding Agency (SNF), Swiss Funding Agency (UniZH), Swiss Funding Agency (Canton Zurich), Swiss Funding Agency (SER), Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, U.K, US Department of Energy, US National Science Foundation, Marie-Curie programme (European Union), European Research Council (European Union), EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Scientific and Industrial Research, India, HOMING PLUS programme of the Foundation for Polish Science - European Union, Regional Development Fund, Mobility Plus programme of the Ministry of Science and Higher Education, National Science Center (Poland) [Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406], National Priorities Research Program by Qatar National Research Fund, Programa Clarin - del Principado de Asturias, Thalis and Aristeia programmes - EU-ESF, Greek NSRF, Rachadapisek Sompot Fund for Postdoctoral Fellowship (Thailand), Chulalongkorn University (Thailand), Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845], University of Malaya (Malaysia)
Austrian Federal Ministry of Science, Research and Economy, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Secretariat for Higher Education, Science, Technology and Innovation, Ecuador, Ministry of Education and Research, Estonian Research Council [IUT23-4, IUT23-6], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Science, ICT and Future Planning, National Research Foundation (NRF), Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education, University of Malaya (Malaysia), BUAP, CINVESTAV, CONACYT, LNS, SEP, UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, NRNU MEPhI, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Programa Consolider-Ingenio Plan de Ciencia, Tecnologia e Innovacion del Principado de Asturias, Fondo Europeo de Desarrollo Regional, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, U.K., US Department of Energy, US National Science Foundation, Marie-Curie program, European Research Council, Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Scientific and Industrial Research, India, HOMING PLUS program of the Foundation for Polish Science, European Union, Regional Development Fund, National Science Center (Poland) [Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406], National Priorities Research Program by Qatar National Research Fund, Programa Clarin-COFUND del Principado de Asturias, EU-ESF, Greek NSRF, Chulalongkorn University, Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845], European Union [675440] Austrian Federal Ministry of Science, Research and Economy, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Secretariat for Higher Education, Science, Technology and Innovation, Ecuador, Ministry of Education and Research, Estonian Research Council [IUT23-4, IUT23-6], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Science, ICT and Future Planning, National Research Foundation (NRF), Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education, University of Malaya (Malaysia), BUAP, CINVESTAV, CONACYT, LNS, SEP, UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Russian Competitiveness Program of NRNU MEPhI, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacioln, Programa Consolider-Ingenio, Plan de Ciencia, Tecnologia e Innovacion del Principado de Asturias, Fondo Europeo de Desarrollo Regional, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET(European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Scientific and Industrial Research, India, HOMING PLUS programme of the Foundation for Polish Science - European Union, Mobility Plus programme of the Ministry of Science and Higher Education, National Science Center (Poland) [2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406], National Priorities Research Program by Qatar National Research Fund, Programa Clarin-COFUND del Principado de Asturias, Thalis program - EU-ESF, Aristeia program - EU-ESF, Greek NSRF, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University, Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845]
Austrian Federal Ministry of Science, Research and Economy, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Secretariat for Higher Education, Science, Technology and Innovation, Ecuador, Ministry of Education and Research, Estonian Research Council [IUT23-4, IUT23-6], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Germany, Deutsche Forschungsgemeinschaft, Germany, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy, India, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Science, ICT and Future Planning, Republic of Korea, National Research Foundation (NRF), Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education (Malaysia), University of Malaya (Malaysia), BUAP, CINVESTAV, CONACYT, LNS, SEP, UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, Poland, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Russian Competitiveness Program of NRNU MEPhI, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Programa Consolider-Ingenio, Plan de Ciencia, Tecnologia a e Innovacion del Principado de Asturias, Spain, Fondo Europeo de Desarrollo Regional, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, U.K., U.S. Department of Energy, U.S. National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Scientific and Industrial Research, India, HOMING PLUS programme of the Foundation for Polish Science, European Union, Regional Development Fund, Mobility Plus programme of the Ministry of Science and Higher Education, National Science Center (Poland), National Priorities Research Program by Qatar National Research Fund, Programa Clarin-COFUND del Principado de Asturias, Thalis and Aristeia programmes, EU-ESF, Greek NSRF, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University, Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845], [2014/14/M/ST2/00428], [2014/13/B/ST2/02543], [2014/15/B/ST2/03998], [2015/19/B/ST2/02861], [2012/07/E/ST2/01406] Austrian Federal Ministry of Science, Research and Economy, Belgian Fonds de la Recherche Scientifique, Austrian Science Fund, Fonds voor Wetenschappelijk Onderzoek, Brazilian Funding Agency (CNPq), Brazilian Funding Agency (CAPES), Brazilian Funding Agency (FAPERJ), Brazilian Funding Agency (FAPESP), Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Secretariat for Higher Education, Science, Technology and Innovation, Ecuador, Ministry of Education and Research, Estonian Research Council [IUT23-4, IUT23-6], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a l Energie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Germany, Deutsche Forschungsgemeinschaft, Germany, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, Hungary, National Innovation Office, Hungary, Department of Atomic Energy, India, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Science, ICT and Future Planning, Republic of Korea, National Research Foundation (NRF), Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education, and University of Malaya (Malaysia), Mexican Funding Agency (BUAP), Mexican Funding Agency (CINVESTAV), Mexican Funding Agency (CONACYT), Mexican Funding Agency (LNS), Mexican Funding Agency (SEP), Mexican Funding Agency (UASLP-FAI), Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, Poland, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Russian Competitiveness Program of NRNU MEPhI, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, Swiss Funding Agency (ETH Board), Swiss Funding Agency (ETH Zurich), Swiss Funding Agency (PSI), Swiss Funding Agency (SNF), Swiss Funding Agency (UniZH), Swiss Funding Agency (Canton Zurich), Swiss Funding Agency (SER), Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, U.K, US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS programme of the Foundation for Polish Science, European Union, Regional Development Fund, Mobility Plus programme of the Ministry of Science and Higher Education, National Science Center (Poland) [Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406], Thalis and Aristeia programmes - EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund, Programa Clarin-COFUND del Principado de Asturias, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University, Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845]
BMWFW and FWF (Austria), FNRS and FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), SENESCYT (Ecuador), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France) [CNRS/IN2P3], BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), BUAP (Mexico), CINVESTAV (Mexico), CONACYT, LNS (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom, RAS (Russia), RFBR (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST, STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (U.S.A.), NSF (U.S.A.) BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), Ministry of Science and Technology of the Peoples Republic of China (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), SENESCYT (Ecuador), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), BUAP (Mexico), CINVESTAV (Mexico), CONACYT (Mexico), LNS (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna) (Russia), MON (Russia), ROSATOM (Russia), RAS (Russia), RFBR (Russia), RAEP (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA), Marie-Curie program, European Research Council (European Union), EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS of the Foundation for Polish Science, European Union, Regional Development Fund, Ministry of Science and Higher Education, National Science Center (Poland) [Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406], Thalis program, Aristeia program, EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund, Programa Clarin-COFUND del Principado de Asturias, Chulalongkorn University, Welch Foundation [C-1845], Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand)
BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), ENESCYT (Ecuador), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), BUAP (Mexico), CINVESTAV (Mexico), CONACYT (Mexico), LNS (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), RAEP (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), PCTI (Spain), FEDER (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA), Marie-Curie program, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS program of the Foundation for Polish Science, European Union, Regional Development Fund, Mobility Plus program of the Ministry of Science and Higher Education, National Science Center (Poland) [2014/14/M/ST2/00428, 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, 2015/19/B/ST2/02861, 2012/07/E/ST2/01406], National Priorities Research Program by Qatar National Research Fund, Programa Clarin-COFUND del Principado de Asturias, Thalis program - EU-ESF, Thalis program - Greek NSRF, Aristeia program - EU-ESF, Aristeia program - Greek NSRF, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University, Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845] BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA), Marie-Curie programme, European Research Council (European Union), EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS programme of the Foundation for Polish Science, European Union, Regional Development Fund, Mobility Plus programme of the Ministry of Science and Higher Education (Poland), OPUS programme of the National Science Center (Poland), Compagnia di San Paolo (Torino), MIUR project (Italy) [20108T4XTM], Thalis programme - EU-ESF, Aristeia programme - EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand), Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845]
BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MOST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), SENESCYT (Ecuador), MoER (Estonia), ERC (Estonia), IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), BUAP (Mexico), CINVESTAV (Mexico), CONACYT (Mexico), LNS (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), RAEP(Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), PCTI (Spain), FEDER (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEP-Center (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA), Marie-Curie program, European Research Council (European Union), EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Scientific and Industrial Research, India, HOMING PLUS program of the Foundation for Polish Science, European Union, European Regional Development Fund, Mobility Plus program of the Ministry of Science and Higher Education, National Science Center (Poland) [Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406], National Priorities Research Program by Qatar National Research Fund, Programa Clarin-COFUND del Principado de Asturias, Thalis program - EU-ESF, Aristeia program - EU-ESF, Greek NSRF, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University, Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845] BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MOST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), SENESCYT (Ecuador), MoER (Estonia), ERC (Estonia), IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/ IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), BUAP (Mexico), CINVESTAV (Mexico), CONACYT (Mexico), LNS (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), RAEP (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), PCTI (Spain), FEDER (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA), Marie-Curie program (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS program of the Foundation for Polish Science, European Union, Regional Development Fund, Mobility Plus program of the Ministry of Science and Higher Education, National Science Center (Poland) [Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406], National Priorities Research Program by Qatar National Research Fund, Programa Clarin-COFUND del Principado de Asturias, Thalis program - EU-ESF, Aristeia program - EU-ESF, Greek NSRF, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand), Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845], European Research Council (European Union), Horizon Grant (European Union) [675440]
BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MOST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), SENESCYT (Ecuador), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), BUAP [(Mexico)], CINVESTAV (Mexico), CONACYT (Mexico), LNS (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), ROSATOM (Russia), RAS (Russia), RFBR (Russia), RAEP (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), PCTI (Spain), FEDER (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA), Marie-Curie program, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS program of the Foundation for Polish Science, European Union, Regional Development Fund, Mobility Plus program of the Ministry of Science and Higher Education, National Science Center (Poland) [2014/14/M/ST2/00428, 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, 2015/19/B/ST2/02861, 2012/07/E/ST2/01406], National Priorities Research Program by Qatar National Research Fund, Programa Clarin-COFUND del Principado de Asturias, Thalis program, Aristeia program, EU-ESF, Greek NSRF, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand), Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845] BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), SENESCYT (Ecuador), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBE DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), BUAP (Mexico), CINVESTAV (Mexico), CONACYT (Mexico), LNS (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), RAEP (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), PCTI (Spain), FEDER (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA), Marie Curie programme (European Union), European Research Council and Horizon Grant (European Union) [675440], Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS programme of the Foundation for Polish Science, European Union, Regional Development Fund, Mobility Plus programme of the Ministry of Science and Higher Education (Poland), National Science Center (Poland) [Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, 2015/19/B/ST2/02861, Sonata-his 2012/07/E/ST2/01406], National Priorities Research Program by Qatar National Research Fund, Programa Clarin-COFUND del Principado de Asturias, Thalis programme - EU-ESF, Aristeia programme - EU-ESF, Greek NSRF, Rachadapisek Sompot Fund for Postdoctoral Fellowship (Thailand), Chulalongkorn University (Thailand), Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845]
BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MOST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), SENESCYT (Ecuador), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), BUAP (Mexico), CINVESTAV (Mexico), CONACYT (Mexico), LNS (Mexico), SEP (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), RAEP (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), PCTI (Spain), FEDER (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA), Horizon 2020 Grant [675440], Leventis Foundation, Alfred P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture(FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS programme of the Foundation for Polish Science, European Union, Regional Development Fund, Mobility Plus programme of the Ministry of Science and Higher Education, National Science Center (Poland) [Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406], National Priorities Research Program by Qatar National Research Fund, Programa Clarin-COFUND del Principado de Asturias, Thalis and Aristeia programmes, EU-ESF, Greek NSRF, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University, Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845] BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), SENESCYT (Ecuador), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), BUAP (Mexico), CINVESTAV (Mexico), CONACYT (Mexico), LNS (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA)
BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MOST (China), NSFC (China), COLCIEN-CIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), SENESCYT (Ecuador), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), BUAP (Mexico), CINVESTAV (Mexico), CONACYT (Mexico), LNS (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), ROSATOM (Russia), RAS (Russia), RFBR (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA), European Union, National Science Center (Poland) [2014/14/M/ST2/00428, Opus 2013/11/B/ST2/04202, 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, Sonata-bis 2012/07/E/ST2/01406], EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund, Programa Clarin-COFUND del Principado de Asturias, Rachadapisek Sompot Fund for Postdoctoral Fellowship (Thailand), Chulalongkorn University (Thailand), Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845], Marie-Curie programme (European Union), European Research Council (European Union), EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA- Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS programme of the Foundation for Polish Science, Mobility Plus programme of the Ministry of Science and Higher Education BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), SENESCYT (Ecuador), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), BUAP (Mexico), CINVESTAV (Mexico), CONACYT (Mexico), LNS (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), RAEP (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), PCTI (Spain), FEDER (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (UK), DOE (USA), NSF (USA), Marie-Curie program, European Research Council (European Union), EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS program of the Foun-dation for Polish Science, European Union, Regional Development Fund, Mobility Plus program of the Ministry of Science and Higher Education, National Science Center (Poland) [2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, 2015/19/B/ST2/02861, Sonata-bis 2012/07-/E/ST2/01406], National Priorities Research Program by Qatar National Research Fund, Programa Clarin-COFUND del Principado de Asturias, Thalis program - EU-ESF, Aristeia program - EU-ESF, Greek NSRF, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand), Chulalongkom Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845]
BMWFW (Austria), FWF(Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), SENESCYT (Ecuador), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM(Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF(Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM(Malaysia), BUAP (Mexico), CINVESTAV (Mexico), CONACYT (Mexico), LNS (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), RAEP (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), PCTI (Spain), FEDER (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (UK), DOE (USA), NSF (USA), Marie-Curie program (European Union), European Research Council (European Union), EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS program of the Foundation for Polish Science, European Union, Regional Development Fund, Ministry of Science and Higher Education, National Science Center (Poland) [2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, 2015/19/B/ST2/02861], Sonata-bis [2012/07/E/ST2/01406], National Priorities Research Program by Qatar National Research Fund, Programa Clarin-COFUND del Principado de Asturias, Thalis program - EU-ESF, Greek NSRF, Rachadapisek Sompot Fund, Chulalongkorn University, Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845] BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), SENESCYT (Ecuador), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), BUAP (Mexico), CINVESTAV (Mexico), CONACYT (Mexico), LNS (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), RAEP (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), PCTI (Spain), FEDER (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (UK), DOE (USA), NSF (USA), Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS programme of the Foundation for Polish Science, European Union, Regional Development Fund, Mobility Plus programme of the Ministry of Science and Higher Education, National Science Center (Poland) [2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, 2015/19/B/ST2/02861, Sonata-bis2012/07/E/ST2/01406], National Priorities Research Program by Qatar National Research Fund, Programa Clarin-COFUND del Principado de Asturias, Thalis and Aristeia programmes - EU-ESF, Greek NSRF, Rachadapisek Sompot Fund, Chulalongkorn University, Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845]
BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COL-CIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), SENESCYT (Ecuador), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), BUAP (Mexico), CINVESTAV (Mexico), CONACYT (Mexico), LNS (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), RAEP (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), PCTI (Spain), FEDER (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (U.S.A.), NSF (U.S.A.) BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MOST (China), NSFC (China), COLCIEN-CIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), SENESCYT (Ecuador), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), BUAP (Mexico), CINVESTAV (Mexico), CONACYT (Mexico), LNS (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), ROSATOM (Russia), RAS (Russia), RFBR (Russia), RAEP (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), PCTI (Spain), FEDER (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA)
BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), SENESCYT (Ecuador), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), BUAP (Mexico), CINVESTAV (Mexico), CONACYT (Mexico), LNS (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), RAEP (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), PCTI (Spain), FEDER (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA), Marie-Curie program, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, Foundation for Polish Science - European Union, Regional Development Fund, Ministry of Science and Higher Education, National Science Center (Poland) [Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406], National Priorities Research Program by Qatar National Research Fund, Programa Clarin-COFUND del Principado de Asturias, Thalis program - EU-ESF, Aristeia program - EU-ESF, Greek NSRF, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University, Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845] BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), SENESCYT (Ecuador), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), BUAP (Mexico), CINVESTAV (Mexico), CONACYT (Mexico), LNS (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), RAEP (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), PCTI (Spain), FEDER (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (U.S.A.), NSF (U.S.A.), Marie-Curie program, European Research Council, Horizon Grant [675440], Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS program of the Foundation for Polish Science, European Union, Regional Development Fund, Mobility Plus program of the Ministry of Science and Higher Education, National Science Center (Poland) [Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406], National Priorities Research Program by Qatar National Research Fund, Programa Severo Ochoa del Principado de Asturias, Thalis program - EU-ESF, Aristeia program - EU-ESF, Greek NSRF, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University, Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845], Weston Havens Foundation (U.S.A.)

