Smolina, Ekaterina

Link to this page

Authority KeyName Variants
439030ad-d935-4e2d-9745-175c1eae7d8d
  • Smolina, Ekaterina (1)
Projects

Author's Bibliography

Probing Band Topology Using Modulational Instability

Leykam, Daniel; Smolina, Ekaterina; Maluckov, Aleksandra; Flach, Sergej; Smirnova, Daria A

(2021)

TY  - JOUR
AU  - Leykam, Daniel
AU  - Smolina, Ekaterina
AU  - Maluckov, Aleksandra
AU  - Flach, Sergej
AU  - Smirnova, Daria A
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9153
AB  - We analyze the modulational instability of nonlinear Bloch waves in topological photonic lattices. In the initial phase of the instability development captured by the linear stability analysis, long wavelength instabilities and bifurcations of the nonlinear Bloch waves are sensitive to topological band inversions. At longer timescales, nonlinear wave mixing induces spreading of energy through the entire band and spontaneous creation of wave polarization singularities determined by the band Chern number. Our analytical and numerical results establish modulational instability as a tool to probe bulk topological invariants and create topologically nontrivial wave fields. © 2021 American Physical Society.
T2  - Physical Review Letters
T1  - Probing Band Topology Using Modulational Instability
VL  - 126
IS  - 7
SP  - 073901
DO  - 10.1103/PhysRevLett.126.073901
ER  - 
@article{
author = "Leykam, Daniel and Smolina, Ekaterina and Maluckov, Aleksandra and Flach, Sergej and Smirnova, Daria A",
year = "2021",
abstract = "We analyze the modulational instability of nonlinear Bloch waves in topological photonic lattices. In the initial phase of the instability development captured by the linear stability analysis, long wavelength instabilities and bifurcations of the nonlinear Bloch waves are sensitive to topological band inversions. At longer timescales, nonlinear wave mixing induces spreading of energy through the entire band and spontaneous creation of wave polarization singularities determined by the band Chern number. Our analytical and numerical results establish modulational instability as a tool to probe bulk topological invariants and create topologically nontrivial wave fields. © 2021 American Physical Society.",
journal = "Physical Review Letters",
title = "Probing Band Topology Using Modulational Instability",
volume = "126",
number = "7",
pages = "073901",
doi = "10.1103/PhysRevLett.126.073901"
}
Leykam, D., Smolina, E., Maluckov, A., Flach, S.,& Smirnova, D. A.. (2021). Probing Band Topology Using Modulational Instability. in Physical Review Letters, 126(7), 073901.
https://doi.org/10.1103/PhysRevLett.126.073901
Leykam D, Smolina E, Maluckov A, Flach S, Smirnova DA. Probing Band Topology Using Modulational Instability. in Physical Review Letters. 2021;126(7):073901.
doi:10.1103/PhysRevLett.126.073901 .
Leykam, Daniel, Smolina, Ekaterina, Maluckov, Aleksandra, Flach, Sergej, Smirnova, Daria A, "Probing Band Topology Using Modulational Instability" in Physical Review Letters, 126, no. 7 (2021):073901,
https://doi.org/10.1103/PhysRevLett.126.073901 . .
52
2
1