Dimitrijević, Suzana I.

Link to this page

Authority KeyName Variants
orcid::0000-0001-6849-6936
  • Dimitrijević, Suzana I. (29)
  • Dimitrijević-Branković, Suzana I. (23)
Projects
Materials of Reduced Dimensions for Efficient Light Harvesting and Energy conversion Application of biotechnological methods for sustainable exploitation of by-products of agro-industry
Size-, shape- and structure- dependent properties of nanoparticles and nanocomposites Advanced technologies for monitoring and environmental protection from chemical pollutants and radiation burden
Synthesis, processing and applications of nanostructured multifunctional materials with defined properties ANID CONICYT PIA/APOYO CCTE [AFB170007]
Physics of collisions and photo processes in atomic, (bio)molecular and nanosized systems Investigation of the effect of parameters of synthesis and processing on dielectric, optical and magnetic properties, both bulk and surface of crystal and polymeric systems
[20120810] [20120810], [20131218]
[20131218] COST-European Cooperation in Science and Technology
COST-European Cooperation in Science and Technology [1403, 1304] DISCO beamline of Synchrotron SOLEIL (France) [20120810]
Environment conscious energy efficient building project - EU [TAMOP-4.2.2.A-11/1/KONV-2012-0068], European Social Foundation Studies of enzyme interactions with toxic and pharmacologically active molecules
Chemical and structural designing of nanomaterials for application in medicine and tissue engineering Directed synthesis, structure and properties of multifunctional materials
Synthesis and characterization of novel functional polymers and polymeric nanocomposites Regeneracija skeletnih tkiva pomognuta biomaterijalima kao tkivnim matricama - in vivo i in vitro studija
Razvoj nanokompozita na bazi hidrogelova za primene u rekonstruktivnoj hirurgiji Ministry of Education, University and Research of the Republic of Italy [RS13MO4], National Technological Cluster of Ministry of University and Research (MIUR)
Ministry of Science and Environmental Protection of the Republic of Serbia Ministry of Science and Environmental Protection of the Republic of Serbia, [142050]
Ministry of Science and Environment of Republic of Serbia [142066], Eureka project NANOVISION [E! 4043] Ministry of Science and Technological Development, Republic of Serbia [141013]
Ministry of Science of Republic of Serbia [142066], Eureka [EI 4043] Ministry of Science of the Republic of Serbia [TR19007, 142066, E !4043-NANOVISION]
University of West Hungary [TAMOP 4.2.1.B-09/1/KONV-2010-0006], EU/European Social Foundation [TAMOP 4.2.2.B-10/1-2010] U.S. Department of Energy [DE-FG02-08ER64624]

Author's Bibliography

Tailoring the physico-chemical and antimicrobial properties of agar-based films by in situ formation of Cu-mineral phase

Radovanović, Neda; Malagurski, Ivana; Lević, Steva; Gordić, Milan V.; Petrović, Jelena M.; Pavlović, Vladimir B.; Mitrić, Miodrag; Nešić, Aleksandra; Dimitrijević-Branković, Suzana I.

(2019)

TY  - JOUR
AU  - Radovanović, Neda
AU  - Malagurski, Ivana
AU  - Lević, Steva
AU  - Gordić, Milan V.
AU  - Petrović, Jelena M.
AU  - Pavlović, Vladimir B.
AU  - Mitrić, Miodrag
AU  - Nešić, Aleksandra
AU  - Dimitrijević-Branković, Suzana I.
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8454
AB  - New agar-based composite films with increasing Cu-carbonate and Cu-phosphate mineral phase content were prepared by in situ mineralization and solvent casting method. SEM and optical analysis revealed that Cu-carbonate phase had better compatibility with agar matrix than Cu-phosphate phase. Incorporation of both mineral phases improved mechanical and water vapor barrier properties of the obtained mineralized films, in concentration dependent manner. When 5 mM of carbonate precursor was incorporated into agar matrix, mechanical resistance was enchanced for 44% and water vapor barrier property for 40%. The release of Cu (II) was higher in acidic conditions for both mineralized composites and remained in the range of specific release limits for this metal. In addition, both mineralized composite films exhibited distinctive antimicrobial activity against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. Overall, the Cu-carbonate and Cu-phosphate mineralized agar films showed potential to be used for food packaging materials, agriculture or medical purposes. © 2019 Elsevier Ltd
T2  - European Polymer Journal
T1  - Tailoring the physico-chemical and antimicrobial properties of agar-based films by in situ formation of Cu-mineral phase
VL  - 119
SP  - 352
EP  - 358
DO  - 10.1016/j.eurpolymj.2019.08.004
ER  - 
@article{
author = "Radovanović, Neda and Malagurski, Ivana and Lević, Steva and Gordić, Milan V. and Petrović, Jelena M. and Pavlović, Vladimir B. and Mitrić, Miodrag and Nešić, Aleksandra and Dimitrijević-Branković, Suzana I.",
year = "2019",
abstract = "New agar-based composite films with increasing Cu-carbonate and Cu-phosphate mineral phase content were prepared by in situ mineralization and solvent casting method. SEM and optical analysis revealed that Cu-carbonate phase had better compatibility with agar matrix than Cu-phosphate phase. Incorporation of both mineral phases improved mechanical and water vapor barrier properties of the obtained mineralized films, in concentration dependent manner. When 5 mM of carbonate precursor was incorporated into agar matrix, mechanical resistance was enchanced for 44% and water vapor barrier property for 40%. The release of Cu (II) was higher in acidic conditions for both mineralized composites and remained in the range of specific release limits for this metal. In addition, both mineralized composite films exhibited distinctive antimicrobial activity against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. Overall, the Cu-carbonate and Cu-phosphate mineralized agar films showed potential to be used for food packaging materials, agriculture or medical purposes. © 2019 Elsevier Ltd",
journal = "European Polymer Journal",
title = "Tailoring the physico-chemical and antimicrobial properties of agar-based films by in situ formation of Cu-mineral phase",
volume = "119",
pages = "352-358",
doi = "10.1016/j.eurpolymj.2019.08.004"
}
Radovanović, N., Malagurski, I., Lević, S., Gordić, M. V., Petrović, J. M., Pavlović, V. B., Mitrić, M., Nešić, A.,& Dimitrijević-Branković, S. I.. (2019). Tailoring the physico-chemical and antimicrobial properties of agar-based films by in situ formation of Cu-mineral phase. in European Polymer Journal, 119, 352-358.
https://doi.org/10.1016/j.eurpolymj.2019.08.004
Radovanović N, Malagurski I, Lević S, Gordić MV, Petrović JM, Pavlović VB, Mitrić M, Nešić A, Dimitrijević-Branković SI. Tailoring the physico-chemical and antimicrobial properties of agar-based films by in situ formation of Cu-mineral phase. in European Polymer Journal. 2019;119:352-358.
doi:10.1016/j.eurpolymj.2019.08.004 .
Radovanović, Neda, Malagurski, Ivana, Lević, Steva, Gordić, Milan V., Petrović, Jelena M., Pavlović, Vladimir B., Mitrić, Miodrag, Nešić, Aleksandra, Dimitrijević-Branković, Suzana I., "Tailoring the physico-chemical and antimicrobial properties of agar-based films by in situ formation of Cu-mineral phase" in European Polymer Journal, 119 (2019):352-358,
https://doi.org/10.1016/j.eurpolymj.2019.08.004 . .
3
4
5
4

Prospect of Polysaccharide-Based Materials as Advanced Food Packaging

Nešić, Aleksandra; Cabrera-Barjas, Gustavo; Dimitrijević-Branković, Suzana I.; Davidović, Slađana Z.; Radovanović, Neda; Delattre, Cédric

(2019)

TY  - JOUR
AU  - Nešić, Aleksandra
AU  - Cabrera-Barjas, Gustavo
AU  - Dimitrijević-Branković, Suzana I.
AU  - Davidović, Slađana Z.
AU  - Radovanović, Neda
AU  - Delattre, Cédric
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8800
AB  - The use of polysaccharide-based materials presents an eco-friendly technological solution, by reducing dependence on fossil resources while reducing a product’s carbon footprint, when compared to conventional plastic packaging materials. This review discusses the potential of polysaccharides as a raw material to produce multifunctional materials for food packaging applications. The covered areas include the recent innovations and properties of the polysaccharide-based materials. Emphasis is given to hemicelluloses, marine polysaccharides, and bacterial exopolysaccharides and their potential application in the latest trends of food packaging materials, including edible coatings, intelligent films, and thermo-insulated aerogel packaging.
T2  - Molecules
T1  - Prospect of Polysaccharide-Based Materials as Advanced Food Packaging
VL  - 25
IS  - 1
SP  - 135
DO  - 10.3390/molecules25010135
ER  - 
@article{
author = "Nešić, Aleksandra and Cabrera-Barjas, Gustavo and Dimitrijević-Branković, Suzana I. and Davidović, Slađana Z. and Radovanović, Neda and Delattre, Cédric",
year = "2019",
abstract = "The use of polysaccharide-based materials presents an eco-friendly technological solution, by reducing dependence on fossil resources while reducing a product’s carbon footprint, when compared to conventional plastic packaging materials. This review discusses the potential of polysaccharides as a raw material to produce multifunctional materials for food packaging applications. The covered areas include the recent innovations and properties of the polysaccharide-based materials. Emphasis is given to hemicelluloses, marine polysaccharides, and bacterial exopolysaccharides and their potential application in the latest trends of food packaging materials, including edible coatings, intelligent films, and thermo-insulated aerogel packaging.",
journal = "Molecules",
title = "Prospect of Polysaccharide-Based Materials as Advanced Food Packaging",
volume = "25",
number = "1",
pages = "135",
doi = "10.3390/molecules25010135"
}
Nešić, A., Cabrera-Barjas, G., Dimitrijević-Branković, S. I., Davidović, S. Z., Radovanović, N.,& Delattre, C.. (2019). Prospect of Polysaccharide-Based Materials as Advanced Food Packaging. in Molecules, 25(1), 135.
https://doi.org/10.3390/molecules25010135
Nešić A, Cabrera-Barjas G, Dimitrijević-Branković SI, Davidović SZ, Radovanović N, Delattre C. Prospect of Polysaccharide-Based Materials as Advanced Food Packaging. in Molecules. 2019;25(1):135.
doi:10.3390/molecules25010135 .
Nešić, Aleksandra, Cabrera-Barjas, Gustavo, Dimitrijević-Branković, Suzana I., Davidović, Slađana Z., Radovanović, Neda, Delattre, Cédric, "Prospect of Polysaccharide-Based Materials as Advanced Food Packaging" in Molecules, 25, no. 1 (2019):135,
https://doi.org/10.3390/molecules25010135 . .
91
63
66

Size‐dependent antibacterial properties of Ag nanoparticles supported by amino‐functionalized poly(GMA‐ co ‐EGDMA) polymer

Vukoje, Ivana D.; Džunuzović, Enis S.; Dimitrijević, Suzana I.; Ahrenkiel, Scott Phillip; Nedeljković, Jovan

(2019)

TY  - JOUR
AU  - Vukoje, Ivana D.
AU  - Džunuzović, Enis S.
AU  - Dimitrijević, Suzana I.
AU  - Ahrenkiel, Scott Phillip
AU  - Nedeljković, Jovan
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8449
AB  - Size-dependent antimicrobial ability of silver nanoparticles (Ag NPs) supported by amino-functionalized poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (poly(GMA-co-EGDMA)) macroporous copolymer was tested against Gram-negative bacteria Escherichia coli. Inorganic/organic hybrids with distinctly different average sizes of Ag NPs (6.6 and 12.1 nm) were prepared by functionalization of poly(GMA-co-EGDMA) with either 1,8-diaminooctane or ammonia, and consequent reduction of silver ions with amino groups. The transmission electron microscopy (TEM), infrared and UV–Vis reflection spectroscopy, elemental analysis, and inductively coupled plasma atomic emission measurements were used to characterize synthesized hybrid materials. Time- and concentration-dependent antimicrobial performances of prepared samples revealed higher reduction rates of E. coli when hybrid with smaller in size Ag NPs was used. The difference between rates of reduction of E. coli for different size Ag NPs is becoming more pronounced by decrease of the concentration of silver. POLYM. COMPOS., 2018. © 2018 Society of Plastics Engineers. © 2018 Society of Plastics Engineers
T2  - Polymer Composites
T1  - Size‐dependent antibacterial properties of Ag nanoparticles supported by amino‐functionalized poly(GMA‐ co ‐EGDMA) polymer
VL  - 40
IS  - 7
SP  - 2901
EP  - 2907
DO  - 10.1002/pc.25120
ER  - 
@article{
author = "Vukoje, Ivana D. and Džunuzović, Enis S. and Dimitrijević, Suzana I. and Ahrenkiel, Scott Phillip and Nedeljković, Jovan",
year = "2019",
abstract = "Size-dependent antimicrobial ability of silver nanoparticles (Ag NPs) supported by amino-functionalized poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (poly(GMA-co-EGDMA)) macroporous copolymer was tested against Gram-negative bacteria Escherichia coli. Inorganic/organic hybrids with distinctly different average sizes of Ag NPs (6.6 and 12.1 nm) were prepared by functionalization of poly(GMA-co-EGDMA) with either 1,8-diaminooctane or ammonia, and consequent reduction of silver ions with amino groups. The transmission electron microscopy (TEM), infrared and UV–Vis reflection spectroscopy, elemental analysis, and inductively coupled plasma atomic emission measurements were used to characterize synthesized hybrid materials. Time- and concentration-dependent antimicrobial performances of prepared samples revealed higher reduction rates of E. coli when hybrid with smaller in size Ag NPs was used. The difference between rates of reduction of E. coli for different size Ag NPs is becoming more pronounced by decrease of the concentration of silver. POLYM. COMPOS., 2018. © 2018 Society of Plastics Engineers. © 2018 Society of Plastics Engineers",
journal = "Polymer Composites",
title = "Size‐dependent antibacterial properties of Ag nanoparticles supported by amino‐functionalized poly(GMA‐ co ‐EGDMA) polymer",
volume = "40",
number = "7",
pages = "2901-2907",
doi = "10.1002/pc.25120"
}
Vukoje, I. D., Džunuzović, E. S., Dimitrijević, S. I., Ahrenkiel, S. P.,& Nedeljković, J.. (2019). Size‐dependent antibacterial properties of Ag nanoparticles supported by amino‐functionalized poly(GMA‐ co ‐EGDMA) polymer. in Polymer Composites, 40(7), 2901-2907.
https://doi.org/10.1002/pc.25120
Vukoje ID, Džunuzović ES, Dimitrijević SI, Ahrenkiel SP, Nedeljković J. Size‐dependent antibacterial properties of Ag nanoparticles supported by amino‐functionalized poly(GMA‐ co ‐EGDMA) polymer. in Polymer Composites. 2019;40(7):2901-2907.
doi:10.1002/pc.25120 .
Vukoje, Ivana D., Džunuzović, Enis S., Dimitrijević, Suzana I., Ahrenkiel, Scott Phillip, Nedeljković, Jovan, "Size‐dependent antibacterial properties of Ag nanoparticles supported by amino‐functionalized poly(GMA‐ co ‐EGDMA) polymer" in Polymer Composites, 40, no. 7 (2019):2901-2907,
https://doi.org/10.1002/pc.25120 . .
4
4
4

Biocontrol and plant stimulating potential of novel strain Bacillus sp. PPM3 isolated from marine sediment

Radovanović, Neda; Milutinović, Milica; Mihajlovski, Katarina ; Jović, Jelena M.; Nastasijević, Branislav J.; Rajilić-Stojanović, Mirjana; Dimitrijević-Branković, Suzana I.