Author's Bibliography

Measurement of CKM matrix elements in single top quark -channel Production in Proton-proton Collisions at

Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Bergauer, T.; Adžić, Petar; Ćirković, Predrag; Đorđević, Miloš; Milenović, Predrag; Milošević, Jovan; Stojanović, Milan

(2020)

TY  - JOUR
AU  - Sirunyan, A.M.
AU  - Tumasyan, A.
AU  - Adam, W.
AU  - Ambrogi, F.
AU  - Bergauer, T.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
AU  - Milošević, Jovan
AU  - Stojanović, Milan
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9092
AB  - The first direct, model-independent measurement is presented of the modulus of the Cabibbo–Kobayashi–Maskawa (CKM) matrix elements |η|Vtb, |η|Vtd, and |η|Vts, in final states enriched in single top quark t-channel events. The analysis uses proton-proton collision data from the LHC, collected during 2016 by the CMS experiment, at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{−1}$. Processes directly sensitive to these matrix elements are considered at both the production and decay vertices of the top quark. In the standard model hypothesis of CKM unitarity, a lower limit of |η|Vtb>0.970 is measured at the 95% confidence level. Several theories beyond the standard model are considered, and by releasing all constraints among the involved parameters, the values |η|Vtb=0.988±0.024, and |η|Vtd2+|η|Vts2=0.06±0.06, where the uncertainties include both statistical and systematic components, are measured.
T2  - Physics Letters B
T1  - Measurement of CKM matrix elements in single top quark -channel Production in Proton-proton Collisions at
VL  - 808 C
DO  - 10.1016/j.physletb.2020.135609
ER  - 
@article{
author = "Sirunyan, A.M. and Tumasyan, A. and Adam, W. and Ambrogi, F. and Bergauer, T. and Adžić, Petar and Ćirković, Predrag and Đorđević, Miloš and Milenović, Predrag and Milošević, Jovan and Stojanović, Milan",
year = "2020",
url = "https://vinar.vin.bg.ac.rs/handle/123456789/9092",
abstract = "The first direct, model-independent measurement is presented of the modulus of the Cabibbo–Kobayashi–Maskawa (CKM) matrix elements |η|Vtb, |η|Vtd, and |η|Vts, in final states enriched in single top quark t-channel events. The analysis uses proton-proton collision data from the LHC, collected during 2016 by the CMS experiment, at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{−1}$. Processes directly sensitive to these matrix elements are considered at both the production and decay vertices of the top quark. In the standard model hypothesis of CKM unitarity, a lower limit of |η|Vtb>0.970 is measured at the 95% confidence level. Several theories beyond the standard model are considered, and by releasing all constraints among the involved parameters, the values |η|Vtb=0.988±0.024, and |η|Vtd2+|η|Vts2=0.06±0.06, where the uncertainties include both statistical and systematic components, are measured.",
journal = "Physics Letters B",
title = "Measurement of CKM matrix elements in single top quark -channel Production in Proton-proton Collisions at",
volume = "808 C",
doi = "10.1016/j.physletb.2020.135609"
}
Sirunyan, A.M., Tumasyan, A., Adam, W., Ambrogi, F., Bergauer, T., Adžić, P., Ćirković, P., Đorđević, M., Milenović, P., Milošević, J.,& Stojanović, M. (2020). Measurement of CKM matrix elements in single top quark -channel Production in Proton-proton Collisions at.
Physics Letters B, 808 C.
https://doi.org/10.1016/j.physletb.2020.135609
Sirunyan A, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Adžić P, Ćirković P, Đorđević M, Milenović P, Milošević J, Stojanović M. Measurement of CKM matrix elements in single top quark -channel Production in Proton-proton Collisions at. Physics Letters B. 2020;808 C
Sirunyan A.M., Tumasyan A., Adam W., Ambrogi F., Bergauer T., Adžić Petar, Ćirković Predrag, Đorđević Miloš, Milenović Predrag, Milošević Jovan, Stojanović Milan, "Measurement of CKM matrix elements in single top quark -channel Production in Proton-proton Collisions at" Physics Letters B, 808 C (2020),
https://doi.org/10.1016/j.physletb.2020.135609 .
1
2

Measurement of the Y(1S) pair production cross section and search for resonances decaying to Y(1S)μ+μ− in proton-proton collisions at s=13TeV

Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Bergauer, T.; Adžić, Petar; Ćirković, Predrag; Đorđević, Miloš; Milenović, Predrag; Milošević, Jovan; Stojanović, Milan

(2020)

TY  - JOUR
AU  - Sirunyan, A.M.
AU  - Tumasyan, A.
AU  - Adam, W.
AU  - Ambrogi, F.
AU  - Bergauer, T.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
AU  - Milošević, Jovan
AU  - Stojanović, Milan
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9079
AB  - The fiducial cross section for Y(1S) pair production in proton-proton collisions at a center-of-mass energy of 13 TeV in the region where both Y(1S) mesons have an absolute rapidity below 2.0 is measured to be 79±11(stat)±6(syst)±3(B) pb assuming the mesons are produced unpolarized. The last uncertainty corresponds to the uncertainty in the Y(1S) meson dimuon branching fraction. The measurement is performed in the final state with four muons using proton-proton collision data collected in 2016 by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9fb−1. This process serves as a standard model reference in a search for narrow resonances decaying to Y(1S)μ+μ− in the same final state. Such a resonance could indicate the existence of a tetraquark that is a bound state of two b quarks and two b¯ antiquarks. The tetraquark search is performed for masses in the vicinity of four times the bottom quark mass, between 17.5 and 19.5 GeV, while a generic search for other resonances is performed for masses between 16.5 and 27 GeV. No significant excess of events compatible with a narrow resonance is observed in the data. Limits on the production cross section times branching fraction to four muons via an intermediate Y(1S) resonance are set as a function of the resonance mass.
T2  - Physics Letters B
T1  - Measurement of the Y(1S) pair production cross section and search for resonances decaying to Y(1S)μ+μ− in proton-proton collisions at s=13TeV
VL  - 808 C
DO  - 10.1016/j.physletb.2020.135578
ER  - 
@article{
author = "Sirunyan, A.M. and Tumasyan, A. and Adam, W. and Ambrogi, F. and Bergauer, T. and Adžić, Petar and Ćirković, Predrag and Đorđević, Miloš and Milenović, Predrag and Milošević, Jovan and Stojanović, Milan",
year = "2020",
url = "https://vinar.vin.bg.ac.rs/handle/123456789/9079",
abstract = "The fiducial cross section for Y(1S) pair production in proton-proton collisions at a center-of-mass energy of 13 TeV in the region where both Y(1S) mesons have an absolute rapidity below 2.0 is measured to be 79±11(stat)±6(syst)±3(B) pb assuming the mesons are produced unpolarized. The last uncertainty corresponds to the uncertainty in the Y(1S) meson dimuon branching fraction. The measurement is performed in the final state with four muons using proton-proton collision data collected in 2016 by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9fb−1. This process serves as a standard model reference in a search for narrow resonances decaying to Y(1S)μ+μ− in the same final state. Such a resonance could indicate the existence of a tetraquark that is a bound state of two b quarks and two b¯ antiquarks. The tetraquark search is performed for masses in the vicinity of four times the bottom quark mass, between 17.5 and 19.5 GeV, while a generic search for other resonances is performed for masses between 16.5 and 27 GeV. No significant excess of events compatible with a narrow resonance is observed in the data. Limits on the production cross section times branching fraction to four muons via an intermediate Y(1S) resonance are set as a function of the resonance mass.",
journal = "Physics Letters B",
title = "Measurement of the Y(1S) pair production cross section and search for resonances decaying to Y(1S)μ+μ− in proton-proton collisions at s=13TeV",
volume = "808 C",
doi = "10.1016/j.physletb.2020.135578"
}
Sirunyan, A.M., Tumasyan, A., Adam, W., Ambrogi, F., Bergauer, T., Adžić, P., Ćirković, P., Đorđević, M., Milenović, P., Milošević, J.,& Stojanović, M. (2020). Measurement of the Y(1S) pair production cross section and search for resonances decaying to Y(1S)μ+μ− in proton-proton collisions at s=13TeV.
Physics Letters B, 808 C.
https://doi.org/10.1016/j.physletb.2020.135578
Sirunyan A, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Adžić P, Ćirković P, Đorđević M, Milenović P, Milošević J, Stojanović M. Measurement of the Y(1S) pair production cross section and search for resonances decaying to Y(1S)μ+μ− in proton-proton collisions at s=13TeV. Physics Letters B. 2020;808 C
Sirunyan A.M., Tumasyan A., Adam W., Ambrogi F., Bergauer T., Adžić Petar, Ćirković Predrag, Đorđević Miloš, Milenović Predrag, Milošević Jovan, Stojanović Milan, "Measurement of the Y(1S) pair production cross section and search for resonances decaying to Y(1S)μ+μ− in proton-proton collisions at s=13TeV" Physics Letters B, 808 C (2020),
https://doi.org/10.1016/j.physletb.2020.135578 .
1
7
2
7

Calibration of the CMS hadron calorimeters using proton-proton collision data at s = 13 TeV

Sirunyan, A M; Tumasyan, A; Adam, W; Ambrogi, F; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milenović, Predrag; Milošević, Jovan; Stojanović, Milan

(2020)

TY  - JOUR
AU  - Sirunyan, A M
AU  - Tumasyan, A
AU  - Adam, W
AU  - Ambrogi, F
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
AU  - Milošević, Jovan
AU  - Stojanović, Milan
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9026
AB  - Methods are presented for calibrating the hadron calorimeter system of the CMS detector at the LHC. The hadron calorimeters of the CMS experiment are sampling calorimeters of brass and scintillator, and are in the form of one central detector and two endcaps. These calorimeters cover pseudorapidities |η| < 3 and are positioned inside the solenoidal magnet. An outer calorimeter, outside the magnet coil, covers |η| < 1.26, and a steel and quartz-fiber Cherenkov forward calorimeter extends the coverage to |η| < 5.19. The initial calibration of the calorimeters was based on results from test beams, augmented with the use of radioactive sources and lasers. The calibration was improved substantially using proton-proton collision data collected at s = 7, 8, and 13 TeV, as well as cosmic ray muon data collected during the periods when the LHC beams were not present. The present calibration is performed using the 13 TeV data collected during 2016 corresponding to an integrated luminosity of 35.9 fb-1. The intercalibration of channels exploits the approximate uniformity of energy collection over the azimuthal angle. The absolute energy scale of the central and endcap calorimeters is set using isolated charged hadrons. The energy scale for the electromagnetic portion of the forward calorimeters is set using Z→ ee data. The energy scale of the outer calorimeters has been determined with test beam data and is confirmed through data with high transverse momentum jets. In this paper, we present the details of the calibration methods and accuracy.
T2  - Journal of Instrumentation
T1  - Calibration of the CMS hadron calorimeters using proton-proton collision data at s = 13 TeV
VL  - 15
IS  - 5
SP  - P05002
DO  - 10.1088/1748-0221/15/05/P05002
ER  - 
@article{
author = "Sirunyan, A M and Tumasyan, A and Adam, W and Ambrogi, F and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milenović, Predrag and Milošević, Jovan and Stojanović, Milan",
year = "2020",
url = "https://vinar.vin.bg.ac.rs/handle/123456789/9026",
abstract = "Methods are presented for calibrating the hadron calorimeter system of the CMS detector at the LHC. The hadron calorimeters of the CMS experiment are sampling calorimeters of brass and scintillator, and are in the form of one central detector and two endcaps. These calorimeters cover pseudorapidities |η| < 3 and are positioned inside the solenoidal magnet. An outer calorimeter, outside the magnet coil, covers |η| < 1.26, and a steel and quartz-fiber Cherenkov forward calorimeter extends the coverage to |η| < 5.19. The initial calibration of the calorimeters was based on results from test beams, augmented with the use of radioactive sources and lasers. The calibration was improved substantially using proton-proton collision data collected at s = 7, 8, and 13 TeV, as well as cosmic ray muon data collected during the periods when the LHC beams were not present. The present calibration is performed using the 13 TeV data collected during 2016 corresponding to an integrated luminosity of 35.9 fb-1. The intercalibration of channels exploits the approximate uniformity of energy collection over the azimuthal angle. The absolute energy scale of the central and endcap calorimeters is set using isolated charged hadrons. The energy scale for the electromagnetic portion of the forward calorimeters is set using Z→ ee data. The energy scale of the outer calorimeters has been determined with test beam data and is confirmed through data with high transverse momentum jets. In this paper, we present the details of the calibration methods and accuracy.",
journal = "Journal of Instrumentation",
title = "Calibration of the CMS hadron calorimeters using proton-proton collision data at s = 13 TeV",
volume = "15",
number = "5",
pages = "P05002",
doi = "10.1088/1748-0221/15/05/P05002"
}
Sirunyan, A. M., Tumasyan, A., Adam, W., Ambrogi, F., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milenović, P., Milošević, J.,& Stojanović, M. (2020). Calibration of the CMS hadron calorimeters using proton-proton collision data at s = 13 TeV.
Journal of Instrumentation, 15(5), P05002.
https://doi.org/10.1088/1748-0221/15/05/P05002
Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Adžić P, Ćirković P, Devetak D, Đorđević M, Milenović P, Milošević J, Stojanović M. Calibration of the CMS hadron calorimeters using proton-proton collision data at s = 13 TeV. Journal of Instrumentation. 2020;15(5):P05002
Sirunyan A M, Tumasyan A, Adam W, Ambrogi F, Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milenović Predrag, Milošević Jovan, Stojanović Milan, "Calibration of the CMS hadron calorimeters using proton-proton collision data at s = 13 TeV" Journal of Instrumentation, 15, no. 5 (2020):P05002,
https://doi.org/10.1088/1748-0221/15/05/P05002 .
2
1
1

