Keta, Otilija D.

Link to this page

Authority KeyName Variants
orcid::0000-0003-4974-8741
  • Keta, Otilija D. (13)
Projects

Author's Bibliography

Pomegranate (Punica granatum L.) Peel Extract: Potential Cytotoxic Agent Against Different Cancer Cell Lines

Keta, Otilija D.; Deljanin, Milena; Petković, Vladana; Zdunić, Gordana; Janković, Teodora; Živković, Jelena; Ristić-Fira, Aleksandra; Petrović, Ivan M.; Šavikin, Katarina

(2020)

TY  - JOUR
AU  - Keta, Otilija D.
AU  - Deljanin, Milena
AU  - Petković, Vladana
AU  - Zdunić, Gordana
AU  - Janković, Teodora
AU  - Živković, Jelena
AU  - Ristić-Fira, Aleksandra
AU  - Petrović, Ivan M.
AU  - Šavikin, Katarina
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8996
AB  - The aim of the present study was to investigate effects of pomegranate peel (PP) extract on different human cancer cell lines. MTT was performed to estimate cytotoxic effects of PP extract against HTB140, HTB177, MCF7, HCT116 human cancer cell lines and MRC-5 normal fibroblasts. Clonogenic assay was used to reveal cell survival after the treatment with PP extract. Cell cycle analysis was done using flow cytometry. Wound healing assay was applied to estimate inhibitory effects of PP extract on migration of cancer cells. The results showed that PP extract expressed selective cytotoxicity for cancer cells compared to normal cell line. Analyzed cancer cell lines displayed individual variations in sensitivity to PP extract reflected through changes in clonogenic survival, cell cycle distribution and migration, which may be due to the specific nature of each tested cell line. In conclusion, PP extract exhibits good inhibitory effects on tested cancer cell lines.
T2  - Records of Natural Products
T1  - Pomegranate (Punica granatum L.) Peel Extract: Potential Cytotoxic Agent Against Different Cancer Cell Lines
VL  - 14
IS  - 5
SP  - 326
EP  - 339
DO  - 10.25135/rnp.170.19.11.1477
ER  - 
@article{
author = "Keta, Otilija D. and Deljanin, Milena and Petković, Vladana and Zdunić, Gordana and Janković, Teodora and Živković, Jelena and Ristić-Fira, Aleksandra and Petrović, Ivan M. and Šavikin, Katarina",
year = "2020",
url = "https://vinar.vin.bg.ac.rs/handle/123456789/8996",
abstract = "The aim of the present study was to investigate effects of pomegranate peel (PP) extract on different human cancer cell lines. MTT was performed to estimate cytotoxic effects of PP extract against HTB140, HTB177, MCF7, HCT116 human cancer cell lines and MRC-5 normal fibroblasts. Clonogenic assay was used to reveal cell survival after the treatment with PP extract. Cell cycle analysis was done using flow cytometry. Wound healing assay was applied to estimate inhibitory effects of PP extract on migration of cancer cells. The results showed that PP extract expressed selective cytotoxicity for cancer cells compared to normal cell line. Analyzed cancer cell lines displayed individual variations in sensitivity to PP extract reflected through changes in clonogenic survival, cell cycle distribution and migration, which may be due to the specific nature of each tested cell line. In conclusion, PP extract exhibits good inhibitory effects on tested cancer cell lines.",
journal = "Records of Natural Products",
title = "Pomegranate (Punica granatum L.) Peel Extract: Potential Cytotoxic Agent Against Different Cancer Cell Lines",
volume = "14",
number = "5",
pages = "326-339",
doi = "10.25135/rnp.170.19.11.1477"
}
Keta, O. D., Deljanin, M., Petković, V., Zdunić, G., Janković, T., Živković, J., Ristić-Fira, A., Petrović, I. M.,& Šavikin, K. (2020). Pomegranate (Punica granatum L.) Peel Extract: Potential Cytotoxic Agent Against Different Cancer Cell Lines.
Records of Natural Products, 14(5), 326-339.
https://doi.org/10.25135/rnp.170.19.11.1477
Keta OD, Deljanin M, Petković V, Zdunić G, Janković T, Živković J, Ristić-Fira A, Petrović IM, Šavikin K. Pomegranate (Punica granatum L.) Peel Extract: Potential Cytotoxic Agent Against Different Cancer Cell Lines. Records of Natural Products. 2020;14(5):326-339
Keta Otilija D., Deljanin Milena, Petković Vladana, Zdunić Gordana, Janković Teodora, Živković Jelena, Ristić-Fira Aleksandra, Petrović Ivan M., Šavikin Katarina, "Pomegranate (Punica granatum L.) Peel Extract: Potential Cytotoxic Agent Against Different Cancer Cell Lines" Records of Natural Products, 14, no. 5 (2020):326-339,
https://doi.org/10.25135/rnp.170.19.11.1477 .
2
1
1