(2018)

TY  - JOUR
AU  - Radovanović, Neda
AU  - Milutinović, Milica
AU  - Mihajlovski, Katarina 
AU  - Jović, Jelena M.
AU  - Nastasijević, Branislav J.
AU  - Rajilić-Stojanović, Mirjana
AU  - Dimitrijević-Branković, Suzana I.
PY  - 2018
UR  - http://linkinghub.elsevier.com/retrieve/pii/S0882401017312664
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7679
AB  - In the current study, the biocontrol potential of a novel strain Bacillus sp. PPM3 isolated from marine sediment from the Red Sea in Hurghada, Egypt is recognized. This novel strain was selected out of 32 isolates based on its ability to suppress the growth of four plant pathogenic fungi: Aspergillus flavus, Fusarium graminearum, Mucor sp. and Alternaria sp. The new marine strain was identified and characterized by phenotypic and molecular approaches. The culture filtrate of Bacillus sp. PPM3 suppressed the growth and spore germination of all tested fungi in vitro with the highest value of inhibition reported for Mucor sp. (97.5%). The antifungal effect of the culture filtrate from the strain PPM3 was due to production of highly stable secondary metabolites resistant to extreme pH, temperature and enzymatic treatments. A PCR analysis confirmed the expression of genes involved in the synthesis of antifungal lipopeptides: iturin, bacillomycin D, mycosubtilin and surfactin. In a greenhouse experiment strain PPM3 effectively reduced disease incidence of F. graminearum in maize plants and displayed additional plant growth stimulating effect. The results show that novel marine strain PPM3 could have a potential in commercial application as biocontrol agent for treatment of various plant diseases caused by soil-borne and postharvest pathogenic fungi.
T2  - Microbial Pathogenesis
T1  - Biocontrol and plant stimulating potential of novel strain Bacillus sp. PPM3 isolated from marine sediment
VL  - 120
SP  - 71
EP  - 78
DO  - 10.1016/j.micpath.2018.04.056
ER  - 
@article{
author = "Radovanović, Neda and Milutinović, Milica and Mihajlovski, Katarina  and Jović, Jelena M. and Nastasijević, Branislav J. and Rajilić-Stojanović, Mirjana and Dimitrijević-Branković, Suzana I.",
year = "2018",
abstract = "In the current study, the biocontrol potential of a novel strain Bacillus sp. PPM3 isolated from marine sediment from the Red Sea in Hurghada, Egypt is recognized. This novel strain was selected out of 32 isolates based on its ability to suppress the growth of four plant pathogenic fungi: Aspergillus flavus, Fusarium graminearum, Mucor sp. and Alternaria sp. The new marine strain was identified and characterized by phenotypic and molecular approaches. The culture filtrate of Bacillus sp. PPM3 suppressed the growth and spore germination of all tested fungi in vitro with the highest value of inhibition reported for Mucor sp. (97.5%). The antifungal effect of the culture filtrate from the strain PPM3 was due to production of highly stable secondary metabolites resistant to extreme pH, temperature and enzymatic treatments. A PCR analysis confirmed the expression of genes involved in the synthesis of antifungal lipopeptides: iturin, bacillomycin D, mycosubtilin and surfactin. In a greenhouse experiment strain PPM3 effectively reduced disease incidence of F. graminearum in maize plants and displayed additional plant growth stimulating effect. The results show that novel marine strain PPM3 could have a potential in commercial application as biocontrol agent for treatment of various plant diseases caused by soil-borne and postharvest pathogenic fungi.",
journal = "Microbial Pathogenesis",
title = "Biocontrol and plant stimulating potential of novel strain Bacillus sp. PPM3 isolated from marine sediment",
volume = "120",
pages = "71-78",
doi = "10.1016/j.micpath.2018.04.056"
}
Radovanović, N., Milutinović, M., Mihajlovski, K., Jović, J. M., Nastasijević, B. J., Rajilić-Stojanović, M.,& Dimitrijević-Branković, S. I.. (2018). Biocontrol and plant stimulating potential of novel strain Bacillus sp. PPM3 isolated from marine sediment. in Microbial Pathogenesis, 120, 71-78.
https://doi.org/10.1016/j.micpath.2018.04.056
Radovanović N, Milutinović M, Mihajlovski K, Jović JM, Nastasijević BJ, Rajilić-Stojanović M, Dimitrijević-Branković SI. Biocontrol and plant stimulating potential of novel strain Bacillus sp. PPM3 isolated from marine sediment. in Microbial Pathogenesis. 2018;120:71-78.
doi:10.1016/j.micpath.2018.04.056 .
Radovanović, Neda, Milutinović, Milica, Mihajlovski, Katarina , Jović, Jelena M., Nastasijević, Branislav J., Rajilić-Stojanović, Mirjana, Dimitrijević-Branković, Suzana I., "Biocontrol and plant stimulating potential of novel strain Bacillus sp. PPM3 isolated from marine sediment" in Microbial Pathogenesis, 120 (2018):71-78,
https://doi.org/10.1016/j.micpath.2018.04.056 . .
12
9
10

Response surface methodology for optimisation of edible coatings based on dextran from Leuconostoc mesenteroides T3

Davidović, Slađana Z.; Miljković, Miona G.; Tomić, Miloš; Gordić, Milan V.; Nešić, Aleksandra; Dimitrijević, Suzana I.

(2018)

TY  - JOUR
AU  - Davidović, Slađana Z.
AU  - Miljković, Miona G.
AU  - Tomić, Miloš
AU  - Gordić, Milan V.
AU  - Nešić, Aleksandra
AU  - Dimitrijević, Suzana I.
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1932
AB  - The aim of this study was to develop dextran-based edible films plasticized by sorbitol. In order to optimise the film-forming formulation, response surface methodology was used. The influence of dextran and sorbitol concentration on the mechanical and water vapour barrier properties of obtained films was investigated. The results showed that both parameters exhibited significant effect on the water vapour permeability of a film. Both dextran and sorbitol concentration had significant influence on tensile strength and elongation at break, whereas only sorbitol concentration had significant effect on Youngs modulus. After optimisation by desirability approach, it was found that a film made of 3.40 wt% of dextran and 20.43 wt% of sorbitol showed the lowest water vapour permeability and the highest tensile strength and elasticity.
T2  - Carbohydrate Polymers
T1  - Response surface methodology for optimisation of edible coatings based on dextran from Leuconostoc mesenteroides T3
VL  - 184
SP  - 207
EP  - 213
DO  - 10.1016/j.carbpol.2017.12.061
ER  - 
@article{
author = "Davidović, Slađana Z. and Miljković, Miona G. and Tomić, Miloš and Gordić, Milan V. and Nešić, Aleksandra and Dimitrijević, Suzana I.",
year = "2018",
abstract = "The aim of this study was to develop dextran-based edible films plasticized by sorbitol. In order to optimise the film-forming formulation, response surface methodology was used. The influence of dextran and sorbitol concentration on the mechanical and water vapour barrier properties of obtained films was investigated. The results showed that both parameters exhibited significant effect on the water vapour permeability of a film. Both dextran and sorbitol concentration had significant influence on tensile strength and elongation at break, whereas only sorbitol concentration had significant effect on Youngs modulus. After optimisation by desirability approach, it was found that a film made of 3.40 wt% of dextran and 20.43 wt% of sorbitol showed the lowest water vapour permeability and the highest tensile strength and elasticity.",
journal = "Carbohydrate Polymers",
title = "Response surface methodology for optimisation of edible coatings based on dextran from Leuconostoc mesenteroides T3",
volume = "184",
pages = "207-213",
doi = "10.1016/j.carbpol.2017.12.061"
}
Davidović, S. Z., Miljković, M. G., Tomić, M., Gordić, M. V., Nešić, A.,& Dimitrijević, S. I.. (2018). Response surface methodology for optimisation of edible coatings based on dextran from Leuconostoc mesenteroides T3. in Carbohydrate Polymers, 184, 207-213.
https://doi.org/10.1016/j.carbpol.2017.12.061
Davidović SZ, Miljković MG, Tomić M, Gordić MV, Nešić A, Dimitrijević SI. Response surface methodology for optimisation of edible coatings based on dextran from Leuconostoc mesenteroides T3. in Carbohydrate Polymers. 2018;184:207-213.
doi:10.1016/j.carbpol.2017.12.061 .
Davidović, Slađana Z., Miljković, Miona G., Tomić, Miloš, Gordić, Milan V., Nešić, Aleksandra, Dimitrijević, Suzana I., "Response surface methodology for optimisation of edible coatings based on dextran from Leuconostoc mesenteroides T3" in Carbohydrate Polymers, 184 (2018):207-213,
https://doi.org/10.1016/j.carbpol.2017.12.061 . .
15
13
14

Immobilization of dextransucrase on functionalized TiO2 supports

Miljković, Miona G.; Lazić, Vesna M.; Banjanac, Katarina; Davidović, Slađana Z.; Bezbradica, Dejan I.; Marinković, Aleksandar D.; Sredojević, Dušan; Nedeljković, Jovan; Dimitrijević-Branković, Suzana I.

(2018)

TY  - JOUR
AU  - Miljković, Miona G.
AU  - Lazić, Vesna M.
AU  - Banjanac, Katarina
AU  - Davidović, Slađana Z.
AU  - Bezbradica, Dejan I.
AU  - Marinković, Aleksandar D.
AU  - Sredojević, Dušan
AU  - Nedeljković, Jovan
AU  - Dimitrijević-Branković, Suzana I.
PY  - 2018
UR  - http://linkinghub.elsevier.com/retrieve/pii/S0141813018302952
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7776
AB  - The TiO2 based hybrid supports with different functional groups (amino, glutaraldehyde or epoxy) were prepared and their influence on immobilization of dextransucrase (DS) was studied. Novel synthetic route for surface modification of TiO2 with amino and glutaraldehyde groups was developed taking advantage of charge transfer complex (CTC) formation between surface Ti atoms and salicylate-type of ligand (5 aminosalicylic acid (5-ASA)). The proposed coordination of 5-ASA to the surface of TiO2 powder and optical properties of CTC was presented. The pristine TiO2 and amino functionalized TiO2 have higher sorption capacity for DS (12.6 and 12.0 mg g(-1), respectively) compared to glutaraldehyde and epoxy activated supports (9.6 and 9.8 mg g(-1) respectively). However, immobilized enzyme to either glutaraldehyde or epoxy functionalized TiO2 have almost two times higher expressed activities compared to pristine TiO2 support (258, 235 and 142 IU g(-1), respectively). Thermal stability of enzyme immobilized on glutaraldehyde and epoxy functionalized supports was studied at 40 degrees C, as well as operational stability under long-run working conditions in repeated cycles. After five cycles, DS imobilized on glutaraldehyde activated support retained almost 70% of its initial expressed activity, while, after five cycles, performance of DS immobilized on epoxy activated support was significantly lower (15%).
T2  - International Journal of Biological Macromolecules
T1  - Immobilization of dextransucrase on functionalized TiO2 supports
VL  - 114
SP  - 1216
EP  - 1223
DO  - 10.1016/j.ijbiomac.2018.04.027
ER  - 
@article{
author = "Miljković, Miona G. and Lazić, Vesna M. and Banjanac, Katarina and Davidović, Slađana Z. and Bezbradica, Dejan I. and Marinković, Aleksandar D. and Sredojević, Dušan and Nedeljković, Jovan and Dimitrijević-Branković, Suzana I.",
year = "2018",
abstract = "The TiO2 based hybrid supports with different functional groups (amino, glutaraldehyde or epoxy) were prepared and their influence on immobilization of dextransucrase (DS) was studied. Novel synthetic route for surface modification of TiO2 with amino and glutaraldehyde groups was developed taking advantage of charge transfer complex (CTC) formation between surface Ti atoms and salicylate-type of ligand (5 aminosalicylic acid (5-ASA)). The proposed coordination of 5-ASA to the surface of TiO2 powder and optical properties of CTC was presented. The pristine TiO2 and amino functionalized TiO2 have higher sorption capacity for DS (12.6 and 12.0 mg g(-1), respectively) compared to glutaraldehyde and epoxy activated supports (9.6 and 9.8 mg g(-1) respectively). However, immobilized enzyme to either glutaraldehyde or epoxy functionalized TiO2 have almost two times higher expressed activities compared to pristine TiO2 support (258, 235 and 142 IU g(-1), respectively). Thermal stability of enzyme immobilized on glutaraldehyde and epoxy functionalized supports was studied at 40 degrees C, as well as operational stability under long-run working conditions in repeated cycles. After five cycles, DS imobilized on glutaraldehyde activated support retained almost 70% of its initial expressed activity, while, after five cycles, performance of DS immobilized on epoxy activated support was significantly lower (15%).",
journal = "International Journal of Biological Macromolecules",
title = "Immobilization of dextransucrase on functionalized TiO2 supports",
volume = "114",
pages = "1216-1223",
doi = "10.1016/j.ijbiomac.2018.04.027"
}
Miljković, M. G., Lazić, V. M., Banjanac, K., Davidović, S. Z., Bezbradica, D. I., Marinković, A. D., Sredojević, D., Nedeljković, J.,& Dimitrijević-Branković, S. I.. (2018). Immobilization of dextransucrase on functionalized TiO2 supports. in International Journal of Biological Macromolecules, 114, 1216-1223.
https://doi.org/10.1016/j.ijbiomac.2018.04.027
Miljković MG, Lazić VM, Banjanac K, Davidović SZ, Bezbradica DI, Marinković AD, Sredojević D, Nedeljković J, Dimitrijević-Branković SI. Immobilization of dextransucrase on functionalized TiO2 supports. in International Journal of Biological Macromolecules. 2018;114:1216-1223.
doi:10.1016/j.ijbiomac.2018.04.027 .
Miljković, Miona G., Lazić, Vesna M., Banjanac, Katarina, Davidović, Slađana Z., Bezbradica, Dejan I., Marinković, Aleksandar D., Sredojević, Dušan, Nedeljković, Jovan, Dimitrijević-Branković, Suzana I., "Immobilization of dextransucrase on functionalized TiO2 supports" in International Journal of Biological Macromolecules, 114 (2018):1216-1223,
https://doi.org/10.1016/j.ijbiomac.2018.04.027 . .
12
12
12

Synthesis of fluorapatite nanopowders by a surfactant-assisted microwave method under isothermal conditions

Stanić, Vojislav; Adnađević, Borivoj; Dimitrijević, Suzana I.; Dimović, Slavko; Mitrić, Miodrag; Zmejkovski, Bojana; Smiljanić, Slavko N.