Measurement of the jet mass distribution and top quark mass in hadronic decays of boosted top quarks in pp collisions at √s = 13 TeV

Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Bergauer, T.; Adžić, Petar; Ćirković, Predrag; Đorđević, Miloš; Milenović, Predrag; Milošević, Jovan; Stojanović, Milan

(2020)

TY  - JOUR
AU  - Sirunyan, A. M.
AU  - Tumasyan, A.
AU  - Adam, W.
AU  - Ambrogi, F.
AU  - Bergauer, T.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
AU  - Milošević, Jovan
AU  - Stojanović, Milan
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9025
AB  - A measurement is reported of the jet mass distribution in hadronic decays of boosted top quarks produced in pp collisions at √s = 13 TeV. The data were collected with the CMS detector at the LHC and correspond to an integrated luminosity of 35.9 fb−1. The measurement is performed in the lepton þ jets channel of tt events, where the lepton is an electron or muon. The products of the hadronic top quark decay t → bW → bqq¯0 are reconstructed as a single jet with transverse momentum larger than 400 GeV. The t¯t cross section as a function of the jet mass is unfolded at the particle level and used to extract a value of the top quark mass of 172.6 ± 2.5 GeV. A novel jet reconstruction technique is used for the first time at the LHC, which improves the precision by a factor of 3 relative to an earlier measurement. This highlights the potential of measurements using boosted top quarks, where the new technique will enable future precision measurements.
T2  - Physical Review Letters
T1  - Measurement of the jet mass distribution and top quark mass in hadronic decays of boosted top quarks in pp collisions at √s = 13 TeV
VL  - 124
SP  - 202001
DO  - 10.1103/PhysRevLett.124.202001
ER  - 
@article{
author = "Sirunyan, A. M. and Tumasyan, A. and Adam, W. and Ambrogi, F. and Bergauer, T. and Adžić, Petar and Ćirković, Predrag and Đorđević, Miloš and Milenović, Predrag and Milošević, Jovan and Stojanović, Milan",
year = "2020",
url = "https://vinar.vin.bg.ac.rs/handle/123456789/9025",
abstract = "A measurement is reported of the jet mass distribution in hadronic decays of boosted top quarks produced in pp collisions at √s = 13 TeV. The data were collected with the CMS detector at the LHC and correspond to an integrated luminosity of 35.9 fb−1. The measurement is performed in the lepton þ jets channel of tt events, where the lepton is an electron or muon. The products of the hadronic top quark decay t → bW → bqq¯0 are reconstructed as a single jet with transverse momentum larger than 400 GeV. The t¯t cross section as a function of the jet mass is unfolded at the particle level and used to extract a value of the top quark mass of 172.6 ± 2.5 GeV. A novel jet reconstruction technique is used for the first time at the LHC, which improves the precision by a factor of 3 relative to an earlier measurement. This highlights the potential of measurements using boosted top quarks, where the new technique will enable future precision measurements.",
journal = "Physical Review Letters",
title = "Measurement of the jet mass distribution and top quark mass in hadronic decays of boosted top quarks in pp collisions at √s = 13 TeV",
volume = "124",
pages = "202001",
doi = "10.1103/PhysRevLett.124.202001"
}
Sirunyan, A. M., Tumasyan, A., Adam, W., Ambrogi, F., Bergauer, T., Adžić, P., Ćirković, P., Đorđević, M., Milenović, P., Milošević, J.,& Stojanović, M. (2020). Measurement of the jet mass distribution and top quark mass in hadronic decays of boosted top quarks in pp collisions at √s = 13 TeV.
Physical Review Letters, 124, 202001.
https://doi.org/10.1103/PhysRevLett.124.202001
Sirunyan A, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Adžić P, Ćirković P, Đorđević M, Milenović P, Milošević J, Stojanović M. Measurement of the jet mass distribution and top quark mass in hadronic decays of boosted top quarks in pp collisions at √s = 13 TeV. Physical Review Letters. 2020;124:202001
Sirunyan A. M., Tumasyan A., Adam W., Ambrogi F., Bergauer T., Adžić Petar, Ćirković Predrag, Đorđević Miloš, Milenović Predrag, Milošević Jovan, Stojanović Milan, "Measurement of the jet mass distribution and top quark mass in hadronic decays of boosted top quarks in pp collisions at √s = 13 TeV" Physical Review Letters, 124 (2020):202001,
https://doi.org/10.1103/PhysRevLett.124.202001 .
1
2

Search for disappearing tracks in proton-proton collisions at s=13TeV

Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Bergauer, T.; Adžić, Petar; Ćirković, Predrag; Đorđević, Miloš; Milenović, Predrag; Milošević, Jovan; Stojanović, Milan

(2020)

TY  - JOUR
AU  - Sirunyan, A.M.
AU  - Tumasyan, A.
AU  - Adam, W.
AU  - Ambrogi, F.
AU  - Bergauer, T.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
AU  - Milošević, Jovan
AU  - Stojanović, Milan
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9023
AB  - A search is presented for long-lived charged particles that decay within the volume of the silicon tracker of the CMS experiment. Such particles can produce events with an isolated track that is missing hits in the outermost layers of the silicon tracker, and is also associated with little energy deposited in the calorimeters and no hits in the muon detectors. The search for events with this “disappearing track” signature is performed in a sample of proton-proton collisions recorded by the CMS experiment at the LHC with a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 101fb−1 recorded in 2017 and 2018. The observation of 48 events is consistent with the estimated background of 47.8−2.3 +2.7(stat)±8.1(syst) events. Upper limits are set on chargino production in the context of an anomaly-mediated supersymmetry breaking model for purely wino and higgsino neutralino scenarios. At 95% confidence level, the first constraint is placed on chargino masses in the higgsino case, excluding below 750 (175) GeV for a lifetime of 3 (0.05) ns. In the wino case, the results of this search are combined with a previous CMS search to produce a result representing the complete LHC data set recorded in 2015–2018, the most stringent constraints to date. At 95% confidence level, chargino masses in the wino case are excluded below 884 (474) GeV for a lifetime of 3 (0.2) ns.
T2  - Physics Letters B
T1  - Search for disappearing tracks in proton-proton collisions at s=13TeV
VL  - 806 C
SP  - 135502
DO  - 10.1016/j.physletb.2020.135502
ER  - 
@article{
author = "Sirunyan, A.M. and Tumasyan, A. and Adam, W. and Ambrogi, F. and Bergauer, T. and Adžić, Petar and Ćirković, Predrag and Đorđević, Miloš and Milenović, Predrag and Milošević, Jovan and Stojanović, Milan",
year = "2020",
url = "https://vinar.vin.bg.ac.rs/handle/123456789/9023",
abstract = "A search is presented for long-lived charged particles that decay within the volume of the silicon tracker of the CMS experiment. Such particles can produce events with an isolated track that is missing hits in the outermost layers of the silicon tracker, and is also associated with little energy deposited in the calorimeters and no hits in the muon detectors. The search for events with this “disappearing track” signature is performed in a sample of proton-proton collisions recorded by the CMS experiment at the LHC with a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 101fb−1 recorded in 2017 and 2018. The observation of 48 events is consistent with the estimated background of 47.8−2.3 +2.7(stat)±8.1(syst) events. Upper limits are set on chargino production in the context of an anomaly-mediated supersymmetry breaking model for purely wino and higgsino neutralino scenarios. At 95% confidence level, the first constraint is placed on chargino masses in the higgsino case, excluding below 750 (175) GeV for a lifetime of 3 (0.05) ns. In the wino case, the results of this search are combined with a previous CMS search to produce a result representing the complete LHC data set recorded in 2015–2018, the most stringent constraints to date. At 95% confidence level, chargino masses in the wino case are excluded below 884 (474) GeV for a lifetime of 3 (0.2) ns.",
journal = "Physics Letters B",
title = "Search for disappearing tracks in proton-proton collisions at s=13TeV",
volume = "806 C",
pages = "135502",
doi = "10.1016/j.physletb.2020.135502"
}
Sirunyan, A.M., Tumasyan, A., Adam, W., Ambrogi, F., Bergauer, T., Adžić, P., Ćirković, P., Đorđević, M., Milenović, P., Milošević, J.,& Stojanović, M. (2020). Search for disappearing tracks in proton-proton collisions at s=13TeV.
Physics Letters B, 806 C, 135502.
https://doi.org/10.1016/j.physletb.2020.135502
Sirunyan A, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Adžić P, Ćirković P, Đorđević M, Milenović P, Milošević J, Stojanović M. Search for disappearing tracks in proton-proton collisions at s=13TeV. Physics Letters B. 2020;806 C:135502
Sirunyan A.M., Tumasyan A., Adam W., Ambrogi F., Bergauer T., Adžić Petar, Ćirković Predrag, Đorđević Miloš, Milenović Predrag, Milošević Jovan, Stojanović Milan, "Search for disappearing tracks in proton-proton collisions at s=13TeV" Physics Letters B, 806 C (2020):135502,
https://doi.org/10.1016/j.physletb.2020.135502 .
1
8
7
8

Study of J/ψ meson production inside jets in pp collisions at s=8TeV

Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Bergauer, T.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milenović, Predrag; Milošević, Jovan; Stojanović, Milan

(2020)

TY  - JOUR
AU  - Sirunyan, A.M.
AU  - Tumasyan, A.
AU  - Adam, W.
AU  - Ambrogi, F.
AU  - Bergauer, T.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
AU  - Milošević, Jovan
AU  - Stojanović, Milan
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8935
AB  - A study of the production of prompt J/ψ mesons contained in jets in proton-proton collisions at s=8TeV is presented. The analysis is based on data corresponding to an integrated luminosity of 19.1 fb$^{−1}$ collected with the CMS detector at the LHC. For events with at least one observed jet, the angular separation between the J/ψ meson and the jet is used to test whether the J/ψ meson is part of the jet. The analysis shows that most prompt J/ψ mesons having energy above 15 GeV and rapidity |y|<1 are contained in jets with pseudorapidity |ηjet|<1. The differential distributions of the probability to have a J/ψ meson contained in a jet as a function of jet energy for a fixed J/ψ energy fraction are compared to a theoretical model using the fragmenting jet function approach. The data agree best with fragmenting jet function calculations that use a long-distance matrix element parameter set in which prompt J/ψ mesons are predicted to be unpolarized. This technique demonstrates a new way to test predictions for prompt J/ψ production using nonrelativistic quantum chromodynamics.
T2  - Physics Letters B
T1  - Study of J/ψ meson production inside jets in pp collisions at s=8TeV
VL  - 804 C
SP  - 135409
DO  - 10.1016/j.physletb.2020.135409
ER  - 
@article{
author = "Sirunyan, A.M. and Tumasyan, A. and Adam, W. and Ambrogi, F. and Bergauer, T. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milenović, Predrag and Milošević, Jovan and Stojanović, Milan",
year = "2020",
url = "https://vinar.vin.bg.ac.rs/handle/123456789/8935",
abstract = "A study of the production of prompt J/ψ mesons contained in jets in proton-proton collisions at s=8TeV is presented. The analysis is based on data corresponding to an integrated luminosity of 19.1 fb$^{−1}$ collected with the CMS detector at the LHC. For events with at least one observed jet, the angular separation between the J/ψ meson and the jet is used to test whether the J/ψ meson is part of the jet. The analysis shows that most prompt J/ψ mesons having energy above 15 GeV and rapidity |y|<1 are contained in jets with pseudorapidity |ηjet|<1. The differential distributions of the probability to have a J/ψ meson contained in a jet as a function of jet energy for a fixed J/ψ energy fraction are compared to a theoretical model using the fragmenting jet function approach. The data agree best with fragmenting jet function calculations that use a long-distance matrix element parameter set in which prompt J/ψ mesons are predicted to be unpolarized. This technique demonstrates a new way to test predictions for prompt J/ψ production using nonrelativistic quantum chromodynamics.",
journal = "Physics Letters B",
title = "Study of J/ψ meson production inside jets in pp collisions at s=8TeV",
volume = "804 C",
pages = "135409",
doi = "10.1016/j.physletb.2020.135409"
}
Sirunyan, A.M., Tumasyan, A., Adam, W., Ambrogi, F., Bergauer, T., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milenović, P., Milošević, J.,& Stojanović, M. (2020). Study of J/ψ meson production inside jets in pp collisions at s=8TeV.
Physics Letters B, 804 C, 135409.
https://doi.org/10.1016/j.physletb.2020.135409
Sirunyan A, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Adžić P, Ćirković P, Devetak D, Đorđević M, Milenović P, Milošević J, Stojanović M. Study of J/ψ meson production inside jets in pp collisions at s=8TeV. Physics Letters B. 2020;804 C:135409
Sirunyan A.M., Tumasyan A., Adam W., Ambrogi F., Bergauer T., Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milenović Predrag, Milošević Jovan, Stojanović Milan, "Study of J/ψ meson production inside jets in pp collisions at s=8TeV" Physics Letters B, 804 C (2020):135409,
https://doi.org/10.1016/j.physletb.2020.135409 .
1
1
1
2

Search for direct pair production of supersymmetric partners to the τ lepton in proton–proton collisions at √s=13TeV

Sirunyan, A.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Bergauer, T.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milenović, Predrag; Milošević, Jovan; Stojanović, Milan

(2020)