Biological outcomes of γ-radiation induced DNA damages in breast and lung cancer cells pretreated with free radical scavengers

Petković, Vladana; Keta, Otilija D.; Vidosavljević, Marija Z.; Incerti, Sebastien; Ristić-Fira, Aleksandra; Petrović, Ivan M.

(2019)

TY  - JOUR
AU  - Petković, Vladana
AU  - Keta, Otilija D.
AU  - Vidosavljević, Marija Z.
AU  - Incerti, Sebastien
AU  - Ristić-Fira, Aleksandra
AU  - Petrović, Ivan M.
PY  - 2019
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8414
AB  - Purpose: Investigation of effects on DNA of γ-irradiated human cancer cells pretreated with free radical scavengers is aimed to create reference data which would enable assessment of the relative efficiency of high linear energy transfer (LET) radiations used in hadron therapy, i.e. protons and carbon ions. Materials and methods: MCF-7 breast and HTB177 lung cancer cells are irradiated with γ-rays. To minimize indirect effects of irradiation, dimethyl sulfoxide (DMSO) or glycerol are applied as free radical scavengers. Biological response to irradiation is evaluated through clonogenic cell survival, immunocytochemical and cell cycle analysis, as well as expression of proteins involved in DNA damage response. Results: Examined cell lines reveal similar level of radioresistance. Application of scavengers leads to the rise of cell survival and decreases the number of DNA double strand breaks in irradiated cells. Differences in cell cycle and protein expression between the two cell lines are probably caused by different DNA damage repair mechanisms that are activated. Conclusion: The obtained results show that DMSO and glycerol have good scavenging capacity, and may be used to minimize DNA damage induced by free radicals. Therefore, they will be used as the reference for comparison with high LET irradiations, as well as good experimental data suitable for validation of numerical simulations. © 2019, © 2019 Taylor & Francis Group, LLC.
T2  - International Journal of Radiation Biology
T1  - Biological outcomes of γ-radiation induced DNA damages in breast and lung cancer cells pretreated with free radical scavengers
VL  - 95
IS  - 3
SP  - 274
EP  - 285
DO  - 10.1080/09553002.2019.1549753
ER  - 
@article{
author = "Petković, Vladana and Keta, Otilija D. and Vidosavljević, Marija Z. and Incerti, Sebastien and Ristić-Fira, Aleksandra and Petrović, Ivan M.",
year = "2019",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/8414",
abstract = "Purpose: Investigation of effects on DNA of γ-irradiated human cancer cells pretreated with free radical scavengers is aimed to create reference data which would enable assessment of the relative efficiency of high linear energy transfer (LET) radiations used in hadron therapy, i.e. protons and carbon ions. Materials and methods: MCF-7 breast and HTB177 lung cancer cells are irradiated with γ-rays. To minimize indirect effects of irradiation, dimethyl sulfoxide (DMSO) or glycerol are applied as free radical scavengers. Biological response to irradiation is evaluated through clonogenic cell survival, immunocytochemical and cell cycle analysis, as well as expression of proteins involved in DNA damage response. Results: Examined cell lines reveal similar level of radioresistance. Application of scavengers leads to the rise of cell survival and decreases the number of DNA double strand breaks in irradiated cells. Differences in cell cycle and protein expression between the two cell lines are probably caused by different DNA damage repair mechanisms that are activated. Conclusion: The obtained results show that DMSO and glycerol have good scavenging capacity, and may be used to minimize DNA damage induced by free radicals. Therefore, they will be used as the reference for comparison with high LET irradiations, as well as good experimental data suitable for validation of numerical simulations. © 2019, © 2019 Taylor & Francis Group, LLC.",
journal = "International Journal of Radiation Biology",
title = "Biological outcomes of γ-radiation induced DNA damages in breast and lung cancer cells pretreated with free radical scavengers",
volume = "95",
number = "3",
pages = "274-285",
doi = "10.1080/09553002.2019.1549753"
}
Petković, V., Keta, O. D., Vidosavljević, M. Z., Incerti, S., Ristić-Fira, A.,& Petrović, I. M. (2019). Biological outcomes of γ-radiation induced DNA damages in breast and lung cancer cells pretreated with free radical scavengers.
International Journal of Radiation Biology, 95(3), 274-285.
https://doi.org/10.1080/09553002.2019.1549753
Petković V, Keta OD, Vidosavljević MZ, Incerti S, Ristić-Fira A, Petrović IM. Biological outcomes of γ-radiation induced DNA damages in breast and lung cancer cells pretreated with free radical scavengers. International Journal of Radiation Biology. 2019;95(3):274-285
Petković Vladana, Keta Otilija D., Vidosavljević Marija Z., Incerti Sebastien, Ristić-Fira Aleksandra, Petrović Ivan M., "Biological outcomes of γ-radiation induced DNA damages in breast and lung cancer cells pretreated with free radical scavengers" International Journal of Radiation Biology, 95, no. 3 (2019):274-285,
https://doi.org/10.1080/09553002.2019.1549753 .
5
4
3