(2018)

TY  - JOUR
AU  - Stanić, Vojislav
AU  - Adnađević, Borivoj
AU  - Dimitrijević, Suzana I.
AU  - Dimović, Slavko
AU  - Mitrić, Miodrag
AU  - Zmejkovski, Bojana
AU  - Smiljanić, Slavko N.
PY  - 2018
UR  - http://www.doiserbia.nb.rs/Article.aspx?ID=1451-39941802180S
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7883
AB  - Fluorapatite nanopowders with different amounts of fluoride ions were prepared using the surfactant-assisted microwave method under isothermal conditions. Microwave irradiation was applied for the rapid formation of crystals. A micellar solution of polyoxyethylene (23) lauryl ether was used as a regulator of nucleation and crystal growth. Characterization studies from X-ray diffraction, field-emission scaning electron microscopy and Fourier-transform infrared spectra showed that crystals have an apatite structure and particles of all samples are nano size, with an average length of 50 nm and about 15-25 nm in diameter. Antimicrobial studies have demonstrated that synthesized fluorapatite nanopowders exhibit activity against tested pathogens: Escherichia coli, Staphylococcus aureus and Candida albicans. Activity increased with the amount of fluoride ions. The synthesized fluorapatite nanomaterials are promising as materials in environmental protection and medicine for orthopedics and dental restorations. © 2018, Vinca Inst Nuclear Sci. All rights reserved.
T2  - Nuclear Technology and Radiation Protection
T1  - Synthesis of fluorapatite nanopowders by a surfactant-assisted microwave method under isothermal conditions
VL  - 33
IS  - 2
SP  - 180
EP  - 187
DO  - 10.2298/NTRP1802180S
ER  - 
@article{
author = "Stanić, Vojislav and Adnađević, Borivoj and Dimitrijević, Suzana I. and Dimović, Slavko and Mitrić, Miodrag and Zmejkovski, Bojana and Smiljanić, Slavko N.",
year = "2018",
abstract = "Fluorapatite nanopowders with different amounts of fluoride ions were prepared using the surfactant-assisted microwave method under isothermal conditions. Microwave irradiation was applied for the rapid formation of crystals. A micellar solution of polyoxyethylene (23) lauryl ether was used as a regulator of nucleation and crystal growth. Characterization studies from X-ray diffraction, field-emission scaning electron microscopy and Fourier-transform infrared spectra showed that crystals have an apatite structure and particles of all samples are nano size, with an average length of 50 nm and about 15-25 nm in diameter. Antimicrobial studies have demonstrated that synthesized fluorapatite nanopowders exhibit activity against tested pathogens: Escherichia coli, Staphylococcus aureus and Candida albicans. Activity increased with the amount of fluoride ions. The synthesized fluorapatite nanomaterials are promising as materials in environmental protection and medicine for orthopedics and dental restorations. © 2018, Vinca Inst Nuclear Sci. All rights reserved.",
journal = "Nuclear Technology and Radiation Protection",
title = "Synthesis of fluorapatite nanopowders by a surfactant-assisted microwave method under isothermal conditions",
volume = "33",
number = "2",
pages = "180-187",
doi = "10.2298/NTRP1802180S"
}
Stanić, V., Adnađević, B., Dimitrijević, S. I., Dimović, S., Mitrić, M., Zmejkovski, B.,& Smiljanić, S. N.. (2018). Synthesis of fluorapatite nanopowders by a surfactant-assisted microwave method under isothermal conditions. in Nuclear Technology and Radiation Protection, 33(2), 180-187.
https://doi.org/10.2298/NTRP1802180S
Stanić V, Adnađević B, Dimitrijević SI, Dimović S, Mitrić M, Zmejkovski B, Smiljanić SN. Synthesis of fluorapatite nanopowders by a surfactant-assisted microwave method under isothermal conditions. in Nuclear Technology and Radiation Protection. 2018;33(2):180-187.
doi:10.2298/NTRP1802180S .
Stanić, Vojislav, Adnađević, Borivoj, Dimitrijević, Suzana I., Dimović, Slavko, Mitrić, Miodrag, Zmejkovski, Bojana, Smiljanić, Slavko N., "Synthesis of fluorapatite nanopowders by a surfactant-assisted microwave method under isothermal conditions" in Nuclear Technology and Radiation Protection, 33, no. 2 (2018):180-187,
https://doi.org/10.2298/NTRP1802180S . .
1
1
1

Bimetallic alginate nanocomposites: New antimicrobial biomaterials for biomedical application

Malagurski, Ivana; Levic, Steva; Mitrić, Miodrag; Pavlović, Vladimir B.; Dimitrijević-Branković, Suzana I.

(2018)

TY  - JOUR
AU  - Malagurski, Ivana
AU  - Levic, Steva
AU  - Mitrić, Miodrag
AU  - Pavlović, Vladimir B.
AU  - Dimitrijević-Branković, Suzana I.
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1817
AB  - Two bimetallic (Zn/Cu) alginate based nanocomposites, impregnated with carbonate or phosphate mineral phase, were prepared by a facile procedure. Mineralized samples exhibited different morphologies and properties when compared to the non-mineralized sample. Antimicrobial testing against Escherichia coil, Staphylococcus aureus and Candida albicans showed that mineralized samples are more efficient than non-mineralized in elimination of microorganisms. The results of this study suggest that bimetallic mineralized alginates could be potentially used as affordable, easy to produce antimicrobial materials. (C) 2017 Elsevier By. All rights reserved.
T2  - Materials Letters
T1  - Bimetallic alginate nanocomposites: New antimicrobial biomaterials for biomedical application
VL  - 212
SP  - 32
EP  - 36
DO  - 10.1016/j.matlet.2017.10.046
ER  - 
@article{
author = "Malagurski, Ivana and Levic, Steva and Mitrić, Miodrag and Pavlović, Vladimir B. and Dimitrijević-Branković, Suzana I.",
year = "2018",
abstract = "Two bimetallic (Zn/Cu) alginate based nanocomposites, impregnated with carbonate or phosphate mineral phase, were prepared by a facile procedure. Mineralized samples exhibited different morphologies and properties when compared to the non-mineralized sample. Antimicrobial testing against Escherichia coil, Staphylococcus aureus and Candida albicans showed that mineralized samples are more efficient than non-mineralized in elimination of microorganisms. The results of this study suggest that bimetallic mineralized alginates could be potentially used as affordable, easy to produce antimicrobial materials. (C) 2017 Elsevier By. All rights reserved.",
journal = "Materials Letters",
title = "Bimetallic alginate nanocomposites: New antimicrobial biomaterials for biomedical application",
volume = "212",
pages = "32-36",
doi = "10.1016/j.matlet.2017.10.046"
}
Malagurski, I., Levic, S., Mitrić, M., Pavlović, V. B.,& Dimitrijević-Branković, S. I.. (2018). Bimetallic alginate nanocomposites: New antimicrobial biomaterials for biomedical application. in Materials Letters, 212, 32-36.
https://doi.org/10.1016/j.matlet.2017.10.046
Malagurski I, Levic S, Mitrić M, Pavlović VB, Dimitrijević-Branković SI. Bimetallic alginate nanocomposites: New antimicrobial biomaterials for biomedical application. in Materials Letters. 2018;212:32-36.
doi:10.1016/j.matlet.2017.10.046 .
Malagurski, Ivana, Levic, Steva, Mitrić, Miodrag, Pavlović, Vladimir B., Dimitrijević-Branković, Suzana I., "Bimetallic alginate nanocomposites: New antimicrobial biomaterials for biomedical application" in Materials Letters, 212 (2018):32-36,
https://doi.org/10.1016/j.matlet.2017.10.046 . .
15
9
11

Copper-polyaniline nanocomposite: Role of physicochemical properties on the antimicrobial activity and genotoxicity evaluation

Bogdanović, Una; Dimitrijević, Suzana I.; Škapin, Srečo Davor; Popović, Maja; Rakočević, Zlatko Lj.; Leskovac, Andreja; Petrović, Sandra; Stoiljković, Milovan; Vodnik, Vesna

(2018)

TY  - JOUR
AU  - Bogdanović, Una
AU  - Dimitrijević, Suzana I.
AU  - Škapin, Srečo Davor
AU  - Popović, Maja
AU  - Rakočević, Zlatko Lj.
AU  - Leskovac, Andreja
AU  - Petrović, Sandra
AU  - Stoiljković, Milovan
AU  - Vodnik, Vesna
PY  - 2018
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0928493117326449
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7799
AB  - Copper nanoparticles (Cu NPs) have proven to own excellent antimicrobial efficacy, but the problems of easy oxidation and aggregation limit their practical application. Here, nanocomposite based on polyaniline (PANI) and Cu NPs solved this problem and brought additional physicochemical properties that are markedly advantageous for antimicrobial applications. Current work exploits this potential, to examine its time- and concentration-dependent antimicrobial activity, employing E. coli, S. aureus, and C. albicans as a model microbial species. Regarding the presence of polaronic charge carriers in the fibrous polyaniline network, effects of Cu NPs’ size and their partially oxidized surfaces (the data were confirmed by HRTEM, FESEM, XRD, Raman and XPS analysis), as well as rapid copper ions release, Cu-PANI nanocomposite showed efficient bactericidal and fungicidal activities at the concentrations ≤1 ppm, within the incubation time of 2 h. Beside the quantitative analysis, the high levels of cellular disruption for all tested microbes were evidenced by atomic force microscopy. Moreover, the minimum inhibitory and bactericidal concentrations of the Cu-PANI nanocomposite were lower than those reported for other nanocomposites. Using such low concentrations is recognized as a good way to avoid its toxicity toward the environment. For this purpose, Cu-PANI nanocomposite is tested for its genotoxicity and influence on the oxidative status of the human cells in vitro.
T2  - Materials Science and Engineering: C
T1  - Copper-polyaniline nanocomposite: Role of physicochemical properties on the antimicrobial activity and genotoxicity evaluation
VL  - 93
SP  - 49
EP  - 60
DO  - 10.1016/j.msec.2018.07.067
ER  - 
@article{
author = "Bogdanović, Una and Dimitrijević, Suzana I. and Škapin, Srečo Davor and Popović, Maja and Rakočević, Zlatko Lj. and Leskovac, Andreja and Petrović, Sandra and Stoiljković, Milovan and Vodnik, Vesna",
year = "2018",
abstract = "Copper nanoparticles (Cu NPs) have proven to own excellent antimicrobial efficacy, but the problems of easy oxidation and aggregation limit their practical application. Here, nanocomposite based on polyaniline (PANI) and Cu NPs solved this problem and brought additional physicochemical properties that are markedly advantageous for antimicrobial applications. Current work exploits this potential, to examine its time- and concentration-dependent antimicrobial activity, employing E. coli, S. aureus, and C. albicans as a model microbial species. Regarding the presence of polaronic charge carriers in the fibrous polyaniline network, effects of Cu NPs’ size and their partially oxidized surfaces (the data were confirmed by HRTEM, FESEM, XRD, Raman and XPS analysis), as well as rapid copper ions release, Cu-PANI nanocomposite showed efficient bactericidal and fungicidal activities at the concentrations ≤1 ppm, within the incubation time of 2 h. Beside the quantitative analysis, the high levels of cellular disruption for all tested microbes were evidenced by atomic force microscopy. Moreover, the minimum inhibitory and bactericidal concentrations of the Cu-PANI nanocomposite were lower than those reported for other nanocomposites. Using such low concentrations is recognized as a good way to avoid its toxicity toward the environment. For this purpose, Cu-PANI nanocomposite is tested for its genotoxicity and influence on the oxidative status of the human cells in vitro.",
journal = "Materials Science and Engineering: C",
title = "Copper-polyaniline nanocomposite: Role of physicochemical properties on the antimicrobial activity and genotoxicity evaluation",
volume = "93",
pages = "49-60",
doi = "10.1016/j.msec.2018.07.067"
}
Bogdanović, U., Dimitrijević, S. I., Škapin, S. D., Popović, M., Rakočević, Z. Lj., Leskovac, A., Petrović, S., Stoiljković, M.,& Vodnik, V.. (2018). Copper-polyaniline nanocomposite: Role of physicochemical properties on the antimicrobial activity and genotoxicity evaluation. in Materials Science and Engineering: C, 93, 49-60.
https://doi.org/10.1016/j.msec.2018.07.067
Bogdanović U, Dimitrijević SI, Škapin SD, Popović M, Rakočević ZL, Leskovac A, Petrović S, Stoiljković M, Vodnik V. Copper-polyaniline nanocomposite: Role of physicochemical properties on the antimicrobial activity and genotoxicity evaluation. in Materials Science and Engineering: C. 2018;93:49-60.
doi:10.1016/j.msec.2018.07.067 .
Bogdanović, Una, Dimitrijević, Suzana I., Škapin, Srečo Davor, Popović, Maja, Rakočević, Zlatko Lj., Leskovac, Andreja, Petrović, Sandra, Stoiljković, Milovan, Vodnik, Vesna, "Copper-polyaniline nanocomposite: Role of physicochemical properties on the antimicrobial activity and genotoxicity evaluation" in Materials Science and Engineering: C, 93 (2018):49-60,
https://doi.org/10.1016/j.msec.2018.07.067 . .
17
14
14

Design of pectin-sodium alginate based films for potential healthcare application: Study of chemico-physical interactions between the components of films and assessment of their antimicrobial activity

Nešić, Aleksandra; Onjia, Antonije E.; Davidović, Slađana Z.; Dimitrijević, Suzana I.; Errico, Maria Emanuela; Santagata, Gabriella; Malinconico, Mario

(2017)