TY  - JOUR
AU  - Sirunyan, A.
AU  - Tumasyan, A.
AU  - Adam, W.
AU  - Ambrogi, F.
AU  - Bergauer, T.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
AU  - Milošević, Jovan
AU  - Stojanović, Milan
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8842
AB  - A search is presented for $${\uptau }_{}^{}$$ τ  slepton pairs produced in proton–proton collisions at a center-of-mass energy of 13$$\,\text {TeV}$$ TeV . The search is carried out in events containing two $${\uptau }_{}^{}$$ τ  leptons in the final state, on the assumption that each $${\uptau }_{}^{}$$ τ  slepton decays primarily to a $${\uptau }_{}^{}$$ τ  lepton and a neutralino. Events are considered in which each $${\uptau }_{}^{}$$ τ  lepton decays to one or more hadrons and a neutrino, or in which one of the $${\uptau }_{}^{}$$ τ  leptons decays instead to an electron or a muon and two neutrinos. The data, collected with the CMS detector in 2016 and 2017, correspond to an integrated luminosity of 77.2$$\,\text {fb}^{-1}$$ fb-1 . The observed data are consistent with the standard model background expectation. The results are used to set 95% confidence level upper limits on the cross section for $${\uptau }_{}^{}$$ τ  slepton pair production in various models for $${\uptau }_{}^{}$$ τ  slepton masses between 90 and 200$$\,\text {GeV}$$ GeV  and neutralino masses of 1, 10, and 20$$\,\text {GeV}$$ GeV . In the case of purely left-handed $${\uptau }_{}^{}$$ τ  slepton production and decay to a $${\uptau }_{}^{}$$ τ  lepton and a neutralino with a mass of 1$$\,\text {GeV}$$ GeV , the strongest limit is obtained for a $${\uptau }_{}^{}$$ τ  slepton mass of 125$$\,\text {GeV}$$ GeV  at a factor of 1.14 larger than the theoretical cross section.
T2  - European Physical Journal C
T1  - Search for direct pair production of supersymmetric partners to the τ lepton in proton–proton collisions at √s=13TeV
VL  - 80
IS  - 3
SP  - 189
DO  - 10.1140/epjc/s10052-020-7739-7
ER  - 
@article{
author = "Sirunyan, A. and Tumasyan, A. and Adam, W. and Ambrogi, F. and Bergauer, T. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milenović, Predrag and Milošević, Jovan and Stojanović, Milan",
year = "2020",
url = "https://vinar.vin.bg.ac.rs/handle/123456789/8842",
abstract = "A search is presented for $${\uptau }_{}^{}$$ τ  slepton pairs produced in proton–proton collisions at a center-of-mass energy of 13$$\,\text {TeV}$$ TeV . The search is carried out in events containing two $${\uptau }_{}^{}$$ τ  leptons in the final state, on the assumption that each $${\uptau }_{}^{}$$ τ  slepton decays primarily to a $${\uptau }_{}^{}$$ τ  lepton and a neutralino. Events are considered in which each $${\uptau }_{}^{}$$ τ  lepton decays to one or more hadrons and a neutrino, or in which one of the $${\uptau }_{}^{}$$ τ  leptons decays instead to an electron or a muon and two neutrinos. The data, collected with the CMS detector in 2016 and 2017, correspond to an integrated luminosity of 77.2$$\,\text {fb}^{-1}$$ fb-1 . The observed data are consistent with the standard model background expectation. The results are used to set 95% confidence level upper limits on the cross section for $${\uptau }_{}^{}$$ τ  slepton pair production in various models for $${\uptau }_{}^{}$$ τ  slepton masses between 90 and 200$$\,\text {GeV}$$ GeV  and neutralino masses of 1, 10, and 20$$\,\text {GeV}$$ GeV . In the case of purely left-handed $${\uptau }_{}^{}$$ τ  slepton production and decay to a $${\uptau }_{}^{}$$ τ  lepton and a neutralino with a mass of 1$$\,\text {GeV}$$ GeV , the strongest limit is obtained for a $${\uptau }_{}^{}$$ τ  slepton mass of 125$$\,\text {GeV}$$ GeV  at a factor of 1.14 larger than the theoretical cross section.",
journal = "European Physical Journal C",
title = "Search for direct pair production of supersymmetric partners to the τ lepton in proton–proton collisions at √s=13TeV",
volume = "80",
number = "3",
pages = "189",
doi = "10.1140/epjc/s10052-020-7739-7"
}
Sirunyan, A., Tumasyan, A., Adam, W., Ambrogi, F., Bergauer, T., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milenović, P., Milošević, J.,& Stojanović, M. (2020). Search for direct pair production of supersymmetric partners to the τ lepton in proton–proton collisions at √s=13TeV.
European Physical Journal C, 80(3), 189.
https://doi.org/10.1140/epjc/s10052-020-7739-7
Sirunyan A, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Adžić P, Ćirković P, Devetak D, Đorđević M, Milenović P, Milošević J, Stojanović M. Search for direct pair production of supersymmetric partners to the τ lepton in proton–proton collisions at √s=13TeV. European Physical Journal C. 2020;80(3):189
Sirunyan A., Tumasyan A., Adam W., Ambrogi F., Bergauer T., Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milenović Predrag, Milošević Jovan, Stojanović Milan, "Search for direct pair production of supersymmetric partners to the τ lepton in proton–proton collisions at √s=13TeV" European Physical Journal C, 80, no. 3 (2020):189,
https://doi.org/10.1140/epjc/s10052-020-7739-7 .
4
3
3

Measurement of the top quark pair production cross section in dilepton final states containing one τ lepton in pp collisions at √s = 13 TeV

Sirunyan, A.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Bergauer, T.; Adžić, Petar; Ćirković, Predrag; Đorđević, Miloš; Milenović, Predrag; Milošević, Jovan; Stojanović, Milan

(2020)

TY  - JOUR
AU  - Sirunyan, A.
AU  - Tumasyan, A.
AU  - Adam, W.
AU  - Ambrogi, F.
AU  - Bergauer, T.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
AU  - Milošević, Jovan
AU  - Stojanović, Milan
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8843
AB  - The cross section of top quark pair production is measured in the tt¯→(ℓνℓ)(τhντ)bb¯ final state, where τh refers to the hadronic decays of the τ lepton, and ℓ is either an electron or a muon. The data sample corresponds to an integrated luminosity of 35.9 fb−1 collected in proton-proton collisions at s = 13 TeV with the CMS detector. The measured cross section is σt t ¯ = 781 ± 7 (stat) ± 62 (syst) ± 20 (lumi) pb, and the ratio of the partial width Γ(t → τντb) to the total decay width of the top quark is measured to be 0.1050 ± 0.0009 (stat) ± 0.0071 (syst). This is the first measurement of the t t ¯ production cross section in proton-proton collisions at s = 13 TeV that explicitly includes τ leptons. The ratio of the cross sections in the ℓτh and ℓℓ final states yields a value Rℓτh/ll = 0.973 ± 0.009 (stat) ± 0.066 (syst), consistent with lepton universality.
T2  - Journal of High Energy Physics
T1  - Measurement of the top quark pair production cross section in dilepton final states containing one τ lepton in pp collisions at √s = 13 TeV
VL  - 2020
IS  - 2
SP  - 191
DO  - 10.1007/JHEP02(2020)191
ER  - 
@article{
author = "Sirunyan, A. and Tumasyan, A. and Adam, W. and Ambrogi, F. and Bergauer, T. and Adžić, Petar and Ćirković, Predrag and Đorđević, Miloš and Milenović, Predrag and Milošević, Jovan and Stojanović, Milan",
year = "2020",
url = "https://vinar.vin.bg.ac.rs/handle/123456789/8843",
abstract = "The cross section of top quark pair production is measured in the tt¯→(ℓνℓ)(τhντ)bb¯ final state, where τh refers to the hadronic decays of the τ lepton, and ℓ is either an electron or a muon. The data sample corresponds to an integrated luminosity of 35.9 fb−1 collected in proton-proton collisions at s = 13 TeV with the CMS detector. The measured cross section is σt t ¯ = 781 ± 7 (stat) ± 62 (syst) ± 20 (lumi) pb, and the ratio of the partial width Γ(t → τντb) to the total decay width of the top quark is measured to be 0.1050 ± 0.0009 (stat) ± 0.0071 (syst). This is the first measurement of the t t ¯ production cross section in proton-proton collisions at s = 13 TeV that explicitly includes τ leptons. The ratio of the cross sections in the ℓτh and ℓℓ final states yields a value Rℓτh/ll = 0.973 ± 0.009 (stat) ± 0.066 (syst), consistent with lepton universality.",
journal = "Journal of High Energy Physics",
title = "Measurement of the top quark pair production cross section in dilepton final states containing one τ lepton in pp collisions at √s = 13 TeV",
volume = "2020",
number = "2",
pages = "191",
doi = "10.1007/JHEP02(2020)191"
}
Sirunyan, A., Tumasyan, A., Adam, W., Ambrogi, F., Bergauer, T., Adžić, P., Ćirković, P., Đorđević, M., Milenović, P., Milošević, J.,& Stojanović, M. (2020). Measurement of the top quark pair production cross section in dilepton final states containing one τ lepton in pp collisions at √s = 13 TeV.
Journal of High Energy Physics, 2020(2), 191.
https://doi.org/10.1007/JHEP02(2020)191
Sirunyan A, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Adžić P, Ćirković P, Đorđević M, Milenović P, Milošević J, Stojanović M. Measurement of the top quark pair production cross section in dilepton final states containing one τ lepton in pp collisions at √s = 13 TeV. Journal of High Energy Physics. 2020;2020(2):191
Sirunyan A., Tumasyan A., Adam W., Ambrogi F., Bergauer T., Adžić Petar, Ćirković Predrag, Đorđević Miloš, Milenović Predrag, Milošević Jovan, Stojanović Milan, "Measurement of the top quark pair production cross section in dilepton final states containing one τ lepton in pp collisions at √s = 13 TeV" Journal of High Energy Physics, 2020, no. 2 (2020):191,
https://doi.org/10.1007/JHEP02(2020)191 .

Search for a heavy pseudoscalar Higgs boson decaying into a 125 GeV Higgs boson and a Z boson in final states with two tau and two light leptons at √s = 13 TeV

Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milenović, Predrag; Milošević, Jovan; Stojanović, Milan

(2020)

TY  - JOUR
AU  - Sirunyan, A.M.
AU  - Tumasyan, A.
AU  - Adam, W.
AU  - Ambrogi, F.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
AU  - Milošević, Jovan
AU  - Stojanović, Milan
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8895
AB  - A search is performed for a pseudoscalar Higgs boson, A, decaying into a 125 GeV Higgs boson h and a Z boson. The h boson is specifically targeted in its decay into a pair of tau leptons, while the Z boson decays into a pair of electrons or muons. A data sample of proton-proton collisions collected by the CMS experiment at the LHC at s = 13 TeV is used, corresponding to an integrated luminosity of 35.9 fb−1. No excess above the standard model background expectations is observed in data. A model-independent upper limit is set on the product of the gluon fusion production cross section for the A boson and the branching fraction to Zh → ℓℓττ. The observed upper limit at 95% confidence level ranges from 27 to 5 fb for A boson masses from 220 to 400 GeV, respectively. The results are used to constrain the extended Higgs sector parameters for two benchmark scenarios of the minimal supersymmetric standard model. [Figure not available: see fulltext.] © 2020, The Author(s).
T2  - Journal of High Energy Physics
T1  - Search for a heavy pseudoscalar Higgs boson decaying into a 125 GeV Higgs boson and a Z boson in final states with two tau and two light leptons at √s = 13 TeV
VL  - 2020
IS  - 3
SP  - 65
DO  - 10.1007/JHEP03(2020)065
ER  - 
@article{
author = "Sirunyan, A.M. and Tumasyan, A. and Adam, W. and Ambrogi, F. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milenović, Predrag and Milošević, Jovan and Stojanović, Milan",
year = "2020",
url = "https://vinar.vin.bg.ac.rs/handle/123456789/8895",
abstract = "A search is performed for a pseudoscalar Higgs boson, A, decaying into a 125 GeV Higgs boson h and a Z boson. The h boson is specifically targeted in its decay into a pair of tau leptons, while the Z boson decays into a pair of electrons or muons. A data sample of proton-proton collisions collected by the CMS experiment at the LHC at s = 13 TeV is used, corresponding to an integrated luminosity of 35.9 fb−1. No excess above the standard model background expectations is observed in data. A model-independent upper limit is set on the product of the gluon fusion production cross section for the A boson and the branching fraction to Zh → ℓℓττ. The observed upper limit at 95% confidence level ranges from 27 to 5 fb for A boson masses from 220 to 400 GeV, respectively. The results are used to constrain the extended Higgs sector parameters for two benchmark scenarios of the minimal supersymmetric standard model. [Figure not available: see fulltext.] © 2020, The Author(s).",
journal = "Journal of High Energy Physics",
title = "Search for a heavy pseudoscalar Higgs boson decaying into a 125 GeV Higgs boson and a Z boson in final states with two tau and two light leptons at √s = 13 TeV",
volume = "2020",
number = "3",
pages = "65",
doi = "10.1007/JHEP03(2020)065"
}
Sirunyan, A.M., Tumasyan, A., Adam, W., Ambrogi, F., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milenović, P., Milošević, J.,& Stojanović, M. (2020). Search for a heavy pseudoscalar Higgs boson decaying into a 125 GeV Higgs boson and a Z boson in final states with two tau and two light leptons at √s = 13 TeV.
Journal of High Energy Physics, 2020(3), 65.
https://doi.org/10.1007/JHEP03(2020)065
Sirunyan A, Tumasyan A, Adam W, Ambrogi F, Adžić P, Ćirković P, Devetak D, Đorđević M, Milenović P, Milošević J, Stojanović M. Search for a heavy pseudoscalar Higgs boson decaying into a 125 GeV Higgs boson and a Z boson in final states with two tau and two light leptons at √s = 13 TeV. Journal of High Energy Physics. 2020;2020(3):65
Sirunyan A.M., Tumasyan A., Adam W., Ambrogi F., Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milenović Predrag, Milošević Jovan, Stojanović Milan, "Search for a heavy pseudoscalar Higgs boson decaying into a 125 GeV Higgs boson and a Z boson in final states with two tau and two light leptons at √s = 13 TeV" Journal of High Energy Physics, 2020, no. 3 (2020):65,
https://doi.org/10.1007/JHEP03(2020)065 .
3
3
4

Search for physics beyond the standard model in multilepton final states in proton-proton collisions at √s = 13 TeV

Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Adžić, Petar; Ćirković, Predrag; Đorđević, Miloš; Milenović, Predrag; Milošević, Jovan; Stojanović, Milan

(2020)