Comparison of human lung cancer cell radiosensitivity after irradiations with therapeutic protons and carbon ions

Keta, Otilija D.; Todorović, Danijela V.; Bulat, Tanja M.; Cirrone, Giuseppe Antonio Pablo; Romano, Francesco; Cuttone, Giacomo; Petrović, Ivan M.; Ristić-Fira, Aleksandra

(2017)

TY  - JOUR
AU  - Keta, Otilija D.
AU  - Todorović, Danijela V.
AU  - Bulat, Tanja M.
AU  - Cirrone, Giuseppe Antonio Pablo
AU  - Romano, Francesco
AU  - Cuttone, Giacomo
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1573
AB  - The aim of this study was to investigate effects of irradiations with the therapeutic proton and carbon ion beams in two non-small cell lung cancers, CRL5876 adenocarcinoma and HTB177 large cell lung carcinoma. The DNA damage response dynamics, cell cycle regulation, and cell death pathway activation were followed. Viability of both cell lines was lower after carbon ions compared to the therapeutic proton irradiations. HTB177 cells showed higher recovery than CRL5876 cells seven days following the treatments, but the survival rates of both cell lines were lower after exposure to carbon ions with respect to therapeutic protons. When analyzing cell cycle distribution of both CRL5876 and HTB177 cells, it was noticed that therapeutic protons predominantly induced G1 arrest, while the cells after carbon ions were arrested in G2/M phase. The results illustrated that differences in the levels of phosphorylated H2AX, a double-strand break marker, exist after therapeutic proton and carbon ion irradiations. We also observed dose- and time-dependent increase in the p53 and p21 levels after applied irradiations. Carbon ions caused larger increase in the quantity of p53 and p21 compared to therapeutic protons. These results suggested that various repair mechanisms were induced in the treated cells. Considering the fact that we have not observed any distinct change in the Bax/Bcl-2 ratio following irradiations, it seemed that different types of cell death were involved in the response to the two types of irradiations that were applied.
T2  - Experimental Biology and Medicine
T1  - Comparison of human lung cancer cell radiosensitivity after irradiations with therapeutic protons and carbon ions
VL  - 242
IS  - 10
SP  - 1015
EP  - 1024
DO  - 10.1177/1535370216669611
ER  - 
@article{
author = "Keta, Otilija D. and Todorović, Danijela V. and Bulat, Tanja M. and Cirrone, Giuseppe Antonio Pablo and Romano, Francesco and Cuttone, Giacomo and Petrović, Ivan M. and Ristić-Fira, Aleksandra",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1573",
abstract = "The aim of this study was to investigate effects of irradiations with the therapeutic proton and carbon ion beams in two non-small cell lung cancers, CRL5876 adenocarcinoma and HTB177 large cell lung carcinoma. The DNA damage response dynamics, cell cycle regulation, and cell death pathway activation were followed. Viability of both cell lines was lower after carbon ions compared to the therapeutic proton irradiations. HTB177 cells showed higher recovery than CRL5876 cells seven days following the treatments, but the survival rates of both cell lines were lower after exposure to carbon ions with respect to therapeutic protons. When analyzing cell cycle distribution of both CRL5876 and HTB177 cells, it was noticed that therapeutic protons predominantly induced G1 arrest, while the cells after carbon ions were arrested in G2/M phase. The results illustrated that differences in the levels of phosphorylated H2AX, a double-strand break marker, exist after therapeutic proton and carbon ion irradiations. We also observed dose- and time-dependent increase in the p53 and p21 levels after applied irradiations. Carbon ions caused larger increase in the quantity of p53 and p21 compared to therapeutic protons. These results suggested that various repair mechanisms were induced in the treated cells. Considering the fact that we have not observed any distinct change in the Bax/Bcl-2 ratio following irradiations, it seemed that different types of cell death were involved in the response to the two types of irradiations that were applied.",
journal = "Experimental Biology and Medicine",
title = "Comparison of human lung cancer cell radiosensitivity after irradiations with therapeutic protons and carbon ions",
volume = "242",
number = "10",
pages = "1015-1024",
doi = "10.1177/1535370216669611"
}
Keta, O. D., Todorović, D. V., Bulat, T. M., Cirrone, G. A. P., Romano, F., Cuttone, G., Petrović, I. M.,& Ristić-Fira, A. (2017). Comparison of human lung cancer cell radiosensitivity after irradiations with therapeutic protons and carbon ions.
Experimental Biology and Medicine, 242(10), 1015-1024.
https://doi.org/10.1177/1535370216669611
Keta OD, Todorović DV, Bulat TM, Cirrone GAP, Romano F, Cuttone G, Petrović IM, Ristić-Fira A. Comparison of human lung cancer cell radiosensitivity after irradiations with therapeutic protons and carbon ions. Experimental Biology and Medicine. 2017;242(10):1015-1024
Keta Otilija D., Todorović Danijela V., Bulat Tanja M., Cirrone Giuseppe Antonio Pablo, Romano Francesco, Cuttone Giacomo, Petrović Ivan M., Ristić-Fira Aleksandra, "Comparison of human lung cancer cell radiosensitivity after irradiations with therapeutic protons and carbon ions" Experimental Biology and Medicine, 242, no. 10 (2017):1015-1024,
https://doi.org/10.1177/1535370216669611 .
10
10
9