TY  - JOUR
AU  - Nešić, Aleksandra
AU  - Onjia, Antonije E.
AU  - Davidović, Slađana Z.
AU  - Dimitrijević, Suzana I.
AU  - Errico, Maria Emanuela
AU  - Santagata, Gabriella
AU  - Malinconico, Mario
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1385
AB  - In this study, pectin based films including different amounts of sodium alginate were prepared by casting method. All the films, with and without polyglycerol as plasticizer, were crosslinked with zinc ions in order to extend their potential functionality. The development of junction points, occurring during the crosslinking process with zinc ions, induced the increasing of free volume with following changing in chemico-physical properties of films. The inclusion of alginate in pectin based formulations improved the strength of zinc ions crosslinking network, whereas the addition of polyglycerol significantly improved mechanical performance. Finally, zinc-crosslinked films evidenced antimicrobial activity against the most common exploited pathogens: Staphylococcus Aureus, Escherichia Coli and Candida Albicans. These results suggest that zinc-crosslinked based films can be exploitable as novel bio-active biomaterials for protection and disinfection of medical devices. (C) 2016 Elsevier Ltd. All rights reserved.
T2  - Carbohydrate Polymers
T1  - Design of pectin-sodium alginate based films for potential healthcare application: Study of chemico-physical interactions between the components of films and assessment of their antimicrobial activity
VL  - 157
SP  - 981
EP  - 990
DO  - 10.1016/j.carbpol.2016.10.054
ER  - 
@article{
author = "Nešić, Aleksandra and Onjia, Antonije E. and Davidović, Slađana Z. and Dimitrijević, Suzana I. and Errico, Maria Emanuela and Santagata, Gabriella and Malinconico, Mario",
year = "2017",
abstract = "In this study, pectin based films including different amounts of sodium alginate were prepared by casting method. All the films, with and without polyglycerol as plasticizer, were crosslinked with zinc ions in order to extend their potential functionality. The development of junction points, occurring during the crosslinking process with zinc ions, induced the increasing of free volume with following changing in chemico-physical properties of films. The inclusion of alginate in pectin based formulations improved the strength of zinc ions crosslinking network, whereas the addition of polyglycerol significantly improved mechanical performance. Finally, zinc-crosslinked films evidenced antimicrobial activity against the most common exploited pathogens: Staphylococcus Aureus, Escherichia Coli and Candida Albicans. These results suggest that zinc-crosslinked based films can be exploitable as novel bio-active biomaterials for protection and disinfection of medical devices. (C) 2016 Elsevier Ltd. All rights reserved.",
journal = "Carbohydrate Polymers",
title = "Design of pectin-sodium alginate based films for potential healthcare application: Study of chemico-physical interactions between the components of films and assessment of their antimicrobial activity",
volume = "157",
pages = "981-990",
doi = "10.1016/j.carbpol.2016.10.054"
}
Nešić, A., Onjia, A. E., Davidović, S. Z., Dimitrijević, S. I., Errico, M. E., Santagata, G.,& Malinconico, M.. (2017). Design of pectin-sodium alginate based films for potential healthcare application: Study of chemico-physical interactions between the components of films and assessment of their antimicrobial activity. in Carbohydrate Polymers, 157, 981-990.
https://doi.org/10.1016/j.carbpol.2016.10.054
Nešić A, Onjia AE, Davidović SZ, Dimitrijević SI, Errico ME, Santagata G, Malinconico M. Design of pectin-sodium alginate based films for potential healthcare application: Study of chemico-physical interactions between the components of films and assessment of their antimicrobial activity. in Carbohydrate Polymers. 2017;157:981-990.
doi:10.1016/j.carbpol.2016.10.054 .
Nešić, Aleksandra, Onjia, Antonije E., Davidović, Slađana Z., Dimitrijević, Suzana I., Errico, Maria Emanuela, Santagata, Gabriella, Malinconico, Mario, "Design of pectin-sodium alginate based films for potential healthcare application: Study of chemico-physical interactions between the components of films and assessment of their antimicrobial activity" in Carbohydrate Polymers, 157 (2017):981-990,
https://doi.org/10.1016/j.carbpol.2016.10.054 . .
56
51
52

Synthesis, Characterization, and Antimicrobial Activity of Silver Nanoparticles on Poly(GMA-co-EGDMA) Polymer Support

Vukoje, Ivana D.; Džunuzović, Enis S.; Lončarević, Davor; Dimitrijević, Suzana I.; Ahrenkiel, Scott Phillip; Nedeljković, Jovan

(2017)

TY  - JOUR
AU  - Vukoje, Ivana D.
AU  - Džunuzović, Enis S.
AU  - Lončarević, Davor
AU  - Dimitrijević, Suzana I.
AU  - Ahrenkiel, Scott Phillip
AU  - Nedeljković, Jovan
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1361
AB  - Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (poly(GMA-co-EGDMA) macroporous copolymer decorated with silver nanoparticles was prepared by a modification of poly(GMA-co-EGDMA) in the reaction with arginine, and consequent reduction of silver ions with amino groups. The mercury intrusion porosimetry, transmission electron microscopy, X-ray diffraction, UV-vis reflection spectroscopy, and inductively coupled plasma atomic emission measurements were used to characterize obtained composite. The coordination of silver nanoparticles to the poly(GMA-co-EGDMA) copolymer was studied using infrared spectroscopy. Time dependence and concentration dependence of the antimicrobial efficiency of composite were tested against Gram-negative bacteria Escherichia coli, Gram-positive bacteria Staphylococcus aureus, and fungus Candida albicans. The composite ensured maximum reduction of both bacteria, while the fungi reduction reached satisfactory 96.8%. Preliminary antimicrobial efficiency measurements using laboratory flow setup indicated potential applicability of composite for wastewater treatment. (C) 2015 Society of Plastics Engineers
T2  - Polymer Composites
T1  - Synthesis, Characterization, and Antimicrobial Activity of Silver Nanoparticles on Poly(GMA-co-EGDMA) Polymer Support
VL  - 38
IS  - 6
SP  - 1206
EP  - 1214
DO  - 10.1002/pc.23684
ER  - 
@article{
author = "Vukoje, Ivana D. and Džunuzović, Enis S. and Lončarević, Davor and Dimitrijević, Suzana I. and Ahrenkiel, Scott Phillip and Nedeljković, Jovan",
year = "2017",
abstract = "Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (poly(GMA-co-EGDMA) macroporous copolymer decorated with silver nanoparticles was prepared by a modification of poly(GMA-co-EGDMA) in the reaction with arginine, and consequent reduction of silver ions with amino groups. The mercury intrusion porosimetry, transmission electron microscopy, X-ray diffraction, UV-vis reflection spectroscopy, and inductively coupled plasma atomic emission measurements were used to characterize obtained composite. The coordination of silver nanoparticles to the poly(GMA-co-EGDMA) copolymer was studied using infrared spectroscopy. Time dependence and concentration dependence of the antimicrobial efficiency of composite were tested against Gram-negative bacteria Escherichia coli, Gram-positive bacteria Staphylococcus aureus, and fungus Candida albicans. The composite ensured maximum reduction of both bacteria, while the fungi reduction reached satisfactory 96.8%. Preliminary antimicrobial efficiency measurements using laboratory flow setup indicated potential applicability of composite for wastewater treatment. (C) 2015 Society of Plastics Engineers",
journal = "Polymer Composites",
title = "Synthesis, Characterization, and Antimicrobial Activity of Silver Nanoparticles on Poly(GMA-co-EGDMA) Polymer Support",
volume = "38",
number = "6",
pages = "1206-1214",
doi = "10.1002/pc.23684"
}
Vukoje, I. D., Džunuzović, E. S., Lončarević, D., Dimitrijević, S. I., Ahrenkiel, S. P.,& Nedeljković, J.. (2017). Synthesis, Characterization, and Antimicrobial Activity of Silver Nanoparticles on Poly(GMA-co-EGDMA) Polymer Support. in Polymer Composites, 38(6), 1206-1214.
https://doi.org/10.1002/pc.23684
Vukoje ID, Džunuzović ES, Lončarević D, Dimitrijević SI, Ahrenkiel SP, Nedeljković J. Synthesis, Characterization, and Antimicrobial Activity of Silver Nanoparticles on Poly(GMA-co-EGDMA) Polymer Support. in Polymer Composites. 2017;38(6):1206-1214.
doi:10.1002/pc.23684 .
Vukoje, Ivana D., Džunuzović, Enis S., Lončarević, Davor, Dimitrijević, Suzana I., Ahrenkiel, Scott Phillip, Nedeljković, Jovan, "Synthesis, Characterization, and Antimicrobial Activity of Silver Nanoparticles on Poly(GMA-co-EGDMA) Polymer Support" in Polymer Composites, 38, no. 6 (2017):1206-1214,
https://doi.org/10.1002/pc.23684 . .
15
13
15

Chitosan-triclosan films for potential use as bio-antimicrobial bags in healthcare sector

Nešić, Aleksandra; Gordić, Milan V.; Onjia, Antonije E.; Davidović, Slađana Z.; Miljković, Miona G.; Dimitrijević-Branković, Suzana I.

(2017)

TY  - JOUR
AU  - Nešić, Aleksandra
AU  - Gordić, Milan V.
AU  - Onjia, Antonije E.
AU  - Davidović, Slađana Z.
AU  - Miljković, Miona G.
AU  - Dimitrijević-Branković, Suzana I.
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1344
AB  - In this work, antimicrobial bioinspired films made from chitosan incorporated with triclosan were investigated. The tensile strenght of these films were in the range of 33 and 39 MPa, which presented satisfied mechanical stability comparable to the synthetic-based packages commonly used in industry. The addition of triclosan enhanced thermal stability and antimicrobial activity of chitosan films against Escherichia coli and Staphylococus aureus. Results obtained in this work demonstrated that chitosan/triclosan films could be potentially used as an eco-sustainable package in healthcare sector to prevent infections/contaminations.
T2  - Materials Letters
T1  - Chitosan-triclosan films for potential use as bio-antimicrobial bags in healthcare sector
VL  - 186
SP  - 368
EP  - 371
DO  - 10.1016/j.matlet.2016.10.028
ER  - 
@article{
author = "Nešić, Aleksandra and Gordić, Milan V. and Onjia, Antonije E. and Davidović, Slađana Z. and Miljković, Miona G. and Dimitrijević-Branković, Suzana I.",
year = "2017",
abstract = "In this work, antimicrobial bioinspired films made from chitosan incorporated with triclosan were investigated. The tensile strenght of these films were in the range of 33 and 39 MPa, which presented satisfied mechanical stability comparable to the synthetic-based packages commonly used in industry. The addition of triclosan enhanced thermal stability and antimicrobial activity of chitosan films against Escherichia coli and Staphylococus aureus. Results obtained in this work demonstrated that chitosan/triclosan films could be potentially used as an eco-sustainable package in healthcare sector to prevent infections/contaminations.",
journal = "Materials Letters",
title = "Chitosan-triclosan films for potential use as bio-antimicrobial bags in healthcare sector",
volume = "186",
pages = "368-371",
doi = "10.1016/j.matlet.2016.10.028"
}
Nešić, A., Gordić, M. V., Onjia, A. E., Davidović, S. Z., Miljković, M. G.,& Dimitrijević-Branković, S. I.. (2017). Chitosan-triclosan films for potential use as bio-antimicrobial bags in healthcare sector. in Materials Letters, 186, 368-371.
https://doi.org/10.1016/j.matlet.2016.10.028
Nešić A, Gordić MV, Onjia AE, Davidović SZ, Miljković MG, Dimitrijević-Branković SI. Chitosan-triclosan films for potential use as bio-antimicrobial bags in healthcare sector. in Materials Letters. 2017;186:368-371.
doi:10.1016/j.matlet.2016.10.028 .
Nešić, Aleksandra, Gordić, Milan V., Onjia, Antonije E., Davidović, Slađana Z., Miljković, Miona G., Dimitrijević-Branković, Suzana I., "Chitosan-triclosan films for potential use as bio-antimicrobial bags in healthcare sector" in Materials Letters, 186 (2017):368-371,
https://doi.org/10.1016/j.matlet.2016.10.028 . .
8
7
9

Mineralized agar-based nanocomposite films: Potential food packaging materials with antimicrobial properties

Malagurski, Ivana; Levic, Steva; Nešić, Aleksandra; Mitrić, Miodrag; Pavlović, Vladimir B.; Dimitrijević-Branković, Suzana I.

(2017)

TY  - JOUR
AU  - Malagurski, Ivana
AU  - Levic, Steva
AU  - Nešić, Aleksandra
AU  - Mitrić, Miodrag
AU  - Pavlović, Vladimir B.
AU  - Dimitrijević-Branković, Suzana I.
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1731
AB  - New mineralized, agar-based nanocomposite films (Zn-carbonate and Zn-phosphate/agar) were produced by a combination of in situ precipitation and a casting method. The presence of minerals significantly influenced the morphology, properties and functionality of the obtained nanocomposites. Reinforcement with the Zn-mineral phase improved the mechanical properties of the carbonate-mineralized films, but had a negligible effect on the phosphate-mineralized samples. Both nanocomposites showed improved optical and thermal properties, better Zn(II) release potential in a slightly acidic environment and exhibited antimicrobial activity against S. aureus. These results suggest that Zn-mineralized agar nanocomposite films could be potentially used as affordable, eco-friendly and active food packaging materials. (C) 2017 Elsevier Ltd. All rights reserved.
T2  - Carbohydrate Polymers
T1  - Mineralized agar-based nanocomposite films: Potential food packaging materials with antimicrobial properties
VL  - 175
SP  - 55
EP  - 62
DO  - 10.1016/j.carbpol.2017.07.064
ER  - 
@article{
author = "Malagurski, Ivana and Levic, Steva and Nešić, Aleksandra and Mitrić, Miodrag and Pavlović, Vladimir B. and Dimitrijević-Branković, Suzana I.",
year = "2017",
abstract = "New mineralized, agar-based nanocomposite films (Zn-carbonate and Zn-phosphate/agar) were produced by a combination of in situ precipitation and a casting method. The presence of minerals significantly influenced the morphology, properties and functionality of the obtained nanocomposites. Reinforcement with the Zn-mineral phase improved the mechanical properties of the carbonate-mineralized films, but had a negligible effect on the phosphate-mineralized samples. Both nanocomposites showed improved optical and thermal properties, better Zn(II) release potential in a slightly acidic environment and exhibited antimicrobial activity against S. aureus. These results suggest that Zn-mineralized agar nanocomposite films could be potentially used as affordable, eco-friendly and active food packaging materials. (C) 2017 Elsevier Ltd. All rights reserved.",
journal = "Carbohydrate Polymers",
title = "Mineralized agar-based nanocomposite films: Potential food packaging materials with antimicrobial properties",
volume = "175",
pages = "55-62",
doi = "10.1016/j.carbpol.2017.07.064"
}
Malagurski, I., Levic, S., Nešić, A., Mitrić, M., Pavlović, V. B.,& Dimitrijević-Branković, S. I.. (2017). Mineralized agar-based nanocomposite films: Potential food packaging materials with antimicrobial properties. in Carbohydrate Polymers, 175, 55-62.
https://doi.org/10.1016/j.carbpol.2017.07.064
Malagurski I, Levic S, Nešić A, Mitrić M, Pavlović VB, Dimitrijević-Branković SI. Mineralized agar-based nanocomposite films: Potential food packaging materials with antimicrobial properties. in Carbohydrate Polymers. 2017;175:55-62.
doi:10.1016/j.carbpol.2017.07.064 .
Malagurski, Ivana, Levic, Steva, Nešić, Aleksandra, Mitrić, Miodrag, Pavlović, Vladimir B., Dimitrijević-Branković, Suzana I., "Mineralized agar-based nanocomposite films: Potential food packaging materials with antimicrobial properties" in Carbohydrate Polymers, 175 (2017):55-62,
https://doi.org/10.1016/j.carbpol.2017.07.064 . .
40
32
39

Effective valorisation of barley bran for simultaneous cellulase and beta-amylase production by Paenibacillus chitinolyticus CKS1: Statistical optimization and enzymes application

Mihajlovski, Katarina ; Davidović, Slađana Z.; Veljović, Đorđe N.; Carević, Milica B.; Lazić, Vesna M.; Dimitrijević-Branković, Suzana I.