TY  - JOUR
AU  - Sirunyan, A.M.
AU  - Tumasyan, A.
AU  - Adam, W.
AU  - Ambrogi, F.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
AU  - Milošević, Jovan
AU  - Stojanović, Milan
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8896
AB  - A search for physics beyond the standard model in events with at least three charged leptons (electrons or muons) is presented. The data sample corresponds to an integrated luminosity of 137 fb−1 of proton-proton collisions at s = 13 TeV, collected with the CMS detector at the LHC in 2016–2018. The two targeted signal processes are pair production of type-III seesaw heavy fermions and production of a light scalar or pseudoscalar boson in association with a pair of top quarks. The heavy fermions may be manifested as an excess of events with large values of leptonic transverse momenta or missing transverse momentum. The light scalars or pseudoscalars may create a localized excess in the dilepton mass spectra. The results exclude heavy fermions of the type-III seesaw model for masses below 880 GeV at 95% confidence level in the scenario of equal branching fractions to each lepton flavor. This is the most restrictive limit on the flavor-democratic scenario of the type-III seesaw model to date. Assuming a Yukawa coupling of unit strength to top quarks, branching fractions of new scalar (pseudoscalar) bosons to dielectrons or dimuons above 0.004 (0.03) and 0.04 (0.03) are excluded at 95% confidence level for masses in the range 15–75 and 108–340 GeV, respectively. These are the first limits in these channels on an extension of the standard model with scalar or pseudoscalar particles. [Figure not available: see fulltext.] © 2020, The Author(s).
T2  - Journal of High Energy Physics
T1  - Search for physics beyond the standard model in multilepton final states in proton-proton collisions at √s = 13 TeV
VL  - 2020
IS  - 3
SP  - 51
DO  - 10.1007/JHEP03(2020)051
ER  - 
@article{
author = "Sirunyan, A.M. and Tumasyan, A. and Adam, W. and Ambrogi, F. and Adžić, Petar and Ćirković, Predrag and Đorđević, Miloš and Milenović, Predrag and Milošević, Jovan and Stojanović, Milan",
year = "2020",
url = "https://vinar.vin.bg.ac.rs/handle/123456789/8896",
abstract = "A search for physics beyond the standard model in events with at least three charged leptons (electrons or muons) is presented. The data sample corresponds to an integrated luminosity of 137 fb−1 of proton-proton collisions at s = 13 TeV, collected with the CMS detector at the LHC in 2016–2018. The two targeted signal processes are pair production of type-III seesaw heavy fermions and production of a light scalar or pseudoscalar boson in association with a pair of top quarks. The heavy fermions may be manifested as an excess of events with large values of leptonic transverse momenta or missing transverse momentum. The light scalars or pseudoscalars may create a localized excess in the dilepton mass spectra. The results exclude heavy fermions of the type-III seesaw model for masses below 880 GeV at 95% confidence level in the scenario of equal branching fractions to each lepton flavor. This is the most restrictive limit on the flavor-democratic scenario of the type-III seesaw model to date. Assuming a Yukawa coupling of unit strength to top quarks, branching fractions of new scalar (pseudoscalar) bosons to dielectrons or dimuons above 0.004 (0.03) and 0.04 (0.03) are excluded at 95% confidence level for masses in the range 15–75 and 108–340 GeV, respectively. These are the first limits in these channels on an extension of the standard model with scalar or pseudoscalar particles. [Figure not available: see fulltext.] © 2020, The Author(s).",
journal = "Journal of High Energy Physics",
title = "Search for physics beyond the standard model in multilepton final states in proton-proton collisions at √s = 13 TeV",
volume = "2020",
number = "3",
pages = "51",
doi = "10.1007/JHEP03(2020)051"
}
Sirunyan, A.M., Tumasyan, A., Adam, W., Ambrogi, F., Adžić, P., Ćirković, P., Đorđević, M., Milenović, P., Milošević, J.,& Stojanović, M. (2020). Search for physics beyond the standard model in multilepton final states in proton-proton collisions at √s = 13 TeV.
Journal of High Energy Physics, 2020(3), 51.
https://doi.org/10.1007/JHEP03(2020)051
Sirunyan A, Tumasyan A, Adam W, Ambrogi F, Adžić P, Ćirković P, Đorđević M, Milenović P, Milošević J, Stojanović M. Search for physics beyond the standard model in multilepton final states in proton-proton collisions at √s = 13 TeV. Journal of High Energy Physics. 2020;2020(3):51
Sirunyan A.M., Tumasyan A., Adam W., Ambrogi F., Adžić Petar, Ćirković Predrag, Đorđević Miloš, Milenović Predrag, Milošević Jovan, Stojanović Milan, "Search for physics beyond the standard model in multilepton final states in proton-proton collisions at √s = 13 TeV" Journal of High Energy Physics, 2020, no. 3 (2020):51,
https://doi.org/10.1007/JHEP03(2020)051 .
3
6
5
8

Search for new neutral Higgs bosons through the H → ZA→ ℓ+ℓ−b b ¯ process in pp collisions at √s = 13 TeV

Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milenović, Predrag; Milošević, Jovan; Stojanović, Milan

(2020)

TY  - JOUR
AU  - Sirunyan, A.M.
AU  - Tumasyan, A.
AU  - Adam, W.
AU  - Ambrogi, F.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
AU  - Milošević, Jovan
AU  - Stojanović, Milan
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8897
AB  - This paper reports on a search for an extension to the scalar sector of the standard model, where a new CP-even (odd) boson decays to a Z boson and a lighter CP-odd (even) boson, and the latter further decays to a b quark pair. The Z boson is reconstructed via its decays to electron or muon pairs. The analysed data were recorded in proton-proton collisions at a center-of-mass energy s = 13 TeV, collected by the CMS experiment at the LHC during 2016, corresponding to an integrated luminosity of 35.9 fb−1. Data and predictions from the standard model are in agreement within the uncertainties. Upper limits at 95% confidence level are set on the production cross section times branching fraction, with masses of the new bosons up to 1000 GeV. The results are interpreted in the context of the two-Higgs-doublet model. [Figure not available: see fulltext.]. © 2020, The Author(s).
T2  - Journal of High Energy Physics
T1  - Search for new neutral Higgs bosons through the H → ZA→ ℓ+ℓ−b b ¯ process in pp collisions at √s = 13 TeV
VL  - 2020
IS  - 3
SP  - 55
DO  - 10.1007/JHEP03(2020)055
ER  - 
@article{
author = "Sirunyan, A.M. and Tumasyan, A. and Adam, W. and Ambrogi, F. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milenović, Predrag and Milošević, Jovan and Stojanović, Milan",
year = "2020",
url = "https://vinar.vin.bg.ac.rs/handle/123456789/8897",
abstract = "This paper reports on a search for an extension to the scalar sector of the standard model, where a new CP-even (odd) boson decays to a Z boson and a lighter CP-odd (even) boson, and the latter further decays to a b quark pair. The Z boson is reconstructed via its decays to electron or muon pairs. The analysed data were recorded in proton-proton collisions at a center-of-mass energy s = 13 TeV, collected by the CMS experiment at the LHC during 2016, corresponding to an integrated luminosity of 35.9 fb−1. Data and predictions from the standard model are in agreement within the uncertainties. Upper limits at 95% confidence level are set on the production cross section times branching fraction, with masses of the new bosons up to 1000 GeV. The results are interpreted in the context of the two-Higgs-doublet model. [Figure not available: see fulltext.]. © 2020, The Author(s).",
journal = "Journal of High Energy Physics",
title = "Search for new neutral Higgs bosons through the H → ZA→ ℓ+ℓ−b b ¯ process in pp collisions at √s = 13 TeV",
volume = "2020",
number = "3",
pages = "55",
doi = "10.1007/JHEP03(2020)055"
}
Sirunyan, A.M., Tumasyan, A., Adam, W., Ambrogi, F., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milenović, P., Milošević, J.,& Stojanović, M. (2020). Search for new neutral Higgs bosons through the H → ZA→ ℓ+ℓ−b b ¯ process in pp collisions at √s = 13 TeV.
Journal of High Energy Physics, 2020(3), 55.
https://doi.org/10.1007/JHEP03(2020)055
Sirunyan A, Tumasyan A, Adam W, Ambrogi F, Adžić P, Ćirković P, Devetak D, Đorđević M, Milenović P, Milošević J, Stojanović M. Search for new neutral Higgs bosons through the H → ZA→ ℓ+ℓ−b b ¯ process in pp collisions at √s = 13 TeV. Journal of High Energy Physics. 2020;2020(3):55
Sirunyan A.M., Tumasyan A., Adam W., Ambrogi F., Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milenović Predrag, Milošević Jovan, Stojanović Milan, "Search for new neutral Higgs bosons through the H → ZA→ ℓ+ℓ−b b ¯ process in pp collisions at √s = 13 TeV" Journal of High Energy Physics, 2020, no. 3 (2020):55,
https://doi.org/10.1007/JHEP03(2020)055 .
1
6
2
7

Measurement of top quark pair production in association with a Z boson in proton-proton collisions at √s = 13 TeV

Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milenović, Predrag; Milošević, Jovan; Stojanović, Milan

(2020)

TY  - JOUR
AU  - Sirunyan, A.M.
AU  - Tumasyan, A.
AU  - Adam, W.
AU  - Ambrogi, F.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
AU  - Milošević, Jovan
AU  - Stojanović, Milan
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8898
AB  - A measurement of the inclusive cross section of top quark pair production in association with a Z boson using proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC is performed. The data sample corresponds to an integrated luminosity of 77.5 fb−1, collected by the CMS experiment during 2016 and 2017. The measurement is performed using final states containing three or four charged leptons (electrons or muons), and the Z boson is detected through its decay to an oppositely charged lepton pair. The production cross section is measured to be σ(t t ¯ Z) = 0.95 ± 0.05 (stat) ± 0.06 (syst) pb. For the first time, differential cross sections are measured as functions of the transverse momentum of the Z boson and the angular distribution of the negatively charged lepton from the Z boson decay. The most stringent direct limits to date on the anomalous couplings of the top quark to the Z boson are presented, including constraints on the Wilson coefficients in the framework of the standard model effective field theory. [Figure not available: see fulltext.] © 2020, The Author(s).
T2  - Journal of High Energy Physics
T1  - Measurement of top quark pair production in association with a Z boson in proton-proton collisions at √s = 13 TeV
VL  - 2020
IS  - 3
SP  - 56
DO  - 10.1007/JHEP03(2020)056
ER  - 
@article{
author = "Sirunyan, A.M. and Tumasyan, A. and Adam, W. and Ambrogi, F. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milenović, Predrag and Milošević, Jovan and Stojanović, Milan",
year = "2020",
url = "https://vinar.vin.bg.ac.rs/handle/123456789/8898",
abstract = "A measurement of the inclusive cross section of top quark pair production in association with a Z boson using proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC is performed. The data sample corresponds to an integrated luminosity of 77.5 fb−1, collected by the CMS experiment during 2016 and 2017. The measurement is performed using final states containing three or four charged leptons (electrons or muons), and the Z boson is detected through its decay to an oppositely charged lepton pair. The production cross section is measured to be σ(t t ¯ Z) = 0.95 ± 0.05 (stat) ± 0.06 (syst) pb. For the first time, differential cross sections are measured as functions of the transverse momentum of the Z boson and the angular distribution of the negatively charged lepton from the Z boson decay. The most stringent direct limits to date on the anomalous couplings of the top quark to the Z boson are presented, including constraints on the Wilson coefficients in the framework of the standard model effective field theory. [Figure not available: see fulltext.] © 2020, The Author(s).",
journal = "Journal of High Energy Physics",
title = "Measurement of top quark pair production in association with a Z boson in proton-proton collisions at √s = 13 TeV",
volume = "2020",
number = "3",
pages = "56",
doi = "10.1007/JHEP03(2020)056"
}
Sirunyan, A.M., Tumasyan, A., Adam, W., Ambrogi, F., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milenović, P., Milošević, J.,& Stojanović, M. (2020). Measurement of top quark pair production in association with a Z boson in proton-proton collisions at √s = 13 TeV.
Journal of High Energy Physics, 2020(3), 56.
https://doi.org/10.1007/JHEP03(2020)056
Sirunyan A, Tumasyan A, Adam W, Ambrogi F, Adžić P, Ćirković P, Devetak D, Đorđević M, Milenović P, Milošević J, Stojanović M. Measurement of top quark pair production in association with a Z boson in proton-proton collisions at √s = 13 TeV. Journal of High Energy Physics. 2020;2020(3):56
Sirunyan A.M., Tumasyan A., Adam W., Ambrogi F., Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milenović Predrag, Milošević Jovan, Stojanović Milan, "Measurement of top quark pair production in association with a Z boson in proton-proton collisions at √s = 13 TeV" Journal of High Energy Physics, 2020, no. 3 (2020):56,
https://doi.org/10.1007/JHEP03(2020)056 .
3
5
38

Search for lepton flavour violating decays of a neutral heavy Higgs boson to μτ and eτ in proton-proton collisions at √s = 13 TeV

Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milenović, Predrag; Milošević, Jovan; Stojanović, Milan

(2020)

TY  - JOUR
AU  - Sirunyan, A.M.
AU  - Tumasyan, A.
AU  - Adam, W.
AU  - Ambrogi, F.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
AU  - Milošević, Jovan
AU  - Stojanović, Milan
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8915
AB  - A search for lepton flavour violating decays of a neutral non-standard-model Higgs boson in the μτ and eτ decay modes is presented. The search is based on proton-proton collisions at a center of mass energy s = 13 TeV collected with the CMS detector in 2016, corresponding to an integrated luminosity of 35.9 fb−1. The τ leptons are reconstructed in the leptonic and hadronic decay modes. No signal is observed in the mass range 200–900 GeV. At 95% confidence level, the observed (expected) upper limits on the production cross section multiplied by the branching fraction vary from 51.9 (57.4) fb to 1.6 (2.1) fb for the μτ and from 94.1 (91.6) fb to 2.3 (2.3) fb for the eτ decay modes. [Figure not available: see fulltext.]. © 2020, The Author(s).
T2  - Journal of High Energy Physics
T1  - Search for lepton flavour violating decays of a neutral heavy Higgs boson to μτ and eτ in proton-proton collisions at √s = 13 TeV
VL  - 2020
IS  - 3
DO  - 10.1007/JHEP03(2020)103
ER  - 
@article{
author = "Sirunyan, A.M. and Tumasyan, A. and Adam, W. and Ambrogi, F. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milenović, Predrag and Milošević, Jovan and Stojanović, Milan",
year = "2020",
url = "https://vinar.vin.bg.ac.rs/handle/123456789/8915",
abstract = "A search for lepton flavour violating decays of a neutral non-standard-model Higgs boson in the μτ and eτ decay modes is presented. The search is based on proton-proton collisions at a center of mass energy s = 13 TeV collected with the CMS detector in 2016, corresponding to an integrated luminosity of 35.9 fb−1. The τ leptons are reconstructed in the leptonic and hadronic decay modes. No signal is observed in the mass range 200–900 GeV. At 95% confidence level, the observed (expected) upper limits on the production cross section multiplied by the branching fraction vary from 51.9 (57.4) fb to 1.6 (2.1) fb for the μτ and from 94.1 (91.6) fb to 2.3 (2.3) fb for the eτ decay modes. [Figure not available: see fulltext.]. © 2020, The Author(s).",
journal = "Journal of High Energy Physics",
title = "Search for lepton flavour violating decays of a neutral heavy Higgs boson to μτ and eτ in proton-proton collisions at √s = 13 TeV",
volume = "2020",
number = "3",
doi = "10.1007/JHEP03(2020)103"
}
Sirunyan, A.M., Tumasyan, A., Adam, W., Ambrogi, F., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milenović, P., Milošević, J.,& Stojanović, M. (2020). Search for lepton flavour violating decays of a neutral heavy Higgs boson to μτ and eτ in proton-proton collisions at √s = 13 TeV.
Journal of High Energy Physics, 2020(3).
https://doi.org/10.1007/JHEP03(2020)103
Sirunyan A, Tumasyan A, Adam W, Ambrogi F, Adžić P, Ćirković P, Devetak D, Đorđević M, Milenović P, Milošević J, Stojanović M. Search for lepton flavour violating decays of a neutral heavy Higgs boson to μτ and eτ in proton-proton collisions at √s = 13 TeV. Journal of High Energy Physics. 2020;2020(3)
Sirunyan A.M., Tumasyan A., Adam W., Ambrogi F., Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milenović Predrag, Milošević Jovan, Stojanović Milan, "Search for lepton flavour violating decays of a neutral heavy Higgs boson to μτ and eτ in proton-proton collisions at √s = 13 TeV" Journal of High Energy Physics, 2020, no. 3 (2020),
https://doi.org/10.1007/JHEP03(2020)103 .
5
4
3
5

Observation of electroweak production of Wγ with two jets in proton-proton collisions at TeV

Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Bergauer, T.; Adžić, Petar; Ćirković, Predrag; Đorđević, Miloš; Milenović, Predrag; Milošević, Jovan

(2020)