Carbon ions of different linear energy transfer (LET) values induce apoptosis and G2 cell cycle arrest in radio-resistant melanoma cells

Žakula, Jelena; Korićanac, Lela; Keta, Otilija D.; Todorović, Danijela V.; Cirrone, Giuseppe Antonio Pablo; Romano, Francesco; Cuttone, Giacomo; Petrović, Ivan M.; Ristić-Fira, Aleksandra

(2016)

TY  - JOUR
AU  - Žakula, Jelena
AU  - Korićanac, Lela
AU  - Keta, Otilija D.
AU  - Todorović, Danijela V.
AU  - Cirrone, Giuseppe Antonio Pablo
AU  - Romano, Francesco
AU  - Cuttone, Giacomo
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
PY  - 2016
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1290
AB  - Background and objectives: The main goal when treating malignancies with radiation is to deprive tumour cells of their reproductive potential. One approach is to induce tumour cell apoptosis. This study was conducted to evaluate the ability of carbon ions (C-12) to induce apoptosis and cell cycle arrest in human HTB140 melanoma cells. Methods: In this in vitro study, human melanoma HTB140 cells were irradiated with the 62 MeV/n carbon (C-12) ion beam, having two different linear energy transfer (LET) values: 197 and 382 keV/mu m. The dose range was 2 to 16 Gy. Cell viability was estimated by the sulforhodamine B assay seven days after irradiation. The cell cycle and apoptosis were evaluated 48 h after irradiation using flow cytometry. At the same time point, protein and gene expression of apoptotic regulators were estimated using the Western blot and q-PCR methods, respectively. Results: Cell viability experiments indicated strong anti-tumour effects of C-12 ions. The analysis of cell cycle showed that C-12 ions blocked HTB140 cells in G2 phase and induced the dose dependent increase of apoptosis. The maximum value of 21.8 per cent was attained after irradiation with LET of 197 keV/mu m at the dose level of 16 Gy. Pro-apoptotic effects of C-12 ions were confirmed by changes of key apoptotic molecules: the p53, Bax, Bcl-2, poly ADP ribose polymerase (PARP) as well as nuclear factor kappa B (NF kappa B). At the level of protein expression, the results indicated significant increases of p53, NF kappa B and Bax/Bcl-2 ratio and PARP cleavage. The Bax/Bcl-2 mRNA ratio was also increased, while no change was detected in the level of NF kappa B mRNA. Interpretation and conclusions: The present results indicated that anti-tumour effects of C-12 ions in human melanoma HTB140 cells were accomplished through induction of the mitochondrial apoptotic pathway as well as G2 arrest.
T2  - Indian Journal of Medical Research
T1  - Carbon ions of different linear energy transfer (LET) values induce apoptosis and G2 cell cycle arrest in radio-resistant melanoma cells
VL  - 143
SP  - 120
EP  - 128
DO  - 10.4103/0971-5916.191811
ER  - 
@article{
author = "Žakula, Jelena and Korićanac, Lela and Keta, Otilija D. and Todorović, Danijela V. and Cirrone, Giuseppe Antonio Pablo and Romano, Francesco and Cuttone, Giacomo and Petrović, Ivan M. and Ristić-Fira, Aleksandra",
year = "2016",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1290",