(2017)

TY  - JOUR
AU  - Mihajlovski, Katarina 
AU  - Davidović, Slađana Z.
AU  - Veljović, Đorđe N.
AU  - Carević, Milica B.
AU  - Lazić, Vesna M.
AU  - Dimitrijević-Branković, Suzana I.
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1866
AB  - The agricultural raw industry generates large amounts of annually by-products that create disposal problems. Hitherto, there have been no reported papers about the simultaneous production of cellulase and beta-amylase from these raw materials using Paenibacillus sp. that would reduce the costs. Thus, in this paper simultaneous cellulase (CMC-ase and avicelase) and beta-amylase production using barley bran and the application of the natural isolate Paenibacillus chitinolyticus CKS1 and potential enzymes in the hydrolysis process was studied. Response surface methodology was used to obtain the maximum enzyme activity (CMC-ase 0.405 U mL(-1), avicelase 0.433 U mL(-1) and beta-amylase 1.594U mL(-1)). Scanning electron microscopy showed degradation of the lignocellulosic-starch structure of barley bran after fermentation. The CKS1 bacterial supernatant, which contains cellulases and beta-amylase, could hydrolyze cotton fibres and barley bran, respectively. The main products after enzymatic hydrolysis of cotton fibres and barley bran, glucose (0.117 (-1)(g gmat)) and maltose (0.347 (-1)(g gmat)), were quantified by high performance liquid chromatography (HPLC). The produced enzymes could be used for hydrolysis of cotton fabric and barley bran to glucose and maltose, respectively. Application of simultaneous enzymes production using an agricultural by-product is economically and environmentally accepted and moreover, valuable biotechnological products, such as glucose and maltose, were obtained in this investigation.
T2  - Journal of the Serbian Chemical Society
T1  - Effective valorisation of barley bran for simultaneous cellulase and beta-amylase production by Paenibacillus chitinolyticus CKS1: Statistical optimization and enzymes application
VL  - 82
IS  - 11
SP  - 1223
EP  - 1236
DO  - 10.2298/JSCJSC170514092M
ER  - 
@article{
author = "Mihajlovski, Katarina  and Davidović, Slađana Z. and Veljović, Đorđe N. and Carević, Milica B. and Lazić, Vesna M. and Dimitrijević-Branković, Suzana I.",
year = "2017",
abstract = "The agricultural raw industry generates large amounts of annually by-products that create disposal problems. Hitherto, there have been no reported papers about the simultaneous production of cellulase and beta-amylase from these raw materials using Paenibacillus sp. that would reduce the costs. Thus, in this paper simultaneous cellulase (CMC-ase and avicelase) and beta-amylase production using barley bran and the application of the natural isolate Paenibacillus chitinolyticus CKS1 and potential enzymes in the hydrolysis process was studied. Response surface methodology was used to obtain the maximum enzyme activity (CMC-ase 0.405 U mL(-1), avicelase 0.433 U mL(-1) and beta-amylase 1.594U mL(-1)). Scanning electron microscopy showed degradation of the lignocellulosic-starch structure of barley bran after fermentation. The CKS1 bacterial supernatant, which contains cellulases and beta-amylase, could hydrolyze cotton fibres and barley bran, respectively. The main products after enzymatic hydrolysis of cotton fibres and barley bran, glucose (0.117 (-1)(g gmat)) and maltose (0.347 (-1)(g gmat)), were quantified by high performance liquid chromatography (HPLC). The produced enzymes could be used for hydrolysis of cotton fabric and barley bran to glucose and maltose, respectively. Application of simultaneous enzymes production using an agricultural by-product is economically and environmentally accepted and moreover, valuable biotechnological products, such as glucose and maltose, were obtained in this investigation.",
journal = "Journal of the Serbian Chemical Society",
title = "Effective valorisation of barley bran for simultaneous cellulase and beta-amylase production by Paenibacillus chitinolyticus CKS1: Statistical optimization and enzymes application",
volume = "82",
number = "11",
pages = "1223-1236",
doi = "10.2298/JSCJSC170514092M"
}
Mihajlovski, K., Davidović, S. Z., Veljović, Đ. N., Carević, M. B., Lazić, V. M.,& Dimitrijević-Branković, S. I.. (2017). Effective valorisation of barley bran for simultaneous cellulase and beta-amylase production by Paenibacillus chitinolyticus CKS1: Statistical optimization and enzymes application. in Journal of the Serbian Chemical Society, 82(11), 1223-1236.
https://doi.org/10.2298/JSCJSC170514092M
Mihajlovski K, Davidović SZ, Veljović ĐN, Carević MB, Lazić VM, Dimitrijević-Branković SI. Effective valorisation of barley bran for simultaneous cellulase and beta-amylase production by Paenibacillus chitinolyticus CKS1: Statistical optimization and enzymes application. in Journal of the Serbian Chemical Society. 2017;82(11):1223-1236.
doi:10.2298/JSCJSC170514092M .
Mihajlovski, Katarina , Davidović, Slađana Z., Veljović, Đorđe N., Carević, Milica B., Lazić, Vesna M., Dimitrijević-Branković, Suzana I., "Effective valorisation of barley bran for simultaneous cellulase and beta-amylase production by Paenibacillus chitinolyticus CKS1: Statistical optimization and enzymes application" in Journal of the Serbian Chemical Society, 82, no. 11 (2017):1223-1236,
https://doi.org/10.2298/JSCJSC170514092M . .
4
4

Dextran coated silver nanoparticles Chemical sensor for selective cysteine detection

Davidović, Slađana Z.; Lazić, Vesna M.; Vukoje, Ivana D.; Papan, Jelena; Anhrenkiel, S. Phillip; Dimitrijević, Suzana I.; Nedeljković, Jovan

(2017)

TY  - JOUR
AU  - Davidović, Slađana Z.
AU  - Lazić, Vesna M.
AU  - Vukoje, Ivana D.
AU  - Papan, Jelena
AU  - Anhrenkiel, S. Phillip
AU  - Dimitrijević, Suzana I.
AU  - Nedeljković, Jovan
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1887
AB  - A simple, fast and non-costly method for selective cysteine (Cys) detection, based on optical changes of silver colloids, is developed. For that purpose, stable colloids consisting of silver nanoparticles (Ag NPs) coated with polysaccharide dextran (Dex), isolated from bacterium species Leuconostoc mesenteroides T3, were prepared. The synthesized samples were thoroughly characterized including absorption and FTIR spectroscopy, as well as transmission electron microscopy and X-ray diffraction analysis. The silver colloids display high sensitivity and selectivity towards Cys detection in aqueous solutions. The Ag NPs coated with Dex provide possibility to detect Cys among a dozen amino acids and its detection limit was found to be 12.0 M. The sensing mechanism - red shift of optical absorption - is discussed in terms of the agglomeration of Ag NPs due to formation of hydrogen bonds between Cys molecules attached to different Ag NPs. (C) 2017 Elsevier B.V. All rights reserved.
T2  - Colloids and Surfaces. B: Biointerfaces
T1  - Dextran coated silver nanoparticles Chemical sensor for selective cysteine detection
VL  - 160
SP  - 184
EP  - 191
DO  - 10.1016/j.colsurfb.2017.09.031
ER  - 
@article{
author = "Davidović, Slađana Z. and Lazić, Vesna M. and Vukoje, Ivana D. and Papan, Jelena and Anhrenkiel, S. Phillip and Dimitrijević, Suzana I. and Nedeljković, Jovan",
year = "2017",
abstract = "A simple, fast and non-costly method for selective cysteine (Cys) detection, based on optical changes of silver colloids, is developed. For that purpose, stable colloids consisting of silver nanoparticles (Ag NPs) coated with polysaccharide dextran (Dex), isolated from bacterium species Leuconostoc mesenteroides T3, were prepared. The synthesized samples were thoroughly characterized including absorption and FTIR spectroscopy, as well as transmission electron microscopy and X-ray diffraction analysis. The silver colloids display high sensitivity and selectivity towards Cys detection in aqueous solutions. The Ag NPs coated with Dex provide possibility to detect Cys among a dozen amino acids and its detection limit was found to be 12.0 M. The sensing mechanism - red shift of optical absorption - is discussed in terms of the agglomeration of Ag NPs due to formation of hydrogen bonds between Cys molecules attached to different Ag NPs. (C) 2017 Elsevier B.V. All rights reserved.",
journal = "Colloids and Surfaces. B: Biointerfaces",
title = "Dextran coated silver nanoparticles Chemical sensor for selective cysteine detection",
volume = "160",
pages = "184-191",
doi = "10.1016/j.colsurfb.2017.09.031"
}
Davidović, S. Z., Lazić, V. M., Vukoje, I. D., Papan, J., Anhrenkiel, S. P., Dimitrijević, S. I.,& Nedeljković, J.. (2017). Dextran coated silver nanoparticles Chemical sensor for selective cysteine detection. in Colloids and Surfaces. B: Biointerfaces, 160, 184-191.
https://doi.org/10.1016/j.colsurfb.2017.09.031
Davidović SZ, Lazić VM, Vukoje ID, Papan J, Anhrenkiel SP, Dimitrijević SI, Nedeljković J. Dextran coated silver nanoparticles Chemical sensor for selective cysteine detection. in Colloids and Surfaces. B: Biointerfaces. 2017;160:184-191.
doi:10.1016/j.colsurfb.2017.09.031 .
Davidović, Slađana Z., Lazić, Vesna M., Vukoje, Ivana D., Papan, Jelena, Anhrenkiel, S. Phillip, Dimitrijević, Suzana I., Nedeljković, Jovan, "Dextran coated silver nanoparticles Chemical sensor for selective cysteine detection" in Colloids and Surfaces. B: Biointerfaces, 160 (2017):184-191,
https://doi.org/10.1016/j.colsurfb.2017.09.031 . .
1
38
30
35

Interaction of amino acid-functionalized silver nanoparticles and Candida albicans polymorphs: A deep-UV fluorescence imaging study

Dojčilović, Radovan; Pajović, Jelena D.; Božanić, Dušan K.; Bogdanović, Una; Vodnik, Vesna; Dimitrijević-Branković, Suzana I.; Miljković, Miona G.; Kascakova, Slavka; Refregiers, Matthieu; Đoković, Vladimir

(2017)

TY  - JOUR
AU  - Dojčilović, Radovan
AU  - Pajović, Jelena D.
AU  - Božanić, Dušan K.
AU  - Bogdanović, Una
AU  - Vodnik, Vesna
AU  - Dimitrijević-Branković, Suzana I.
AU  - Miljković, Miona G.
AU  - Kascakova, Slavka
AU  - Refregiers, Matthieu
AU  - Đoković, Vladimir
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1608
AB  - The interaction of the tryptophan functionalized Ag nanoparticles and live Candida albicans cells was studied by synchrotron excitation deep-ultraviolet (DUV) fluorescence imaging at the DISCO beamline of Synchrotron SOLEIL. DUV imaging showed that incubation of the fungus with functionalized nanoparticles results in significant increase in the fluorescence signal. The analysis of the images revealed that the interaction of the nanoparticles with (pseudo)hyphae polymorphs of the diploid fungus was less pronounced than in the case of yeast cells or budding spores. The changes in the intensity of the fluorescence signals of the cells after incubation were followed in [327-353 nm] and [370-410 nm] spectral ranges that correspond to the fluorescence of tryptophan in non-polar and polar environment, respectively. As a consequence of the environmental sensitivity of the silver-tryptophan fluorescent nanoprobe, we were able to determine the possible accumulation sites of the nanoparticles. The analysis of the intensity decay kinetics showed that the photobleaching effects were more pronounced in the case of the functionalized nanoparticle treated cells. The results of time-integrated emission in the mentioned spectral ranges suggested that the nanoparticles penetrate the cells, but that the majority of the nanoparticles attach to the cells surfaces. (C) 2017 Elsevier B.V. All rights reserved.
T2  - Colloids and Surfaces. B: Biointerfaces
T1  - Interaction of amino acid-functionalized silver nanoparticles and Candida albicans polymorphs: A deep-UV fluorescence imaging study
VL  - 155
SP  - 341
EP  - 348
DO  - 10.1016/j.colsurfb.2017.04.044
ER  - 
@article{
author = "Dojčilović, Radovan and Pajović, Jelena D. and Božanić, Dušan K. and Bogdanović, Una and Vodnik, Vesna and Dimitrijević-Branković, Suzana I. and Miljković, Miona G. and Kascakova, Slavka and Refregiers, Matthieu and Đoković, Vladimir",
year = "2017",
abstract = "The interaction of the tryptophan functionalized Ag nanoparticles and live Candida albicans cells was studied by synchrotron excitation deep-ultraviolet (DUV) fluorescence imaging at the DISCO beamline of Synchrotron SOLEIL. DUV imaging showed that incubation of the fungus with functionalized nanoparticles results in significant increase in the fluorescence signal. The analysis of the images revealed that the interaction of the nanoparticles with (pseudo)hyphae polymorphs of the diploid fungus was less pronounced than in the case of yeast cells or budding spores. The changes in the intensity of the fluorescence signals of the cells after incubation were followed in [327-353 nm] and [370-410 nm] spectral ranges that correspond to the fluorescence of tryptophan in non-polar and polar environment, respectively. As a consequence of the environmental sensitivity of the silver-tryptophan fluorescent nanoprobe, we were able to determine the possible accumulation sites of the nanoparticles. The analysis of the intensity decay kinetics showed that the photobleaching effects were more pronounced in the case of the functionalized nanoparticle treated cells. The results of time-integrated emission in the mentioned spectral ranges suggested that the nanoparticles penetrate the cells, but that the majority of the nanoparticles attach to the cells surfaces. (C) 2017 Elsevier B.V. All rights reserved.",
journal = "Colloids and Surfaces. B: Biointerfaces",
title = "Interaction of amino acid-functionalized silver nanoparticles and Candida albicans polymorphs: A deep-UV fluorescence imaging study",
volume = "155",
pages = "341-348",
doi = "10.1016/j.colsurfb.2017.04.044"
}
Dojčilović, R., Pajović, J. D., Božanić, D. K., Bogdanović, U., Vodnik, V., Dimitrijević-Branković, S. I., Miljković, M. G., Kascakova, S., Refregiers, M.,& Đoković, V.. (2017). Interaction of amino acid-functionalized silver nanoparticles and Candida albicans polymorphs: A deep-UV fluorescence imaging study. in Colloids and Surfaces. B: Biointerfaces, 155, 341-348.
https://doi.org/10.1016/j.colsurfb.2017.04.044
Dojčilović R, Pajović JD, Božanić DK, Bogdanović U, Vodnik V, Dimitrijević-Branković SI, Miljković MG, Kascakova S, Refregiers M, Đoković V. Interaction of amino acid-functionalized silver nanoparticles and Candida albicans polymorphs: A deep-UV fluorescence imaging study. in Colloids and Surfaces. B: Biointerfaces. 2017;155:341-348.
doi:10.1016/j.colsurfb.2017.04.044 .
Dojčilović, Radovan, Pajović, Jelena D., Božanić, Dušan K., Bogdanović, Una, Vodnik, Vesna, Dimitrijević-Branković, Suzana I., Miljković, Miona G., Kascakova, Slavka, Refregiers, Matthieu, Đoković, Vladimir, "Interaction of amino acid-functionalized silver nanoparticles and Candida albicans polymorphs: A deep-UV fluorescence imaging study" in Colloids and Surfaces. B: Biointerfaces, 155 (2017):341-348,
https://doi.org/10.1016/j.colsurfb.2017.04.044 . .
5
7
5
6

Synthesis and antimicrobial properties of Zn-mineralized alginate nanocomposites

Malagurski, Ivana; Levic, Steva; Pantic, Milena; Matijasevic, Danka; Mitrić, Miodrag; Pavlović, Vladimir B.; Dimitrijević-Branković, Suzana I.