TY  - JOUR
AU  - Sirunyan, A.M.
AU  - Tumasyan, A.
AU  - Adam, W.
AU  - Ambrogi, F.
AU  - Bergauer, T.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
AU  - Milošević, Jovan
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8918
AB  - A first observation is presented for the electroweak production of a W boson, a photon, and two jets in proton-proton collisions. The W boson decays are selected by requiring one identified electron or muon and an imbalance in transverse momentum. The two jets are required to have a high dijet mass and a large separation in pseudorapidity. The measurement is based on data collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb−1. The observed (expected) significance for this process is 4.9 (4.6) standard deviations. After combining with previously reported CMS results at 8 TeV, the observed (expected) significance is 5.3 (4.8) standard deviations. The cross section for the electroweak Wγjj production in a restricted fiducial region is measured as 20.4±4.5fb and the total cross section for Wγ production in association with 2 jets in the same fiducial region is 108±16fb. All results are in good agreement with recent theoretical predictions. Constraints are placed on anomalous quartic gauge couplings in terms of dimension-8 effective field theory operators.
T2  - Physics Letters B
T1  - Observation of electroweak production of Wγ with two jets in proton-proton collisions at TeV
VL  - 811 C
SP  - 135988
DO  - 10.1016/j.physletb.2020.135988
ER  - 
@article{
author = "Sirunyan, A.M. and Tumasyan, A. and Adam, W. and Ambrogi, F. and Bergauer, T. and Adžić, Petar and Ćirković, Predrag and Đorđević, Miloš and Milenović, Predrag and Milošević, Jovan",
year = "2020",
url = "https://vinar.vin.bg.ac.rs/handle/123456789/8918",
abstract = "A first observation is presented for the electroweak production of a W boson, a photon, and two jets in proton-proton collisions. The W boson decays are selected by requiring one identified electron or muon and an imbalance in transverse momentum. The two jets are required to have a high dijet mass and a large separation in pseudorapidity. The measurement is based on data collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb−1. The observed (expected) significance for this process is 4.9 (4.6) standard deviations. After combining with previously reported CMS results at 8 TeV, the observed (expected) significance is 5.3 (4.8) standard deviations. The cross section for the electroweak Wγjj production in a restricted fiducial region is measured as 20.4±4.5fb and the total cross section for Wγ production in association with 2 jets in the same fiducial region is 108±16fb. All results are in good agreement with recent theoretical predictions. Constraints are placed on anomalous quartic gauge couplings in terms of dimension-8 effective field theory operators.",
journal = "Physics Letters B",
title = "Observation of electroweak production of Wγ with two jets in proton-proton collisions at TeV",
volume = "811 C",
pages = "135988",
doi = "10.1016/j.physletb.2020.135988"
}
Sirunyan, A.M., Tumasyan, A., Adam, W., Ambrogi, F., Bergauer, T., Adžić, P., Ćirković, P., Đorđević, M., Milenović, P.,& Milošević, J. (2020). Observation of electroweak production of Wγ with two jets in proton-proton collisions at TeV.
Physics Letters B, 811 C, 135988.
https://doi.org/10.1016/j.physletb.2020.135988
Sirunyan A, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Adžić P, Ćirković P, Đorđević M, Milenović P, Milošević J. Observation of electroweak production of Wγ with two jets in proton-proton collisions at TeV. Physics Letters B. 2020;811 C:135988
Sirunyan A.M., Tumasyan A., Adam W., Ambrogi F., Bergauer T., Adžić Petar, Ćirković Predrag, Đorđević Miloš, Milenović Predrag, Milošević Jovan, "Observation of electroweak production of Wγ with two jets in proton-proton collisions at TeV" Physics Letters B, 811 C (2020):135988,
https://doi.org/10.1016/j.physletb.2020.135988 .
1

Search for dijet resonances using events with three jets in proton-proton collisions at s=13TeV

Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Bergauer, T.; Adžić, Petar; Ćirković, Predrag; Đorđević, Miloš; Milenović, Predrag; Milošević, Jovan; Stojanović, Milan

(2020)

TY  - JOUR
AU  - Sirunyan, A.M.
AU  - Tumasyan, A.
AU  - Adam, W.
AU  - Ambrogi, F.
AU  - Bergauer, T.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
AU  - Milošević, Jovan
AU  - Stojanović, Milan
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8947
AB  - A search for a narrow resonance with a mass between 350 and 700 GeV, and decaying into a pair of jets, is performed using proton-proton collision events containing at least three jets. The data sample corresponds to an integrated luminosity of 18.3 fb−1 recorded at s=13TeV with the CMS detector. Data are collected with a technique known as “data scouting”, in which the events are reconstructed, selected, and recorded at a high rate in a compact form by the high-level trigger. The three-jet final state provides sensitivity to lower resonance masses than in previous searches using the data scouting technique. The spectrum of the dijet invariant mass, calculated from the two jets with the largest transverse momenta in the event, is used to search for a resonance. No significant excess over a smoothly falling background is found. Limits at 95% confidence level are set on the production cross section of a narrow dijet resonance and compared with the cross section of a vector dark matter mediator coupling to dark matter particles and quarks. Translating to a model where the narrow resonance interacts only with quarks, upper limits on this coupling range between 0.10 and 0.15, depending on the resonance mass. These results represent the most stringent upper limits in the mass range between 350 and 450 GeV obtained with a flavor-inclusive dijet resonance search.
T2  - Physics Letters B
T1  - Search for dijet resonances using events with three jets in proton-proton collisions at s=13TeV
VL  - 805 C
SP  - 135448
DO  - 10.1016/j.physletb.2020.135448
ER  - 
@article{
author = "Sirunyan, A.M. and Tumasyan, A. and Adam, W. and Ambrogi, F. and Bergauer, T. and Adžić, Petar and Ćirković, Predrag and Đorđević, Miloš and Milenović, Predrag and Milošević, Jovan and Stojanović, Milan",
year = "2020",
url = "https://vinar.vin.bg.ac.rs/handle/123456789/8947",
abstract = "A search for a narrow resonance with a mass between 350 and 700 GeV, and decaying into a pair of jets, is performed using proton-proton collision events containing at least three jets. The data sample corresponds to an integrated luminosity of 18.3 fb−1 recorded at s=13TeV with the CMS detector. Data are collected with a technique known as “data scouting”, in which the events are reconstructed, selected, and recorded at a high rate in a compact form by the high-level trigger. The three-jet final state provides sensitivity to lower resonance masses than in previous searches using the data scouting technique. The spectrum of the dijet invariant mass, calculated from the two jets with the largest transverse momenta in the event, is used to search for a resonance. No significant excess over a smoothly falling background is found. Limits at 95% confidence level are set on the production cross section of a narrow dijet resonance and compared with the cross section of a vector dark matter mediator coupling to dark matter particles and quarks. Translating to a model where the narrow resonance interacts only with quarks, upper limits on this coupling range between 0.10 and 0.15, depending on the resonance mass. These results represent the most stringent upper limits in the mass range between 350 and 450 GeV obtained with a flavor-inclusive dijet resonance search.",
journal = "Physics Letters B",
title = "Search for dijet resonances using events with three jets in proton-proton collisions at s=13TeV",
volume = "805 C",
pages = "135448",
doi = "10.1016/j.physletb.2020.135448"
}
Sirunyan, A.M., Tumasyan, A., Adam, W., Ambrogi, F., Bergauer, T., Adžić, P., Ćirković, P., Đorđević, M., Milenović, P., Milošević, J.,& Stojanović, M. (2020). Search for dijet resonances using events with three jets in proton-proton collisions at s=13TeV.
Physics Letters B, 805 C, 135448.
https://doi.org/10.1016/j.physletb.2020.135448
Sirunyan A, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Adžić P, Ćirković P, Đorđević M, Milenović P, Milošević J, Stojanović M. Search for dijet resonances using events with three jets in proton-proton collisions at s=13TeV. Physics Letters B. 2020;805 C:135448
Sirunyan A.M., Tumasyan A., Adam W., Ambrogi F., Bergauer T., Adžić Petar, Ćirković Predrag, Đorđević Miloš, Milenović Predrag, Milošević Jovan, Stojanović Milan, "Search for dijet resonances using events with three jets in proton-proton collisions at s=13TeV" Physics Letters B, 805 C (2020):135448,
https://doi.org/10.1016/j.physletb.2020.135448 .
1
1
3

A measurement of the Higgs boson mass in the diphoton decay channel

Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Bergauer, T.; Adžić, Petar; Ćirković, Predrag; Đorđević, Miloš; Milenović, Predrag; Milošević, Jovan; Stojanović, Milan

(2020)

TY  - JOUR
AU  - Sirunyan, A.M.
AU  - Tumasyan, A.
AU  - Adam, W.
AU  - Ambrogi, F.
AU  - Bergauer, T.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
AU  - Milošević, Jovan
AU  - Stojanović, Milan
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8948
AB  - A measurement of the mass of the Higgs boson in the diphoton decay channel is presented. This analysis is based on 35.9fb−1 of proton-proton collision data collected during the 2016 LHC running period, with the CMS detector at a centre-of-mass energy of 13 TeV. A refined detector calibration and new analysis techniques have been used to improve the precision of this measurement. The Higgs boson mass is measured to be mH=125.78±0.26GeV. This is combined with a measurement of mH already performed in the H→ZZ→4ℓ decay channel using the same data set, giving mH=125.46±0.16GeV. This result, when further combined with an earlier measurement of mH using data collected in 2011 and 2012 with the CMS detector, gives a value for the Higgs boson mass of mH=125.38±0.14GeV. This is currently the most precise measurement of the mass of the Higgs boson.
T2  - Physics Letters B
T1  - A measurement of the Higgs boson mass in the diphoton decay channel
VL  - 805 C
SP  - 135425
DO  - 10.1016/j.physletb.2020.135425
ER  - 
@article{
author = "Sirunyan, A.M. and Tumasyan, A. and Adam, W. and Ambrogi, F. and Bergauer, T. and Adžić, Petar and Ćirković, Predrag and Đorđević, Miloš and Milenović, Predrag and Milošević, Jovan and Stojanović, Milan",
year = "2020",
url = "https://vinar.vin.bg.ac.rs/handle/123456789/8948",
abstract = "A measurement of the mass of the Higgs boson in the diphoton decay channel is presented. This analysis is based on 35.9fb−1 of proton-proton collision data collected during the 2016 LHC running period, with the CMS detector at a centre-of-mass energy of 13 TeV. A refined detector calibration and new analysis techniques have been used to improve the precision of this measurement. The Higgs boson mass is measured to be mH=125.78±0.26GeV. This is combined with a measurement of mH already performed in the H→ZZ→4ℓ decay channel using the same data set, giving mH=125.46±0.16GeV. This result, when further combined with an earlier measurement of mH using data collected in 2011 and 2012 with the CMS detector, gives a value for the Higgs boson mass of mH=125.38±0.14GeV. This is currently the most precise measurement of the mass of the Higgs boson.",
journal = "Physics Letters B",
title = "A measurement of the Higgs boson mass in the diphoton decay channel",
volume = "805 C",
pages = "135425",
doi = "10.1016/j.physletb.2020.135425"
}
Sirunyan, A.M., Tumasyan, A., Adam, W., Ambrogi, F., Bergauer, T., Adžić, P., Ćirković, P., Đorđević, M., Milenović, P., Milošević, J.,& Stojanović, M. (2020). A measurement of the Higgs boson mass in the diphoton decay channel.
Physics Letters B, 805 C, 135425.
https://doi.org/10.1016/j.physletb.2020.135425
Sirunyan A, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Adžić P, Ćirković P, Đorđević M, Milenović P, Milošević J, Stojanović M. A measurement of the Higgs boson mass in the diphoton decay channel. Physics Letters B. 2020;805 C:135425
Sirunyan A.M., Tumasyan A., Adam W., Ambrogi F., Bergauer T., Adžić Petar, Ćirković Predrag, Đorđević Miloš, Milenović Predrag, Milošević Jovan, Stojanović Milan, "A measurement of the Higgs boson mass in the diphoton decay channel" Physics Letters B, 805 C (2020):135425,
https://doi.org/10.1016/j.physletb.2020.135425 .
3
12
7
17

Search for supersymmetry in pp collisions at s=13 TeV with 137 fb−1 in final states with a single lepton using the sum of masses of large-radius jets

Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Bergauer, T.; Adžić, Petar; Ćirković, Predrag; Đorđević, Miloš; Milenović, Predrag; Milošević, Jovan; Stojanović, Milan

(2020)

TY  - JOUR
AU  - Sirunyan, A. M.
AU  - Tumasyan, A.
AU  - Adam, W.
AU  - Ambrogi, F.
AU  - Bergauer, T.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
AU  - Milošević, Jovan
AU  - Stojanović, Milan
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8949
AB  - Results are reported from a search for new physics beyond the standard model in proton-proton collisions in final states with a single lepton; multiple jets, including at least one jet tagged as originating from the hadronization of a bottom quark; and large missing transverse momentum. The search uses a sample of proton-proton collision data at s=13  TeV, corresponding to 137  fb−1, recorded by the CMS experiment at the LHC. The signal region is divided into categories characterized by the total number of jets, the number of bottom quark jets, the missing transverse momentum, and the sum of masses of large-radius jets. The observed event yields in the signal regions are consistent with estimates of standard model backgrounds based on event yields in the control regions. The results are interpreted in the context of simplified models of supersymmetry involving gluino pair production in which each gluino decays into a top quark-antiquark pair and a stable, unobserved neutralino, which generates missing transverse momentum in the event. Scenarios with gluino masses up to about 2150 GeV are excluded at 95% confidence level (or more) for neutralino masses up to 700 GeV. The highest excluded neutralino mass is about 1250 GeV, which holds for gluino masses around 1850 GeV.
T2  - Physical Review D
T1  - Search for supersymmetry in pp collisions at s=13  TeV with 137  fb−1 in final states with a single lepton using the sum of masses of large-radius jets
VL  - 101
SP  - 052010
DO  - 10.1103/PhysRevD.101.052010
ER  - 
@article{
author = "Sirunyan, A. M. and Tumasyan, A. and Adam, W. and Ambrogi, F. and Bergauer, T. and Adžić, Petar and Ćirković, Predrag and Đorđević, Miloš and Milenović, Predrag and Milošević, Jovan and Stojanović, Milan",
year = "2020",
url = "https://vinar.vin.bg.ac.rs/handle/123456789/8949",
abstract = "Results are reported from a search for new physics beyond the standard model in proton-proton collisions in final states with a single lepton; multiple jets, including at least one jet tagged as originating from the hadronization of a bottom quark; and large missing transverse momentum. The search uses a sample of proton-proton collision data at s=13  TeV, corresponding to 137  fb−1, recorded by the CMS experiment at the LHC. The signal region is divided into categories characterized by the total number of jets, the number of bottom quark jets, the missing transverse momentum, and the sum of masses of large-radius jets. The observed event yields in the signal regions are consistent with estimates of standard model backgrounds based on event yields in the control regions. The results are interpreted in the context of simplified models of supersymmetry involving gluino pair production in which each gluino decays into a top quark-antiquark pair and a stable, unobserved neutralino, which generates missing transverse momentum in the event. Scenarios with gluino masses up to about 2150 GeV are excluded at 95% confidence level (or more) for neutralino masses up to 700 GeV. The highest excluded neutralino mass is about 1250 GeV, which holds for gluino masses around 1850 GeV.",
journal = "Physical Review D",
title = "Search for supersymmetry in pp collisions at s=13  TeV with 137  fb−1 in final states with a single lepton using the sum of masses of large-radius jets",
volume = "101",
pages = "052010",
doi = "10.1103/PhysRevD.101.052010"
}
Sirunyan, A. M., Tumasyan, A., Adam, W., Ambrogi, F., Bergauer, T., Adžić, P., Ćirković, P., Đorđević, M., Milenović, P., Milošević, J.,& Stojanović, M. (2020). Search for supersymmetry in pp collisions at s=13  TeV with 137  fb−1 in final states with a single lepton using the sum of masses of large-radius jets.
Physical Review D, 101, 052010.
https://doi.org/10.1103/PhysRevD.101.052010
Sirunyan A, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Adžić P, Ćirković P, Đorđević M, Milenović P, Milošević J, Stojanović M. Search for supersymmetry in pp collisions at s=13  TeV with 137  fb−1 in final states with a single lepton using the sum of masses of large-radius jets. Physical Review D. 2020;101:052010
Sirunyan A. M., Tumasyan A., Adam W., Ambrogi F., Bergauer T., Adžić Petar, Ćirković Predrag, Đorđević Miloš, Milenović Predrag, Milošević Jovan, Stojanović Milan, "Search for supersymmetry in pp collisions at s=13  TeV with 137  fb−1 in final states with a single lepton using the sum of masses of large-radius jets" Physical Review D, 101 (2020):052010,
https://doi.org/10.1103/PhysRevD.101.052010 .
1
5
7
9