abstract = "Background and objectives: The main goal when treating malignancies with radiation is to deprive tumour cells of their reproductive potential. One approach is to induce tumour cell apoptosis. This study was conducted to evaluate the ability of carbon ions (C-12) to induce apoptosis and cell cycle arrest in human HTB140 melanoma cells. Methods: In this in vitro study, human melanoma HTB140 cells were irradiated with the 62 MeV/n carbon (C-12) ion beam, having two different linear energy transfer (LET) values: 197 and 382 keV/mu m. The dose range was 2 to 16 Gy. Cell viability was estimated by the sulforhodamine B assay seven days after irradiation. The cell cycle and apoptosis were evaluated 48 h after irradiation using flow cytometry. At the same time point, protein and gene expression of apoptotic regulators were estimated using the Western blot and q-PCR methods, respectively. Results: Cell viability experiments indicated strong anti-tumour effects of C-12 ions. The analysis of cell cycle showed that C-12 ions blocked HTB140 cells in G2 phase and induced the dose dependent increase of apoptosis. The maximum value of 21.8 per cent was attained after irradiation with LET of 197 keV/mu m at the dose level of 16 Gy. Pro-apoptotic effects of C-12 ions were confirmed by changes of key apoptotic molecules: the p53, Bax, Bcl-2, poly ADP ribose polymerase (PARP) as well as nuclear factor kappa B (NF kappa B). At the level of protein expression, the results indicated significant increases of p53, NF kappa B and Bax/Bcl-2 ratio and PARP cleavage. The Bax/Bcl-2 mRNA ratio was also increased, while no change was detected in the level of NF kappa B mRNA. Interpretation and conclusions: The present results indicated that anti-tumour effects of C-12 ions in human melanoma HTB140 cells were accomplished through induction of the mitochondrial apoptotic pathway as well as G2 arrest.",
journal = "Indian Journal of Medical Research",
title = "Carbon ions of different linear energy transfer (LET) values induce apoptosis and G2 cell cycle arrest in radio-resistant melanoma cells",
volume = "143",
pages = "120-128",
doi = "10.4103/0971-5916.191811"
}
Žakula, J., Korićanac, L., Keta, O. D., Todorović, D. V., Cirrone, G. A. P., Romano, F., Cuttone, G., Petrović, I. M.,& Ristić-Fira, A. (2016). Carbon ions of different linear energy transfer (LET) values induce apoptosis and G2 cell cycle arrest in radio-resistant melanoma cells.
Indian Journal of Medical Research, 143, 120-128.
https://doi.org/10.4103/0971-5916.191811
Žakula J, Korićanac L, Keta OD, Todorović DV, Cirrone GAP, Romano F, Cuttone G, Petrović IM, Ristić-Fira A. Carbon ions of different linear energy transfer (LET) values induce apoptosis and G2 cell cycle arrest in radio-resistant melanoma cells. Indian Journal of Medical Research. 2016;143:120-128
Žakula Jelena, Korićanac Lela, Keta Otilija D., Todorović Danijela V., Cirrone Giuseppe Antonio Pablo, Romano Francesco, Cuttone Giacomo, Petrović Ivan M., Ristić-Fira Aleksandra, "Carbon ions of different linear energy transfer (LET) values induce apoptosis and G2 cell cycle arrest in radio-resistant melanoma cells" Indian Journal of Medical Research, 143 (2016):120-128,
https://doi.org/10.4103/0971-5916.191811 .
2
1
2

Radiation dose determines the method for quantification of DNA double strand breaks

Bulat, Tanja M.; Keta, Otilija D.; Korićanac, Lela; Žakula, Jelena; Petrović, Ivan M.; Ristić-Fira, Aleksandra; Todorović, Danijela V.