(2017)

TY  - JOUR
AU  - Malagurski, Ivana
AU  - Levic, Steva
AU  - Pantic, Milena
AU  - Matijasevic, Danka
AU  - Mitrić, Miodrag
AU  - Pavlović, Vladimir B.
AU  - Dimitrijević-Branković, Suzana I.
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1508
AB  - New bioactive and antimicrobial biomaterials were produced by alginate-mediated biomineralization with Zn-mineral phase. The synthesis procedure is simple, cost-effective and resulted in. two different Zn-mineralized alginate nanocomposites, Zn-carbonate/Zn-alginate and Zn-phosphate/Zn-alginate. The presence of Zn-mineral phase and its type, have significantly affected nanocomposite morphology, stability, total metallic loading and potential to release Zn(II) in physiological environment. Antimicrobial experiments showed that both types of Zn-mineralized nanocomposites exhibit strong antimicrobial effect against Escherichia coli, Staphylococcus aureus and Candida albicans. These results suggest that alginate biomineralization, where minerals are salts of essential metallic ions like Zn(II), represents agood strategy for designing multifunctional biomaterials for potential biomedical applications. (C) 2017 Elsevier Ltd. All rights reserved.
T2  - Carbohydrate Polymers
T1  - Synthesis and antimicrobial properties of Zn-mineralized alginate nanocomposites
VL  - 165
SP  - 313
EP  - 321
DO  - 10.1016/j.carbpol.2017.02.064
ER  - 
@article{
author = "Malagurski, Ivana and Levic, Steva and Pantic, Milena and Matijasevic, Danka and Mitrić, Miodrag and Pavlović, Vladimir B. and Dimitrijević-Branković, Suzana I.",
year = "2017",
abstract = "New bioactive and antimicrobial biomaterials were produced by alginate-mediated biomineralization with Zn-mineral phase. The synthesis procedure is simple, cost-effective and resulted in. two different Zn-mineralized alginate nanocomposites, Zn-carbonate/Zn-alginate and Zn-phosphate/Zn-alginate. The presence of Zn-mineral phase and its type, have significantly affected nanocomposite morphology, stability, total metallic loading and potential to release Zn(II) in physiological environment. Antimicrobial experiments showed that both types of Zn-mineralized nanocomposites exhibit strong antimicrobial effect against Escherichia coli, Staphylococcus aureus and Candida albicans. These results suggest that alginate biomineralization, where minerals are salts of essential metallic ions like Zn(II), represents agood strategy for designing multifunctional biomaterials for potential biomedical applications. (C) 2017 Elsevier Ltd. All rights reserved.",
journal = "Carbohydrate Polymers",
title = "Synthesis and antimicrobial properties of Zn-mineralized alginate nanocomposites",
volume = "165",
pages = "313-321",
doi = "10.1016/j.carbpol.2017.02.064"
}
Malagurski, I., Levic, S., Pantic, M., Matijasevic, D., Mitrić, M., Pavlović, V. B.,& Dimitrijević-Branković, S. I.. (2017). Synthesis and antimicrobial properties of Zn-mineralized alginate nanocomposites. in Carbohydrate Polymers, 165, 313-321.
https://doi.org/10.1016/j.carbpol.2017.02.064
Malagurski I, Levic S, Pantic M, Matijasevic D, Mitrić M, Pavlović VB, Dimitrijević-Branković SI. Synthesis and antimicrobial properties of Zn-mineralized alginate nanocomposites. in Carbohydrate Polymers. 2017;165:313-321.
doi:10.1016/j.carbpol.2017.02.064 .
Malagurski, Ivana, Levic, Steva, Pantic, Milena, Matijasevic, Danka, Mitrić, Miodrag, Pavlović, Vladimir B., Dimitrijević-Branković, Suzana I., "Synthesis and antimicrobial properties of Zn-mineralized alginate nanocomposites" in Carbohydrate Polymers, 165 (2017):313-321,
https://doi.org/10.1016/j.carbpol.2017.02.064 . .
25
20
21

Natural sorbents modified by divalent Cu2+- and Zn2+- ions and their corresponding antimicrobial activity

Đolić, Maja B.; Rajaković-Ognjanović, Vladana N.; Štrbac, Svetlana; Dimitrijević, Suzana I.; Mitrić, Miodrag; Onjia, Antonije E.; Rajaković, Ljubinka V.

(2017)

TY  - JOUR
AU  - Đolić, Maja B.
AU  - Rajaković-Ognjanović, Vladana N.
AU  - Štrbac, Svetlana
AU  - Dimitrijević, Suzana I.
AU  - Mitrić, Miodrag
AU  - Onjia, Antonije E.
AU  - Rajaković, Ljubinka V.
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1728
AB  - The objective of this study was to investigate the modification of materials used in wastewater treatment for possible antimicrobial application(s). Granulated activated carbon (GAC) and natural clinoptilolite (CLI) were activated using Cu2+-and Zn2+-ions and the disinfection ability of the resulting materials was tested. Studies of the sorption and desorption kinetics were performed in order to determine and clarify the antimicrobial activity of the metal-activated sorbents. The exact sorption capacities of the selected sorbents, GAC and CLI, activated through use of Cu2+-ions, were 15.90 and 3.60 mg/g, respectively, while for the materials activated by Zn2+-ions, the corresponding capacities were 14.00 and 4.72 mg/g,. The desorption rates were 2 and 3 orders of magnitude lower than their sorption efficacy for the Cu2+-, and Zn2+-activated sorbents, respectively. The intermediate sorption capacity and low desorption rate indicated that the overall antimicrobial activity of the metal-modified sorbents was a result of metal ions immobilized onto surface sites. The effect of antimicrobial activity of free ions desorbed from the metal-activated surface may thus be disregarded. The antimicrobial activities of Cu/GAC, Zn/GAC, Cu/CLI and Zn/ CLI were also tested against Escherichia coli, Staphylococcus aureus, and Candida albicans. After 15 min exposure, the highest levels of cell inactivation were obtained through the Cu/CLI and the Cu/GAC against E. coli, 100.0 and 98.24%, respectively. However, for S. aureus and yeast cell inactivation, all Cu2+-and Zn2+-activated sorbents proved to be unsatisfactory. A characterization of the sorbents was performed by Xray diffraction (XRD), X-ray photo electron spectroscopy (XPS), and field emission scanning electron microscopy (FE-SEM). A concentration of the adsorbed and released ions was determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and mass spectrometry (ICP-MS). The results showed that the antimicrobial performance of the activated sorbents depended on the surface characteristics of the material, which itself designates the distribution and the bioavailability of the activating agent. (C) 2017 Elsevier B. V. All rights reserved.
T2  - New Biotechnology
T1  - Natural sorbents modified by divalent Cu2+- and Zn2+- ions and their corresponding antimicrobial activity
VL  - 39
SP  - 150
EP  - 159
DO  - 10.1016/j.nbt.2017.03.001
ER  - 
@article{
author = "Đolić, Maja B. and Rajaković-Ognjanović, Vladana N. and Štrbac, Svetlana and Dimitrijević, Suzana I. and Mitrić, Miodrag and Onjia, Antonije E. and Rajaković, Ljubinka V.",
year = "2017",
abstract = "The objective of this study was to investigate the modification of materials used in wastewater treatment for possible antimicrobial application(s). Granulated activated carbon (GAC) and natural clinoptilolite (CLI) were activated using Cu2+-and Zn2+-ions and the disinfection ability of the resulting materials was tested. Studies of the sorption and desorption kinetics were performed in order to determine and clarify the antimicrobial activity of the metal-activated sorbents. The exact sorption capacities of the selected sorbents, GAC and CLI, activated through use of Cu2+-ions, were 15.90 and 3.60 mg/g, respectively, while for the materials activated by Zn2+-ions, the corresponding capacities were 14.00 and 4.72 mg/g,. The desorption rates were 2 and 3 orders of magnitude lower than their sorption efficacy for the Cu2+-, and Zn2+-activated sorbents, respectively. The intermediate sorption capacity and low desorption rate indicated that the overall antimicrobial activity of the metal-modified sorbents was a result of metal ions immobilized onto surface sites. The effect of antimicrobial activity of free ions desorbed from the metal-activated surface may thus be disregarded. The antimicrobial activities of Cu/GAC, Zn/GAC, Cu/CLI and Zn/ CLI were also tested against Escherichia coli, Staphylococcus aureus, and Candida albicans. After 15 min exposure, the highest levels of cell inactivation were obtained through the Cu/CLI and the Cu/GAC against E. coli, 100.0 and 98.24%, respectively. However, for S. aureus and yeast cell inactivation, all Cu2+-and Zn2+-activated sorbents proved to be unsatisfactory. A characterization of the sorbents was performed by Xray diffraction (XRD), X-ray photo electron spectroscopy (XPS), and field emission scanning electron microscopy (FE-SEM). A concentration of the adsorbed and released ions was determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and mass spectrometry (ICP-MS). The results showed that the antimicrobial performance of the activated sorbents depended on the surface characteristics of the material, which itself designates the distribution and the bioavailability of the activating agent. (C) 2017 Elsevier B. V. All rights reserved.",
journal = "New Biotechnology",
title = "Natural sorbents modified by divalent Cu2+- and Zn2+- ions and their corresponding antimicrobial activity",
volume = "39",
pages = "150-159",
doi = "10.1016/j.nbt.2017.03.001"
}
Đolić, M. B., Rajaković-Ognjanović, V. N., Štrbac, S., Dimitrijević, S. I., Mitrić, M., Onjia, A. E.,& Rajaković, L. V.. (2017). Natural sorbents modified by divalent Cu2+- and Zn2+- ions and their corresponding antimicrobial activity. in New Biotechnology, 39, 150-159.
https://doi.org/10.1016/j.nbt.2017.03.001
Đolić MB, Rajaković-Ognjanović VN, Štrbac S, Dimitrijević SI, Mitrić M, Onjia AE, Rajaković LV. Natural sorbents modified by divalent Cu2+- and Zn2+- ions and their corresponding antimicrobial activity. in New Biotechnology. 2017;39:150-159.
doi:10.1016/j.nbt.2017.03.001 .
Đolić, Maja B., Rajaković-Ognjanović, Vladana N., Štrbac, Svetlana, Dimitrijević, Suzana I., Mitrić, Miodrag, Onjia, Antonije E., Rajaković, Ljubinka V., "Natural sorbents modified by divalent Cu2+- and Zn2+- ions and their corresponding antimicrobial activity" in New Biotechnology, 39 (2017):150-159,
https://doi.org/10.1016/j.nbt.2017.03.001 . .
11
7
11

Antimicrobial and Photocatalytic Abilities of Ag2CO3 Nano-Rods

Lončarević, Davor; Vukoje, Ivana D.; Dostanic, Jasmina; Bjelajac, Anđelika; Đorđević, Vesna R.; Dimitrijević, Suzana I.; Nedeljković, Jovan

(2017)

TY  - JOUR
AU  - Lončarević, Davor
AU  - Vukoje, Ivana D.
AU  - Dostanic, Jasmina
AU  - Bjelajac, Anđelika
AU  - Đorđević, Vesna R.
AU  - Dimitrijević, Suzana I.
AU  - Nedeljković, Jovan
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1499
AB  - The rod-like Ag2CO3 particles (2-4 3 0.3-0.6 mm, length 3 diameter) were synthesized in water by the precipitation reaction between AgNO3 and NaHCO3 in the presence of polyvinylpyrrolidone. The X-ray diffraction analysis revealed the co-existence of monoclinic and hexagonal phases of Ag2CO3, without presence of impurities. The band gap energy of Ag-2 CO3 was found to be 1.4 eV from the diffuse reflectance spectra. Photocatalytic ability of Ag2CO3 was tested using degradation reaction of the organic dye methylene blue over the wide range of concentrations, as well as under long run working conditions in repeated cycles. The photocatalytic mechanism was discussed in terms of the relative energetics of valence and conduction band. Antimicrobial efficiency of Ag-2 CO3 in dark was tested against Gram-negative bacteria E. coli. The Ag2CO3 dispersions in the concentration range 0.1-1.0 mg/mL ensured 100% reduction of bacteria cells. Time-dependent measurements revealed that reduction rates of bacteria cells vary in ascending order with the content of Ag2CO3. On the other hand, the observed reduction rates of bacteria cells do not depend on the concentration of coexisting free Ag+ ions (from 2 to 25 mg/L) present in Ag2CO3 dispersion.
T2  - Chemistryselect
T1  - Antimicrobial and Photocatalytic Abilities of Ag2CO3 Nano-Rods
VL  - 2
IS  - 10
SP  - 2931
EP  - 2938
DO  - 10.1002/slct.201700003
ER  - 
@article{
author = "Lončarević, Davor and Vukoje, Ivana D. and Dostanic, Jasmina and Bjelajac, Anđelika and Đorđević, Vesna R. and Dimitrijević, Suzana I. and Nedeljković, Jovan",
year = "2017",
abstract = "The rod-like Ag2CO3 particles (2-4 3 0.3-0.6 mm, length 3 diameter) were synthesized in water by the precipitation reaction between AgNO3 and NaHCO3 in the presence of polyvinylpyrrolidone. The X-ray diffraction analysis revealed the co-existence of monoclinic and hexagonal phases of Ag2CO3, without presence of impurities. The band gap energy of Ag-2 CO3 was found to be 1.4 eV from the diffuse reflectance spectra. Photocatalytic ability of Ag2CO3 was tested using degradation reaction of the organic dye methylene blue over the wide range of concentrations, as well as under long run working conditions in repeated cycles. The photocatalytic mechanism was discussed in terms of the relative energetics of valence and conduction band. Antimicrobial efficiency of Ag-2 CO3 in dark was tested against Gram-negative bacteria E. coli. The Ag2CO3 dispersions in the concentration range 0.1-1.0 mg/mL ensured 100% reduction of bacteria cells. Time-dependent measurements revealed that reduction rates of bacteria cells vary in ascending order with the content of Ag2CO3. On the other hand, the observed reduction rates of bacteria cells do not depend on the concentration of coexisting free Ag+ ions (from 2 to 25 mg/L) present in Ag2CO3 dispersion.",
journal = "Chemistryselect",
title = "Antimicrobial and Photocatalytic Abilities of Ag2CO3 Nano-Rods",
volume = "2",
number = "10",
pages = "2931-2938",
doi = "10.1002/slct.201700003"
}
Lončarević, D., Vukoje, I. D., Dostanic, J., Bjelajac, A., Đorđević, V. R., Dimitrijević, S. I.,& Nedeljković, J.. (2017). Antimicrobial and Photocatalytic Abilities of Ag2CO3 Nano-Rods. in Chemistryselect, 2(10), 2931-2938.
https://doi.org/10.1002/slct.201700003
Lončarević D, Vukoje ID, Dostanic J, Bjelajac A, Đorđević VR, Dimitrijević SI, Nedeljković J. Antimicrobial and Photocatalytic Abilities of Ag2CO3 Nano-Rods. in Chemistryselect. 2017;2(10):2931-2938.
doi:10.1002/slct.201700003 .
Lončarević, Davor, Vukoje, Ivana D., Dostanic, Jasmina, Bjelajac, Anđelika, Đorđević, Vesna R., Dimitrijević, Suzana I., Nedeljković, Jovan, "Antimicrobial and Photocatalytic Abilities of Ag2CO3 Nano-Rods" in Chemistryselect, 2, no. 10 (2017):2931-2938,
https://doi.org/10.1002/slct.201700003 . .
10
7
10