Measurement of the differential Drell-Yan cross section in proton-proton collisions at √s = 13 TeV

Sirunyan, A.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Milenović, Predrag

(2019)

TY  - JOUR
AU  - Sirunyan, A.
AU  - Tumasyan, A.
AU  - Adam, W.
AU  - Ambrogi, F.
AU  - Asilar, E.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Milenović, Predrag
PY  - 2019
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8764
AB  - Measurements of the differential cross section for the Drell-Yan process, based on proton-proton collision data at a centre-of-mass energy of 13 TeV, collected by the CMS experiment, are presented. The data correspond to an integrated luminosity of 2.8 (2.3) fb−1 in the dimuon (dielectron) channel. The total and fiducial cross section measurements are presented as a function of dilepton invariant mass in the range 15 to 3000 GeV, and compared with the perturbative predictions of the standard model. The measured differential cross sections are in good agreement with the theoretical calculations.
T2  - Journal of High Energy Physics
T1  - Measurement of the differential Drell-Yan cross section in proton-proton collisions at √s = 13 TeV
VL  - 2019
IS  - 12
SP  - 1
EP  - 48
DO  - 10.1007/JHEP12(2019)059
ER  - 
@article{
author = "Sirunyan, A. and Tumasyan, A. and Adam, W. and Ambrogi, F. and Asilar, E. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Milenović, Predrag",
year = "2019",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/8764",
abstract = "Measurements of the differential cross section for the Drell-Yan process, based on proton-proton collision data at a centre-of-mass energy of 13 TeV, collected by the CMS experiment, are presented. The data correspond to an integrated luminosity of 2.8 (2.3) fb−1 in the dimuon (dielectron) channel. The total and fiducial cross section measurements are presented as a function of dilepton invariant mass in the range 15 to 3000 GeV, and compared with the perturbative predictions of the standard model. The measured differential cross sections are in good agreement with the theoretical calculations.",
journal = "Journal of High Energy Physics",
title = "Measurement of the differential Drell-Yan cross section in proton-proton collisions at √s = 13 TeV",
volume = "2019",
number = "12",
pages = "1-48",
doi = "10.1007/JHEP12(2019)059"
}
Sirunyan, A., Tumasyan, A., Adam, W., Ambrogi, F., Asilar, E., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milošević, J.,& Milenović, P. (2019). Measurement of the differential Drell-Yan cross section in proton-proton collisions at √s = 13 TeV.
Journal of High Energy Physics, 2019(12), 1-48.
https://doi.org/10.1007/JHEP12(2019)059
Sirunyan A, Tumasyan A, Adam W, Ambrogi F, Asilar E, Adžić P, Ćirković P, Devetak D, Đorđević M, Milošević J, Milenović P. Measurement of the differential Drell-Yan cross section in proton-proton collisions at √s = 13 TeV. Journal of High Energy Physics. 2019;2019(12):1-48
Sirunyan A., Tumasyan A., Adam W., Ambrogi F., Asilar E., Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milošević Jovan, Milenović Predrag, "Measurement of the differential Drell-Yan cross section in proton-proton collisions at √s = 13 TeV" Journal of High Energy Physics, 2019, no. 12 (2019):1-48,
https://doi.org/10.1007/JHEP12(2019)059 .
2
4
1
9

Study of the B +→ J / ψ Λ ¯ p decay in proton-proton collisions at √s = 8 TeV

Sirunyan, A.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Bergauer, T.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milenović, Predrag; Milošević, Jovan; Stojanović, Milan

(2019)

TY  - JOUR
AU  - Sirunyan, A.
AU  - Tumasyan, A.
AU  - Adam, W.
AU  - Ambrogi, F.
AU  - Bergauer, T.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
AU  - Milošević, Jovan
AU  - Stojanović, Milan
PY  - 2019
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8765
AB  - A study of the B +→ J / ψ Λ ¯ p decay using proton-proton collision data collected at s = 8 TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 19.6 fb−1, is presented. The ratio of branching fractions B(B+→J/ψΛ¯p)/B(B+→J/ψK∗(892)+) is measured to be (1.054 ± 0.057(stat) ± 0.035(syst) ± 0.011(B))%, where the last uncertainty reflects the uncertainties in the world-average branching fractions of Λ ¯ and K*(892) + decays to reconstructed final states. The invariant mass distributions of the J / ψ Λ ¯ , J/ψp, and Λ ¯ p systems produced in the B +→ J / ψ Λ¯ p decay are investigated and found to be inconsistent with the pure phase space hypothesis. The analysis is extended by using a model-independent angular amplitude analysis, which shows that the observed invariant mass distributions are consistent with the contributions from excited kaons decaying to the Λ ¯ p system.
T2  - Journal of High Energy Physics
T1  - Study of the B +→ J / ψ Λ ¯ p decay in proton-proton collisions at √s = 8 TeV
VL  - 2019
IS  - 12
SP  - 1
EP  - 38
DO  - 10.1007/JHEP12(2019)100
ER  - 
@article{
author = "Sirunyan, A. and Tumasyan, A. and Adam, W. and Ambrogi, F. and Bergauer, T. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milenović, Predrag and Milošević, Jovan and Stojanović, Milan",
year = "2019",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/8765",
abstract = "A study of the B +→ J / ψ Λ ¯ p decay using proton-proton collision data collected at s = 8 TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 19.6 fb−1, is presented. The ratio of branching fractions B(B+→J/ψΛ¯p)/B(B+→J/ψK∗(892)+) is measured to be (1.054 ± 0.057(stat) ± 0.035(syst) ± 0.011(B))%, where the last uncertainty reflects the uncertainties in the world-average branching fractions of Λ ¯ and K*(892) + decays to reconstructed final states. The invariant mass distributions of the J / ψ Λ ¯ , J/ψp, and Λ ¯ p systems produced in the B +→ J / ψ Λ¯ p decay are investigated and found to be inconsistent with the pure phase space hypothesis. The analysis is extended by using a model-independent angular amplitude analysis, which shows that the observed invariant mass distributions are consistent with the contributions from excited kaons decaying to the Λ ¯ p system.",
journal = "Journal of High Energy Physics",
title = "Study of the B +→ J / ψ Λ ¯ p decay in proton-proton collisions at √s = 8 TeV",
volume = "2019",
number = "12",
pages = "1-38",
doi = "10.1007/JHEP12(2019)100"
}
Sirunyan, A., Tumasyan, A., Adam, W., Ambrogi, F., Bergauer, T., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milenović, P., Milošević, J.,& Stojanović, M. (2019). Study of the B +→ J / ψ Λ ¯ p decay in proton-proton collisions at √s = 8 TeV.
Journal of High Energy Physics, 2019(12), 1-38.
https://doi.org/10.1007/JHEP12(2019)100
Sirunyan A, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Adžić P, Ćirković P, Devetak D, Đorđević M, Milenović P, Milošević J, Stojanović M. Study of the B +→ J / ψ Λ ¯ p decay in proton-proton collisions at √s = 8 TeV. Journal of High Energy Physics. 2019;2019(12):1-38
Sirunyan A., Tumasyan A., Adam W., Ambrogi F., Bergauer T., Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milenović Predrag, Milošević Jovan, Stojanović Milan, "Study of the B +→ J / ψ Λ ¯ p decay in proton-proton collisions at √s = 8 TeV" Journal of High Energy Physics, 2019, no. 12 (2019):1-38,
https://doi.org/10.1007/JHEP12(2019)100 .
2
2
3

Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at √s=13 TeV

Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Bergauer, T.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milenović, Predrag; Milošević, Jovan; Stojanović, Milan

(2019)

TY  - JOUR
AU  - Sirunyan, A. M.
AU  - Tumasyan, A.
AU  - Adam, W.
AU  - Ambrogi, F.
AU  - Bergauer, T.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
AU  - Milošević, Jovan
AU  - Stojanović, Milan
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8796
AB  - A search for low mass narrow vector resonances decaying into quark-antiquark pairs is presented. The analysis is based on data collected in 2017 with the CMS detector at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 41.1 fb-1. The results of this analysis are combined with those of an earlier analysis based on data collected at the same collision energy in 2016, corresponding to 35.9 fb-1. Signal candidates will be recoiling against initial state radiation and are identified as energetic, large-radius jets with two pronged substructure. The invariant jet mass spectrum is probed for a potential narrow peaking signal over a smoothly falling background. No evidence for such resonances is observed within the mass range of 50-450 GeV. Upper limits at the 95%confidence level are set on the coupling of narrow resonances to quarks, as a function of the resonance mass. For masses between 50 and 300 GeV these are the most sensitive limits to date. This analysis extends the earlier search to a mass range of 300-450 GeV, which is probed for the first time with jet substructure techniques.
T2  - Physical Review D
T1  - Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at √s=13 TeV
VL  - 100
SP  - 112007
DO  - 10.1103/PhysRevD.100.112007
ER  - 
@article{
author = "Sirunyan, A. M. and Tumasyan, A. and Adam, W. and Ambrogi, F. and Bergauer, T. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milenović, Predrag and Milošević, Jovan and Stojanović, Milan",
year = "2019",
url = "https://vinar.vin.bg.ac.rs/handle/123456789/8796",
abstract = "A search for low mass narrow vector resonances decaying into quark-antiquark pairs is presented. The analysis is based on data collected in 2017 with the CMS detector at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 41.1 fb-1. The results of this analysis are combined with those of an earlier analysis based on data collected at the same collision energy in 2016, corresponding to 35.9 fb-1. Signal candidates will be recoiling against initial state radiation and are identified as energetic, large-radius jets with two pronged substructure. The invariant jet mass spectrum is probed for a potential narrow peaking signal over a smoothly falling background. No evidence for such resonances is observed within the mass range of 50-450 GeV. Upper limits at the 95%confidence level are set on the coupling of narrow resonances to quarks, as a function of the resonance mass. For masses between 50 and 300 GeV these are the most sensitive limits to date. This analysis extends the earlier search to a mass range of 300-450 GeV, which is probed for the first time with jet substructure techniques.",
journal = "Physical Review D",
title = "Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at √s=13 TeV",
volume = "100",
pages = "112007",
doi = "10.1103/PhysRevD.100.112007"
}
Sirunyan, A. M., Tumasyan, A., Adam, W., Ambrogi, F., Bergauer, T., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milenović, P., Milošević, J.,& Stojanović, M. (2019). Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at √s=13 TeV.
Physical Review D, 100, 112007.
https://doi.org/10.1103/PhysRevD.100.112007
Sirunyan A, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Adžić P, Ćirković P, Devetak D, Đorđević M, Milenović P, Milošević J, Stojanović M. Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at √s=13 TeV. Physical Review D. 2019;100:112007
Sirunyan A. M., Tumasyan A., Adam W., Ambrogi F., Bergauer T., Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milenović Predrag, Milošević Jovan, Stojanović Milan, "Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at √s=13 TeV" Physical Review D, 100 (2019):112007,
https://doi.org/10.1103/PhysRevD.100.112007 .
8
1
14

Probing the chiral magnetic wave in pPb and PbPb collisions at √SNN = 5.02 TeV using charge-dependent azimuthal anisotropies

Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Bergauer, T.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milenović, Predrag; Milošević, Jovan; Stojanović, Milan

(2019)

TY  - JOUR
AU  - Sirunyan, A. M.
AU  - Tumasyan, A.
AU  - Adam, W.
AU  - Ambrogi, F.
AU  - Bergauer, T.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
AU  - Milošević, Jovan
AU  - Stojanović, Milan
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8797
AB  - Charge-dependent anisotropy Fourier coefficients (νn) of particle azimuthal distributions are measured in pPb and PbPb collisions at √SNN = 5.02 TeV with the CMS detector at the LHC. The normalized difference in the second-order anisotropy coefficients (ν2) between positively and negatively charged particles is found to depend linearly on the observed event charge asymmetry with comparable slopes for both pPb and PbPb collisions over a wide range of charged particle multiplicity. In PbPb, the third-order anisotropy coefficient ν3 shows a similar linear dependence with the same slope as seen for ν2. The observed similarities between the ν2 slopes for pPb and PbPb, as well as the similar slopes for ν2 and ν3 in PbPb, are compatible with expectations based on local charge conservation in the decay of clusters or resonances, and constitute a challenge to the hypothesis that, at LHC energies, the observed charge asymmetry dependence of ν2 in heavy ion collisions arises from a chiral magnetic wave.
T2  - Physical Review C
T1  - Probing the chiral magnetic wave in pPb and PbPb collisions at √SNN = 5.02 TeV using charge-dependent azimuthal anisotropies
VL  - 100
IS  - 6
SP  - 064908
DO  - 10.1103/PhysRevC.100.064908
ER  - 
@article{
author = "Sirunyan, A. M. and Tumasyan, A. and Adam, W. and Ambrogi, F. and Bergauer, T. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milenović, Predrag and Milošević, Jovan and Stojanović, Milan",
year = "2019",
url = "https://vinar.vin.bg.ac.rs/handle/123456789/8797",
abstract = "Charge-dependent anisotropy Fourier coefficients (νn) of particle azimuthal distributions are measured in pPb and PbPb collisions at √SNN = 5.02 TeV with the CMS detector at the LHC. The normalized difference in the second-order anisotropy coefficients (ν2) between positively and negatively charged particles is found to depend linearly on the observed event charge asymmetry with comparable slopes for both pPb and PbPb collisions over a wide range of charged particle multiplicity. In PbPb, the third-order anisotropy coefficient ν3 shows a similar linear dependence with the same slope as seen for ν2. The observed similarities between the ν2 slopes for pPb and PbPb, as well as the similar slopes for ν2 and ν3 in PbPb, are compatible with expectations based on local charge conservation in the decay of clusters or resonances, and constitute a challenge to the hypothesis that, at LHC energies, the observed charge asymmetry dependence of ν2 in heavy ion collisions arises from a chiral magnetic wave.",
journal = "Physical Review C",
title = "Probing the chiral magnetic wave in pPb and PbPb collisions at √SNN = 5.02 TeV using charge-dependent azimuthal anisotropies",
volume = "100",
number = "6",
pages = "064908",
doi = "10.1103/PhysRevC.100.064908"
}
Sirunyan, A. M., Tumasyan, A., Adam, W., Ambrogi, F., Bergauer, T., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milenović, P., Milošević, J.,& Stojanović, M. (2019). Probing the chiral magnetic wave in pPb and PbPb collisions at √SNN = 5.02 TeV using charge-dependent azimuthal anisotropies.
Physical Review C, 100(6), 064908.
https://doi.org/10.1103/PhysRevC.100.064908
Sirunyan A, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Adžić P, Ćirković P, Devetak D, Đorđević M, Milenović P, Milošević J, Stojanović M. Probing the chiral magnetic wave in pPb and PbPb collisions at √SNN = 5.02 TeV using charge-dependent azimuthal anisotropies. Physical Review C. 2019;100(6):064908
Sirunyan A. M., Tumasyan A., Adam W., Ambrogi F., Bergauer T., Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milenović Predrag, Milošević Jovan, Stojanović Milan, "Probing the chiral magnetic wave in pPb and PbPb collisions at √SNN = 5.02 TeV using charge-dependent azimuthal anisotropies" Physical Review C, 100, no. 6 (2019):064908,
https://doi.org/10.1103/PhysRevC.100.064908 .
1
5
5
6

Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at s=13TeV

Sirunyan, A M; Tumasyan, A; Adam, W; Ambrogi, F; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan

(2019)

TY  - JOUR
AU  - Sirunyan, A M
AU  - Tumasyan, A
AU  - Adam, W
AU  - Ambrogi, F
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
PY  - 2019
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8166
AB  - A search for invisible decays of a Higgs boson is performed using proton-proton collision data collected with the CMS detector at the LHC in 2016 at a center-of-mass energy s=13TeV, corresponding to an integrated luminosity of 35.9fb−1. The search targets the production of a Higgs boson via vector boson fusion. The data are found to be in agreement with the background contributions from standard model processes. An observed (expected) upper limit of 0.33 (0.25), at 95% confidence level, is placed on the branching fraction of the Higgs boson decay to invisible particles, assuming standard model production rates and a Higgs boson mass of 125.09 GeV. Results from a combination of this analysis and other direct searches for invisible decays of the Higgs boson, performed using data collected at s=7, 8, and 13 TeV, are presented. An observed (expected) upper limit of 0.19 (0.15), at 95% confidence level, is set on the branching fraction of invisible decays of the Higgs boson. The combined limit represents the most stringent bound on the invisible branching fraction of the Higgs boson reported to date. This result is also interpreted in the context of Higgs-portal dark matter models, in which upper bounds are placed on the spin-independent dark-matter-nucleon scattering cross section. © 2019 The Author(s)
T2  - Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
T1  - Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at s=13TeV
VL  - 793
SP  - 520
EP  - 551
DO  - 10.1016/j.physletb.2019.04.025
ER  - 
@article{
author = "Sirunyan, A M and Tumasyan, A and Adam, W and Ambrogi, F and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan",
year = "2019",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/8166",
abstract = "A search for invisible decays of a Higgs boson is performed using proton-proton collision data collected with the CMS detector at the LHC in 2016 at a center-of-mass energy s=13TeV, corresponding to an integrated luminosity of 35.9fb−1. The search targets the production of a Higgs boson via vector boson fusion. The data are found to be in agreement with the background contributions from standard model processes. An observed (expected) upper limit of 0.33 (0.25), at 95% confidence level, is placed on the branching fraction of the Higgs boson decay to invisible particles, assuming standard model production rates and a Higgs boson mass of 125.09 GeV. Results from a combination of this analysis and other direct searches for invisible decays of the Higgs boson, performed using data collected at s=7, 8, and 13 TeV, are presented. An observed (expected) upper limit of 0.19 (0.15), at 95% confidence level, is set on the branching fraction of invisible decays of the Higgs boson. The combined limit represents the most stringent bound on the invisible branching fraction of the Higgs boson reported to date. This result is also interpreted in the context of Higgs-portal dark matter models, in which upper bounds are placed on the spin-independent dark-matter-nucleon scattering cross section. © 2019 The Author(s)",
journal = "Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics",
title = "Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at s=13TeV",
volume = "793",
pages = "520-551",
doi = "10.1016/j.physletb.2019.04.025"
}
Sirunyan, A. M., Tumasyan, A., Adam, W., Ambrogi, F., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M.,& Milošević, J. (2019). Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at s=13TeV.
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 793, 520-551.
https://doi.org/10.1016/j.physletb.2019.04.025
Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Adžić P, Ćirković P, Devetak D, Đorđević M, Milošević J. Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at s=13TeV. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. 2019;793:520-551
Sirunyan A M, Tumasyan A, Adam W, Ambrogi F, Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milošević Jovan, "Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at s=13TeV" Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 793 (2019):520-551,
https://doi.org/10.1016/j.physletb.2019.04.025 .
3
52
80
97

Search for resonant production of second-generation sleptons with same-sign dimuon events in proton–proton collisions at √s=13TeV

Sirunyan, A M; Tumasyan, A; Adam, W; Ambrogi, F; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan

(2019)

TY  - JOUR
AU  - Sirunyan, A M
AU  - Tumasyan, A
AU  - Adam, W
AU  - Ambrogi, F
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
PY  - 2019
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8143
AB  - A search is presented for resonant production of second-generation sleptons (μ~ L , ν~ μ ) via the R-parity-violating coupling λ211′ to quarks, in events with two same-sign muons and at least two jets in the final state. The smuon (muon sneutrino) is expected to decay into a muon and a neutralino (chargino), which will then decay into a second muon and at least two jets. The analysis is based on the 2016 data set of proton-proton collisions at s=13TeV recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9fb-1. No significant deviation is observed with respect to standard model expectations. Upper limits on cross sections, ranging from 0.24 to 730fb, are derived in the context of two simplified models representing the dominant signal contributions leading to a same-sign muon pair. The cross section limits are translated into coupling limits for a modified constrained minimal supersymmetric model with λ211′ as the only nonzero R-parity violating coupling. The results significantly extend restrictions of the parameter space compared with previous searches for similar models. © 2019, CERN for the benefit of the CMS collaboration.
T2  - European Physical Journal C
T1  - Search for resonant production of second-generation sleptons with same-sign dimuon events in proton–proton collisions at √s=13TeV
VL  - 79
IS  - 4
DO  - 10.1140/epjc/s10052-019-6800-x
ER  - 
@article{
author = "Sirunyan, A M and Tumasyan, A and Adam, W and Ambrogi, F and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan",
year = "2019",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/8143",
abstract = "A search is presented for resonant production of second-generation sleptons (μ~ L , ν~ μ ) via the R-parity-violating coupling λ211′ to quarks, in events with two same-sign muons and at least two jets in the final state. The smuon (muon sneutrino) is expected to decay into a muon and a neutralino (chargino), which will then decay into a second muon and at least two jets. The analysis is based on the 2016 data set of proton-proton collisions at s=13TeV recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9fb-1. No significant deviation is observed with respect to standard model expectations. Upper limits on cross sections, ranging from 0.24 to 730fb, are derived in the context of two simplified models representing the dominant signal contributions leading to a same-sign muon pair. The cross section limits are translated into coupling limits for a modified constrained minimal supersymmetric model with λ211′ as the only nonzero R-parity violating coupling. The results significantly extend restrictions of the parameter space compared with previous searches for similar models. © 2019, CERN for the benefit of the CMS collaboration.",
journal = "European Physical Journal C",
title = "Search for resonant production of second-generation sleptons with same-sign dimuon events in proton–proton collisions at √s=13TeV",
volume = "79",
number = "4",
doi = "10.1140/epjc/s10052-019-6800-x"
}
Sirunyan, A. M., Tumasyan, A., Adam, W., Ambrogi, F., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M.,& Milošević, J. (2019). Search for resonant production of second-generation sleptons with same-sign dimuon events in proton–proton collisions at √s=13TeV.
European Physical Journal C, 79(4).
https://doi.org/10.1140/epjc/s10052-019-6800-x
Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Adžić P, Ćirković P, Devetak D, Đorđević M, Milošević J. Search for resonant production of second-generation sleptons with same-sign dimuon events in proton–proton collisions at √s=13TeV. European Physical Journal C. 2019;79(4)
Sirunyan A M, Tumasyan A, Adam W, Ambrogi F, Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milošević Jovan, "Search for resonant production of second-generation sleptons with same-sign dimuon events in proton–proton collisions at √s=13TeV" European Physical Journal C, 79, no. 4 (2019),
https://doi.org/10.1140/epjc/s10052-019-6800-x .
1
2
1
2

Measurement of the top quark mass in the all-jets final state at √s=13TeV and combination with the lepton+jets channel

Sirunyan, A M; Tumasyan, A; Adam, W; Ambrogi, F; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milenović, Predrag; Milošević, Jovan

(2019)

TY  - JOUR
AU  - Sirunyan, A M
AU  - Tumasyan, A
AU  - Adam, W
AU  - Ambrogi, F
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
AU  - Milošević, Jovan
PY  - 2019
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8142
AB  - A top quark mass measurement is performed using 35.9fb-1 of LHC proton–proton collision data collected with the CMS detector at s=13TeV. The measurement uses the t t ¯ all-jets final state. A kinematic fit is performed to reconstruct the decay of the t t ¯ system and suppress the multijet background. Using the ideogram method, the top quark mass (m t ) is determined, simultaneously constraining an additional jet energy scale factor (JSF). The resulting value of mt=172.34±0.20(stat+JSF)±0.70(syst)GeV is in good agreement with previous measurements. In addition, a combined measurement that uses the t t ¯ lepton+jets and all-jets final states is presented, using the same mass extraction method, and provides an m t measurement of 172.26±0.07(stat+JSF)±0.61(syst)GeV. This is the first combined m t extraction from the lepton+jets and all-jets channels through a single likelihood function. © 2019, CERN for the benefit of the CMS collaboration.
T2  - European Physical Journal C
T1  - Measurement of the top quark mass in the all-jets final state at √s=13TeV and combination with the lepton+jets channel
VL  - 79
IS  - 4
DO  - 10.1140/epjc/s10052-019-6788-2
ER  - 
@article{
author = "Sirunyan, A M and Tumasyan, A and Adam, W and Ambrogi, F and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milenović, Predrag and Milošević, Jovan",
year = "2019",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/8142",
abstract = "A top quark mass measurement is performed using 35.9fb-1 of LHC proton–proton collision data collected with the CMS detector at s=13TeV. The measurement uses the t t ¯ all-jets final state. A kinematic fit is performed to reconstruct the decay of the t t ¯ system and suppress the multijet background. Using the ideogram method, the top quark mass (m t ) is determined, simultaneously constraining an additional jet energy scale factor (JSF). The resulting value of mt=172.34±0.20(stat+JSF)±0.70(syst)GeV is in good agreement with previous measurements. In addition, a combined measurement that uses the t t ¯ lepton+jets and all-jets final states is presented, using the same mass extraction method, and provides an m t measurement of 172.26±0.07(stat+JSF)±0.61(syst)GeV. This is the first combined m t extraction from the lepton+jets and all-jets channels through a single likelihood function. © 2019, CERN for the benefit of the CMS collaboration.",
journal = "European Physical Journal C",
title = "Measurement of the top quark mass in the all-jets final state at √s=13TeV and combination with the lepton+jets channel",
volume = "79",
number = "4",
doi = "10.1140/epjc/s10052-019-6788-2"
}
Sirunyan, A. M., Tumasyan, A., Adam, W., Ambrogi, F., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milenović, P.,& Milošević, J. (2019). Measurement of the top quark mass in the all-jets final state at √s=13TeV and combination with the lepton+jets channel.
European Physical Journal C, 79(4).
https://doi.org/10.1140/epjc/s10052-019-6788-2
Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Adžić P, Ćirković P, Devetak D, Đorđević M, Milenović P, Milošević J. Measurement of the top quark mass in the all-jets final state at √s=13TeV and combination with the lepton+jets channel. European Physical Journal C. 2019;79(4)
Sirunyan A M, Tumasyan A, Adam W, Ambrogi F, Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milenović Predrag, Milošević Jovan, "Measurement of the top quark mass in the all-jets final state at √s=13TeV and combination with the lepton+jets channel" European Physical Journal C, 79, no. 4 (2019),
https://doi.org/10.1140/epjc/s10052-019-6788-2 .
1
10
10
16

Search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks in proton–proton collisions at √s=13Te

Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan

(2019)

TY  - JOUR
AU  - Sirunyan, A. M.
AU  - Tumasyan, A.
AU  - Adam, W.
AU  - Ambrogi, F.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
PY  - 2019
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8124
AB  - A search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks is performed in proton–proton collisions at a center-of-mass energy of 13Te collected with the CMS detector at the LHC. The analyzed data sample corresponds to an integrated luminosity of 35.9fb-1. The signal is characterized by a large missing transverse momentum recoiling against a bottom quark–antiquark system that has a large Lorentz boost. The number of events observed in the data is consistent with the standard model background prediction. Results are interpreted in terms of limits both on parameters of the type-2 two-Higgs doublet model extended by an additional light pseudoscalar boson a (2HDM+a) and on parameters of a baryonic Z ′ simplified model. The 2HDM+a model is tested experimentally for the first time. For the baryonic Z ′ model, the presented results constitute the most stringent constraints to date. © 2019, CERN for the benefit of the CMS collaboration.
T2  - European Physical Journal C
T1  - Search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks in proton–proton collisions at √s=13Te
VL  - 79
IS  - 3
DO  - 10.1140/epjc/s10052-019-6730-7
ER  - 
@article{
author = "Sirunyan, A. M. and Tumasyan, A. and Adam, W. and Ambrogi, F. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan",
year = "2019",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/8124",
abstract = "A search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks is performed in proton–proton collisions at a center-of-mass energy of 13Te collected with the CMS detector at the LHC. The analyzed data sample corresponds to an integrated luminosity of 35.9fb-1. The signal is characterized by a large missing transverse momentum recoiling against a bottom quark–antiquark system that has a large Lorentz boost. The number of events observed in the data is consistent with the standard model background prediction. Results are interpreted in terms of limits both on parameters of the type-2 two-Higgs doublet model extended by an additional light pseudoscalar boson a (2HDM+a) and on parameters of a baryonic Z ′ simplified model. The 2HDM+a model is tested experimentally for the first time. For the baryonic Z ′ model, the presented results constitute the most stringent constraints to date. © 2019, CERN for the benefit of the CMS collaboration.",
journal = "European Physical Journal C",
title = "Search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks in proton–proton collisions at √s=13Te",
volume = "79",
number = "3",
doi = "10.1140/epjc/s10052-019-6730-7"
}
Sirunyan, A. M., Tumasyan, A., Adam, W., Ambrogi, F., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M.,& Milošević, J. (2019). Search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks in proton–proton collisions at √s=13Te.
European Physical Journal C, 79(3).
https://doi.org/10.1140/epjc/s10052-019-6730-7
Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Adžić P, Ćirković P, Devetak D, Đorđević M, Milošević J. Search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks in proton–proton collisions at √s=13Te. European Physical Journal C. 2019;79(3)
Sirunyan A. M., Tumasyan A., Adam W., Ambrogi F., Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milošević Jovan, "Search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks in proton–proton collisions at √s=13Te" European Physical Journal C, 79, no. 3 (2019),
https://doi.org/10.1140/epjc/s10052-019-6730-7 .
4
8
9
14