Deep UV fluorescence imaging study of Candida albicans cells treated with gold-riboflavin hydrocolloids

Pajović, Jelena D.; Dojčilović, Radovan; Božanić, Dušan K.; Vodnik, Vesna; Dimitrijević-Branković, Suzana I.; Kascakova, Slavka; Refregiers, Matthieu; Markelic, Milica; Đoković, Vladimir

(2016)

TY  - JOUR
AU  - Pajović, Jelena D.
AU  - Dojčilović, Radovan
AU  - Božanić, Dušan K.
AU  - Vodnik, Vesna
AU  - Dimitrijević-Branković, Suzana I.
AU  - Kascakova, Slavka
AU  - Refregiers, Matthieu
AU  - Markelic, Milica
AU  - Đoković, Vladimir
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1107
AB  - Fluorescent nanostructures were prepared by functionalization of gold nanoparticles with riboflavin molecules and used as probes for synchrotron radiation deep ultraviolet (SR-DUV) fluorescence imaging of gluteraldehyde-fixed Candida albicans cells. The nanoparticles were characterized by transmission electron microscopy (TEM) and optical spectroscopy techniques. The TEM analysis showed that the nanostructures were 6 nm in diameter, while the results of the fluorescence spectroscopies confirmed the photoluminescence of the nanoparticles. The SR-DUV imaging showed that it was possible to distinguish the fluorescence of the nanoparticles from the autofluorescence of the cells, as well as that the local maxima of the signal pertaining to the fluorescence of goldriboflavin nanostructures were mostly positioned on the surfaces of the C. albicans cells of spherical morphology.
T2  - Optical and Quantum Electronics
T1  - Deep UV fluorescence imaging study of Candida albicans cells treated with gold-riboflavin hydrocolloids
VL  - 48
IS  - 6
DO  - 10.1007/s11082-016-0578-y
ER  - 
@article{
author = "Pajović, Jelena D. and Dojčilović, Radovan and Božanić, Dušan K. and Vodnik, Vesna and Dimitrijević-Branković, Suzana I. and Kascakova, Slavka and Refregiers, Matthieu and Markelic, Milica and Đoković, Vladimir",
year = "2016",
abstract = "Fluorescent nanostructures were prepared by functionalization of gold nanoparticles with riboflavin molecules and used as probes for synchrotron radiation deep ultraviolet (SR-DUV) fluorescence imaging of gluteraldehyde-fixed Candida albicans cells. The nanoparticles were characterized by transmission electron microscopy (TEM) and optical spectroscopy techniques. The TEM analysis showed that the nanostructures were 6 nm in diameter, while the results of the fluorescence spectroscopies confirmed the photoluminescence of the nanoparticles. The SR-DUV imaging showed that it was possible to distinguish the fluorescence of the nanoparticles from the autofluorescence of the cells, as well as that the local maxima of the signal pertaining to the fluorescence of goldriboflavin nanostructures were mostly positioned on the surfaces of the C. albicans cells of spherical morphology.",
journal = "Optical and Quantum Electronics",
title = "Deep UV fluorescence imaging study of Candida albicans cells treated with gold-riboflavin hydrocolloids",
volume = "48",
number = "6",
doi = "10.1007/s11082-016-0578-y"
}
Pajović, J. D., Dojčilović, R., Božanić, D. K., Vodnik, V., Dimitrijević-Branković, S. I., Kascakova, S., Refregiers, M., Markelic, M.,& Đoković, V.. (2016). Deep UV fluorescence imaging study of Candida albicans cells treated with gold-riboflavin hydrocolloids. in Optical and Quantum Electronics, 48(6).
https://doi.org/10.1007/s11082-016-0578-y
Pajović JD, Dojčilović R, Božanić DK, Vodnik V, Dimitrijević-Branković SI, Kascakova S, Refregiers M, Markelic M, Đoković V. Deep UV fluorescence imaging study of Candida albicans cells treated with gold-riboflavin hydrocolloids. in Optical and Quantum Electronics. 2016;48(6).
doi:10.1007/s11082-016-0578-y .
Pajović, Jelena D., Dojčilović, Radovan, Božanić, Dušan K., Vodnik, Vesna, Dimitrijević-Branković, Suzana I., Kascakova, Slavka, Refregiers, Matthieu, Markelic, Milica, Đoković, Vladimir, "Deep UV fluorescence imaging study of Candida albicans cells treated with gold-riboflavin hydrocolloids" in Optical and Quantum Electronics, 48, no. 6 (2016),
https://doi.org/10.1007/s11082-016-0578-y . .
1
1
1

A fluorescent nanoprobe for single bacterium tracking: functionalization of silver nanoparticles with tryptophan to probe the nanoparticle accumulation with single cell resolution

Dojčilović, Radovan; Pajović, Jelena D.; Božanić, Dušan K.; Vodnik, Vesna; Dimitrijević-Branković, Suzana I.; Milosavljević, Aleksandar R.; Kascakova, S.; Refregiers, M.; Đoković, Vladimir

(2016)

TY  - JOUR
AU  - Dojčilović, Radovan
AU  - Pajović, Jelena D.
AU  - Božanić, Dušan K.
AU  - Vodnik, Vesna
AU  - Dimitrijević-Branković, Suzana I.
AU  - Milosavljević, Aleksandar R.
AU  - Kascakova, S.
AU  - Refregiers, M.
AU  - Đoković, Vladimir
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/971
AB  - The investigation of the interaction of silver nanoparticles and live bacteria cells is of particular importance for understanding and controlling their bactericidal properties. In this study, the process of internalization of silver nanoparticles in Escherichia coli cells was followed by means of synchrotron excitation deep ultraviolet (DUV) fluorescence imaging. Antimicrobial nanostructures that can absorb and emit light in the UV region were prepared by functionalization of silver nanoparticles with tryptophan amino acid and used as environmentally sensitive fluorescent probes. The nanostructures were characterized by morphological (TEM) and spectroscopic methods (UV-vis, FTIR, XPS, and photoluminescence). The TEM images and the analyses of the UV-vis spectra suggested that the addition of tryptophan led to the formation of hybrid nanostructures with pronounced eccentricity and larger sizes with respect to that of the initial silver nanoparticles. The DUV imaging showed that it was possible to distinguish the fluorescent signal pertaining to silver-tryptophan nanostructures from the autofluorescence of the bacteria. The spatial resolution of the fluorescence images was 154 nm which was sufficient to perform analyses of the accumulation of the nanostructures within a single bacterium. The DUV imaging results imply that the tryptophan-functionalized silver nanoparticles interact with cell membranes via insertion of the amino acid into the phospholipid bilayer and enter the cells.
T2  - Analyst
T1  - A fluorescent nanoprobe for single bacterium tracking: functionalization of silver nanoparticles with tryptophan to probe the nanoparticle accumulation with single cell resolution
VL  - 141
IS  - 6
SP  - 1988
EP  - 1996
DO  - 10.1039/c5an02358k
ER  - 
@article{
author = "Dojčilović, Radovan and Pajović, Jelena D. and Božanić, Dušan K. and Vodnik, Vesna and Dimitrijević-Branković, Suzana I. and Milosavljević, Aleksandar R. and Kascakova, S. and Refregiers, M. and Đoković, Vladimir",
year = "2016",
abstract = "The investigation of the interaction of silver nanoparticles and live bacteria cells is of particular importance for understanding and controlling their bactericidal properties. In this study, the process of internalization of silver nanoparticles in Escherichia coli cells was followed by means of synchrotron excitation deep ultraviolet (DUV) fluorescence imaging. Antimicrobial nanostructures that can absorb and emit light in the UV region were prepared by functionalization of silver nanoparticles with tryptophan amino acid and used as environmentally sensitive fluorescent probes. The nanostructures were characterized by morphological (TEM) and spectroscopic methods (UV-vis, FTIR, XPS, and photoluminescence). The TEM images and the analyses of the UV-vis spectra suggested that the addition of tryptophan led to the formation of hybrid nanostructures with pronounced eccentricity and larger sizes with respect to that of the initial silver nanoparticles. The DUV imaging showed that it was possible to distinguish the fluorescent signal pertaining to silver-tryptophan nanostructures from the autofluorescence of the bacteria. The spatial resolution of the fluorescence images was 154 nm which was sufficient to perform analyses of the accumulation of the nanostructures within a single bacterium. The DUV imaging results imply that the tryptophan-functionalized silver nanoparticles interact with cell membranes via insertion of the amino acid into the phospholipid bilayer and enter the cells.",
journal = "Analyst",
title = "A fluorescent nanoprobe for single bacterium tracking: functionalization of silver nanoparticles with tryptophan to probe the nanoparticle accumulation with single cell resolution",
volume = "141",
number = "6",
pages = "1988-1996",
doi = "10.1039/c5an02358k"
}
Dojčilović, R., Pajović, J. D., Božanić, D. K., Vodnik, V., Dimitrijević-Branković, S. I., Milosavljević, A. R., Kascakova, S., Refregiers, M.,& Đoković, V.. (2016). A fluorescent nanoprobe for single bacterium tracking: functionalization of silver nanoparticles with tryptophan to probe the nanoparticle accumulation with single cell resolution. in Analyst, 141(6), 1988-1996.
https://doi.org/10.1039/c5an02358k
Dojčilović R, Pajović JD, Božanić DK, Vodnik V, Dimitrijević-Branković SI, Milosavljević AR, Kascakova S, Refregiers M, Đoković V. A fluorescent nanoprobe for single bacterium tracking: functionalization of silver nanoparticles with tryptophan to probe the nanoparticle accumulation with single cell resolution. in Analyst. 2016;141(6):1988-1996.
doi:10.1039/c5an02358k .
Dojčilović, Radovan, Pajović, Jelena D., Božanić, Dušan K., Vodnik, Vesna, Dimitrijević-Branković, Suzana I., Milosavljević, Aleksandar R., Kascakova, S., Refregiers, M., Đoković, Vladimir, "A fluorescent nanoprobe for single bacterium tracking: functionalization of silver nanoparticles with tryptophan to probe the nanoparticle accumulation with single cell resolution" in Analyst, 141, no. 6 (2016):1988-1996,
https://doi.org/10.1039/c5an02358k . .
10
9
10

Antimicrobial activity of copper-polyaniline nanocomposite

Bogdanović, Una; Vodnik, Vesna; Mitrić, Miodrag; Dimitrijević, Suzana I.; Škapin, Srečo Davor; Žunič, Vojka; Budimir, Milica; Stoiljković, Milovan

(Society of Physical Chemists of Serbia, 2016)

TY  - CONF
AU  - Bogdanović, Una
AU  - Vodnik, Vesna
AU  - Mitrić, Miodrag
AU  - Dimitrijević, Suzana I.
AU  - Škapin, Srečo Davor
AU  - Žunič, Vojka
AU  - Budimir, Milica
AU  - Stoiljković, Milovan
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9257
AB  - By combining copper nanoparticles (CuNPs) as a good antimicrobial agent
with polyaniline (PANI), which also shows some degree of antimicrobial
activity, we were able to synthesize a novel promising antimicrobial
material – copper-polyaniline (Cu-PANI) nanocomposite. It was prepared
by simple in situ polymerization method, when thepolymer and metal
nanoparticles (dav= 6 nm)are produced simultaneously.Quantitative
(antimicrobial assay) and qualitative (atomic force microscopy – AFM)
analyses showed that synergestic effect of CuNPs and PANI against
bacteriaE. coli andS. aureus,and fungusC. albicans, provides its faster
andhigher antimicrobial activity than any component acting alone.This
makes it a great candidate for fast waste water treatment.
PB  - Society of Physical Chemists of Serbia
C3  - Physical chemistry 2016 : 13th international conference on fundamental and applied aspects of physical chemistry
T1  - Antimicrobial activity of copper-polyaniline nanocomposite
SP  - 653
EP  - 656
ER  - 
@conference{
author = "Bogdanović, Una and Vodnik, Vesna and Mitrić, Miodrag and Dimitrijević, Suzana I. and Škapin, Srečo Davor and Žunič, Vojka and Budimir, Milica and Stoiljković, Milovan",
year = "2016",
abstract = "By combining copper nanoparticles (CuNPs) as a good antimicrobial agent
with polyaniline (PANI), which also shows some degree of antimicrobial
activity, we were able to synthesize a novel promising antimicrobial
material – copper-polyaniline (Cu-PANI) nanocomposite. It was prepared
by simple in situ polymerization method, when thepolymer and metal
nanoparticles (dav= 6 nm)are produced simultaneously.Quantitative
(antimicrobial assay) and qualitative (atomic force microscopy – AFM)
analyses showed that synergestic effect of CuNPs and PANI against
bacteriaE. coli andS. aureus,and fungusC. albicans, provides its faster
andhigher antimicrobial activity than any component acting alone.This
makes it a great candidate for fast waste water treatment.",
publisher = "Society of Physical Chemists of Serbia",
journal = "Physical chemistry 2016 : 13th international conference on fundamental and applied aspects of physical chemistry",
title = "Antimicrobial activity of copper-polyaniline nanocomposite",
pages = "653-656"
}
Bogdanović, U., Vodnik, V., Mitrić, M., Dimitrijević, S. I., Škapin, S. D., Žunič, V., Budimir, M.,& Stoiljković, M.. (2016). Antimicrobial activity of copper-polyaniline nanocomposite. in Physical chemistry 2016 : 13th international conference on fundamental and applied aspects of physical chemistry
Society of Physical Chemists of Serbia., 653-656.
Bogdanović U, Vodnik V, Mitrić M, Dimitrijević SI, Škapin SD, Žunič V, Budimir M, Stoiljković M. Antimicrobial activity of copper-polyaniline nanocomposite. in Physical chemistry 2016 : 13th international conference on fundamental and applied aspects of physical chemistry. 2016;:653-656..
Bogdanović, Una, Vodnik, Vesna, Mitrić, Miodrag, Dimitrijević, Suzana I., Škapin, Srečo Davor, Žunič, Vojka, Budimir, Milica, Stoiljković, Milovan, "Antimicrobial activity of copper-polyaniline nanocomposite" in Physical chemistry 2016 : 13th international conference on fundamental and applied aspects of physical chemistry (2016):653-656.

Negative influence of Ag and TiO2 nanoparticles on biodegradation of cotton fabrics

Lazić, Vesna M.; Radoičić, Marija B.; Šaponjić, Zoran; Radetic, Tamara; Vodnik, Vesna; Nikolic, Svetlana; Dimitrijević, Suzana I.; Radetić, Maja M.

(2015)

TY  - JOUR
AU  - Lazić, Vesna M.
AU  - Radoičić, Marija B.
AU  - Šaponjić, Zoran
AU  - Radetic, Tamara
AU  - Vodnik, Vesna
AU  - Nikolic, Svetlana
AU  - Dimitrijević, Suzana I.
AU  - Radetić, Maja M.
PY  - 2015
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/438
AB  - Recently, many efforts have been made to efficiently impregnate different textile materials with metal and metal oxide nanoparticles in order to provide antimicrobial, UV protective or self-cleaning properties. Evidence of their environmental risks is limited at this point. The aim of this study was to explore the influence of Ag and TiO2 nanoparticles on biodegradation of cotton fabrics. Biodegradation behavior of cotton fabrics impregnated with Ag and TiO2 NPs from colloidal solutions of different concentrations was assessed according to standard test method ASTM 5988-03 and soil burial test. Degradation of cotton fabrics was also evaluated by enzymatic hydrolysis with cellulase. The morphology of fibers affected by biodegradation was analyzed by scanning electron microscopy (SEM). In order to get better insight into biodegradation process, dehydrogenase activity of soil has been determined. Ag and particularly TiO2 nanoparticles suppressed the biodegradation of cotton fabrics. The dehydrogenase activity of soil with cotton fabrics impregnated with TiO2 nanoparticles was the weakest. Severe damage of cotton fibers during the biodegradation process was confirmed by SEM.
T2  - Cellulose
T1  - Negative influence of Ag and TiO2 nanoparticles on biodegradation of cotton fabrics
VL  - 22
IS  - 2
SP  - 1365
EP  - 1378
DO  - 10.1007/s10570-015-0549-7
ER  - 
@article{
author = "Lazić, Vesna M. and Radoičić, Marija B. and Šaponjić, Zoran and Radetic, Tamara and Vodnik, Vesna and Nikolic, Svetlana and Dimitrijević, Suzana I. and Radetić, Maja M.",
year = "2015",
abstract = "Recently, many efforts have been made to efficiently impregnate different textile materials with metal and metal oxide nanoparticles in order to provide antimicrobial, UV protective or self-cleaning properties. Evidence of their environmental risks is limited at this point. The aim of this study was to explore the influence of Ag and TiO2 nanoparticles on biodegradation of cotton fabrics. Biodegradation behavior of cotton fabrics impregnated with Ag and TiO2 NPs from colloidal solutions of different concentrations was assessed according to standard test method ASTM 5988-03 and soil burial test. Degradation of cotton fabrics was also evaluated by enzymatic hydrolysis with cellulase. The morphology of fibers affected by biodegradation was analyzed by scanning electron microscopy (SEM). In order to get better insight into biodegradation process, dehydrogenase activity of soil has been determined. Ag and particularly TiO2 nanoparticles suppressed the biodegradation of cotton fabrics. The dehydrogenase activity of soil with cotton fabrics impregnated with TiO2 nanoparticles was the weakest. Severe damage of cotton fibers during the biodegradation process was confirmed by SEM.",
journal = "Cellulose",
title = "Negative influence of Ag and TiO2 nanoparticles on biodegradation of cotton fabrics",
volume = "22",
number = "2",
pages = "1365-1378",
doi = "10.1007/s10570-015-0549-7"
}
Lazić, V. M., Radoičić, M. B., Šaponjić, Z., Radetic, T., Vodnik, V., Nikolic, S., Dimitrijević, S. I.,& Radetić, M. M.. (2015). Negative influence of Ag and TiO2 nanoparticles on biodegradation of cotton fabrics. in Cellulose, 22(2), 1365-1378.
https://doi.org/10.1007/s10570-015-0549-7
Lazić VM, Radoičić MB, Šaponjić Z, Radetic T, Vodnik V, Nikolic S, Dimitrijević SI, Radetić MM. Negative influence of Ag and TiO2 nanoparticles on biodegradation of cotton fabrics. in Cellulose. 2015;22(2):1365-1378.
doi:10.1007/s10570-015-0549-7 .
Lazić, Vesna M., Radoičić, Marija B., Šaponjić, Zoran, Radetic, Tamara, Vodnik, Vesna, Nikolic, Svetlana, Dimitrijević, Suzana I., Radetić, Maja M., "Negative influence of Ag and TiO2 nanoparticles on biodegradation of cotton fabrics" in Cellulose, 22, no. 2 (2015):1365-1378,
https://doi.org/10.1007/s10570-015-0549-7 . .
13
16
17

Tryptophan-functionalized gold nanoparticles for deep UV imaging of microbial cells

Pajović, Jelena D.; Dojčilović, Radovan; Božanić, Dušan K.; Kascakova, Slavka; Refregiers, Matthieu; Dimitrijević-Branković, Suzana I.; Vodnik, Vesna; Milosavljević, Aleksandar R.; Piscopiello, Emanuela; Luyt, Adriaan S.; Đoković, Vladimir

(Elsevier, 2015)

TY  - JOUR
AU  - Pajović, Jelena D.
AU  - Dojčilović, Radovan
AU  - Božanić, Dušan K.
AU  - Kascakova, Slavka
AU  - Refregiers, Matthieu
AU  - Dimitrijević-Branković, Suzana I.
AU  - Vodnik, Vesna
AU  - Milosavljević, Aleksandar R.
AU  - Piscopiello, Emanuela
AU  - Luyt, Adriaan S.
AU  - Đoković, Vladimir
PY  - 2015
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/875
AB  - Biocompatible fluorescent nanostructures were prepared by a functionalization of gold nanoparticles with the amino acid tryptophan. The gold-tryptophan bioconjugates were investigated by TEM and HRTEM and various spectroscopy methods (XPS, FTIR, UV-vis and photoluminescence). It was found that the gold nanoparticles, initially 8 nm in diameter, aggregate in the presence of the amino acid. From the XPS and FTIR spectroscopy results, it was concluded that the tryptophan gold interactions mainly take place via indole and carboxyl groups. Although the indole group is involved in the interaction with the gold surfaces, the tryptophan-gold hybrids showed strong fluorescence due to the presence of multilayers of tryptophan. Deep ultra violet (DUV) imaging performed at the SOLEIL synchrotron showed that It is possible to detect these hybrid nanostructures within Escherichia coli cells. (c) 2015 Elsevier B.V. All rights reserved.
PB  - Elsevier
T2  - Colloids and Surfaces. B: Biointerfaces
T1  - Tryptophan-functionalized gold nanoparticles for deep UV imaging of microbial cells
VL  - 135
SP  - 742
EP  - 750
DO  - 10.1016/j.colsurfb.2015.08.050
ER  - 
@article{
author = "Pajović, Jelena D. and Dojčilović, Radovan and Božanić, Dušan K. and Kascakova, Slavka and Refregiers, Matthieu and Dimitrijević-Branković, Suzana I. and Vodnik, Vesna and Milosavljević, Aleksandar R. and Piscopiello, Emanuela and Luyt, Adriaan S. and Đoković, Vladimir",
year = "2015",
abstract = "Biocompatible fluorescent nanostructures were prepared by a functionalization of gold nanoparticles with the amino acid tryptophan. The gold-tryptophan bioconjugates were investigated by TEM and HRTEM and various spectroscopy methods (XPS, FTIR, UV-vis and photoluminescence). It was found that the gold nanoparticles, initially 8 nm in diameter, aggregate in the presence of the amino acid. From the XPS and FTIR spectroscopy results, it was concluded that the tryptophan gold interactions mainly take place via indole and carboxyl groups. Although the indole group is involved in the interaction with the gold surfaces, the tryptophan-gold hybrids showed strong fluorescence due to the presence of multilayers of tryptophan. Deep ultra violet (DUV) imaging performed at the SOLEIL synchrotron showed that It is possible to detect these hybrid nanostructures within Escherichia coli cells. (c) 2015 Elsevier B.V. All rights reserved.",
publisher = "Elsevier",
journal = "Colloids and Surfaces. B: Biointerfaces",
title = "Tryptophan-functionalized gold nanoparticles for deep UV imaging of microbial cells",
volume = "135",
pages = "742-750",
doi = "10.1016/j.colsurfb.2015.08.050"
}
Pajović, J. D., Dojčilović, R., Božanić, D. K., Kascakova, S., Refregiers, M., Dimitrijević-Branković, S. I., Vodnik, V., Milosavljević, A. R., Piscopiello, E., Luyt, A. S.,& Đoković, V.. (2015). Tryptophan-functionalized gold nanoparticles for deep UV imaging of microbial cells. in Colloids and Surfaces. B: Biointerfaces
Elsevier., 135, 742-750.
https://doi.org/10.1016/j.colsurfb.2015.08.050
Pajović JD, Dojčilović R, Božanić DK, Kascakova S, Refregiers M, Dimitrijević-Branković SI, Vodnik V, Milosavljević AR, Piscopiello E, Luyt AS, Đoković V. Tryptophan-functionalized gold nanoparticles for deep UV imaging of microbial cells. in Colloids and Surfaces. B: Biointerfaces. 2015;135:742-750.
doi:10.1016/j.colsurfb.2015.08.050 .
Pajović, Jelena D., Dojčilović, Radovan, Božanić, Dušan K., Kascakova, Slavka, Refregiers, Matthieu, Dimitrijević-Branković, Suzana I., Vodnik, Vesna, Milosavljević, Aleksandar R., Piscopiello, Emanuela, Luyt, Adriaan S., Đoković, Vladimir, "Tryptophan-functionalized gold nanoparticles for deep UV imaging of microbial cells" in Colloids and Surfaces. B: Biointerfaces, 135 (2015):742-750,
https://doi.org/10.1016/j.colsurfb.2015.08.050 . .
27
26
26

The antimicrobial efficiency of silver activated sorbents

Đolić, Maja B.; Rajaković-Ognjanović, Vladana N.; Štrbac, Svetlana; Rakočević, Zlatko Lj.; Veljović, Đorđe N.; Dimitrijević, Suzana I.; Rajaković, Ljubinka V.

(Elsevier, 2015)

TY  - JOUR
AU  - Đolić, Maja B.
AU  - Rajaković-Ognjanović, Vladana N.
AU  - Štrbac, Svetlana
AU  - Rakočević, Zlatko Lj.
AU  - Veljović, Đorđe N.
AU  - Dimitrijević, Suzana I.
AU  - Rajaković, Ljubinka V.
PY  - 2015
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/849
AB  - This study is focused on the surface modifications of the materials that are used for antimicrobial water treatment. Sorbents of different origin were activated by Ag+-ions. The selection of the most appropriate materials and the most effective activation agents was done according to the results of the sorption and desorption kinetic studies. Sorption capacities of selected sorbents: granulated activated carbon (GAC), zeolite (Z), and titanium dioxide (T), activated by Ag+-ions were following: 42.06, 13.51 and 17.53 mg/g, respectively. The antimicrobial activity of Ag/Z, Ag/GAC and Ag/T sorbents were tested against Gram-negative bacteria E. coli, Gram-positive bacteria S. aureus and yeast C. albicans. After 15 min of exposure period, the highest cell removal was obtained using Ag/Z against S. aureus and E. coli, 98.8 and 93.5%, respectively. Yeast cell inactivation was unsatisfactory for all three activated sorbents. The antimicrobial pathway of the activated sorbents has been examined by two separate tests - Ag+-ions desorbed from the activated surface to the aqueous phase and microbial cell removal caused by the Ag+-ions from the solid phase (activated surface sites). The results indicated that disinfection process significantly depended on the microbial-activated sites interactions on the modified surface. The chemical state of the activating agent had crucial impact to the inhibition rate. The characterization of the native and modified sorbents was performed by X-ray diffraction technique, X-ray photoelectron spectroscopy and scanning electron microscope. The concentration of adsorbed and released ions was determined by inductively coupled plasma optical emission spectroscopy and mass spectrometry. The antimicrobial efficiency of activated sorbents was related not only to the concentration of the activating agent, but moreover on the surface characteristics of the material, which affects the distribution and the accessibility of the activating agent. (C) 2015 Elsevier B.V. All rights reserved.
PB  - Elsevier
T2  - Applied Surface Science
T1  - The antimicrobial efficiency of silver activated sorbents
VL  - 357
SP  - 819
EP  - 831
DO  - 10.1016/j.apsusc.2015.09.032
ER  - 
@article{
author = "Đolić, Maja B. and Rajaković-Ognjanović, Vladana N. and Štrbac, Svetlana and Rakočević, Zlatko Lj. and Veljović, Đorđe N. and Dimitrijević, Suzana I. and Rajaković, Ljubinka V.",
year = "2015",
abstract = "This study is focused on the surface modifications of the materials that are used for antimicrobial water treatment. Sorbents of different origin were activated by Ag+-ions. The selection of the most appropriate materials and the most effective activation agents was done according to the results of the sorption and desorption kinetic studies. Sorption capacities of selected sorbents: granulated activated carbon (GAC), zeolite (Z), and titanium dioxide (T), activated by Ag+-ions were following: 42.06, 13.51 and 17.53 mg/g, respectively. The antimicrobial activity of Ag/Z, Ag/GAC and Ag/T sorbents were tested against Gram-negative bacteria E. coli, Gram-positive bacteria S. aureus and yeast C. albicans. After 15 min of exposure period, the highest cell removal was obtained using Ag/Z against S. aureus and E. coli, 98.8 and 93.5%, respectively. Yeast cell inactivation was unsatisfactory for all three activated sorbents. The antimicrobial pathway of the activated sorbents has been examined by two separate tests - Ag+-ions desorbed from the activated surface to the aqueous phase and microbial cell removal caused by the Ag+-ions from the solid phase (activated surface sites). The results indicated that disinfection process significantly depended on the microbial-activated sites interactions on the modified surface. The chemical state of the activating agent had crucial impact to the inhibition rate. The characterization of the native and modified sorbents was performed by X-ray diffraction technique, X-ray photoelectron spectroscopy and scanning electron microscope. The concentration of adsorbed and released ions was determined by inductively coupled plasma optical emission spectroscopy and mass spectrometry. The antimicrobial efficiency of activated sorbents was related not only to the concentration of the activating agent, but moreover on the surface characteristics of the material, which affects the distribution and the accessibility of the activating agent. (C) 2015 Elsevier B.V. All rights reserved.",
publisher = "Elsevier",
journal = "Applied Surface Science",
title = "The antimicrobial efficiency of silver activated sorbents",
volume = "357",
pages = "819-831",
doi = "10.1016/j.apsusc.2015.09.032"
}
Đolić, M. B., Rajaković-Ognjanović, V. N., Štrbac, S., Rakočević, Z. Lj., Veljović, Đ. N., Dimitrijević, S. I.,& Rajaković, L. V.. (2015). The antimicrobial efficiency of silver activated sorbents. in Applied Surface Science
Elsevier., 357, 819-831.
https://doi.org/10.1016/j.apsusc.2015.09.032
Đolić MB, Rajaković-Ognjanović VN, Štrbac S, Rakočević ZL, Veljović ĐN, Dimitrijević SI, Rajaković LV. The antimicrobial efficiency of silver activated sorbents. in Applied Surface Science. 2015;357:819-831.
doi:10.1016/j.apsusc.2015.09.032 .
Đolić, Maja B., Rajaković-Ognjanović, Vladana N., Štrbac, Svetlana, Rakočević, Zlatko Lj., Veljović, Đorđe N., Dimitrijević, Suzana I., Rajaković, Ljubinka V., "The antimicrobial efficiency of silver activated sorbents" in Applied Surface Science, 357 (2015):819-831,
https://doi.org/10.1016/j.apsusc.2015.09.032 . .
13
14
15