(2016)

TY  - JOUR
AU  - Bulat, Tanja M.
AU  - Keta, Otilija D.
AU  - Korićanac, Lela
AU  - Žakula, Jelena
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
AU  - Todorović, Danijela V.
PY  - 2016
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/970
AB  - Ionizing radiation induces DNA double strand breaks (DSBs) that trigger phosphorylation of the histone protein H2AX (gamma H2AX). Immunofluorescent staining visualizes formation of gamma H2AX foci, allowing their quantification. This method, as opposed to Western blot assay and Flow cytometry, provides more accurate analysis, by showing exact position and intensity of fluorescent signal in each single cell. In practice there are problems in quantification of gamma H2AX. This paper is based on two issues: the determination of which technique should be applied concerning the radiation dose, and how to analyze fluorescent microscopy images obtained by different microscopes. HTB140 melanoma cells were exposed to gamma-rays, in the dose range from 1 to 16 Gy. Radiation effects on the DNA level were analyzed at different time intervals after irradiation by Western blot analysis and immunofluorescence microscopy. Immunochemically stained cells were visualized with two types of microscopes: AxioVision (Zeiss, Germany) microscope, comprising an ApoTome software, and AxioImagerA1 microscope (Zeiss, Germany). Obtained results show that the level of gamma H2AX is time and dose dependent. Immunofluorescence microscopy provided better detection of DSBs for lower irradiation doses, while Western blot analysis was more reliable for higher irradiation doses. AxioVision microscope containing ApoTome software was more suitable for the detection of gamma H2AX foci.
T2  - Anais de Academia Brasileira de Ciencias
T1  - Radiation dose determines the method for quantification of DNA double strand breaks
VL  - 88
IS  - 1
SP  - 127
EP  - 136
DO  - 10.1590/0001-3765201620140553
ER  - 
@article{
author = "Bulat, Tanja M. and Keta, Otilija D. and Korićanac, Lela and Žakula, Jelena and Petrović, Ivan M. and Ristić-Fira, Aleksandra and Todorović, Danijela V.",
year = "2016",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/970",
abstract = "Ionizing radiation induces DNA double strand breaks (DSBs) that trigger phosphorylation of the histone protein H2AX (gamma H2AX). Immunofluorescent staining visualizes formation of gamma H2AX foci, allowing their quantification. This method, as opposed to Western blot assay and Flow cytometry, provides more accurate analysis, by showing exact position and intensity of fluorescent signal in each single cell. In practice there are problems in quantification of gamma H2AX. This paper is based on two issues: the determination of which technique should be applied concerning the radiation dose, and how to analyze fluorescent microscopy images obtained by different microscopes. HTB140 melanoma cells were exposed to gamma-rays, in the dose range from 1 to 16 Gy. Radiation effects on the DNA level were analyzed at different time intervals after irradiation by Western blot analysis and immunofluorescence microscopy. Immunochemically stained cells were visualized with two types of microscopes: AxioVision (Zeiss, Germany) microscope, comprising an ApoTome software, and AxioImagerA1 microscope (Zeiss, Germany). Obtained results show that the level of gamma H2AX is time and dose dependent. Immunofluorescence microscopy provided better detection of DSBs for lower irradiation doses, while Western blot analysis was more reliable for higher irradiation doses. AxioVision microscope containing ApoTome software was more suitable for the detection of gamma H2AX foci.",
journal = "Anais de Academia Brasileira de Ciencias",
title = "Radiation dose determines the method for quantification of DNA double strand breaks",
volume = "88",
number = "1",
pages = "127-136",
doi = "10.1590/0001-3765201620140553"
}
Bulat, T. M., Keta, O. D., Korićanac, L., Žakula, J., Petrović, I. M., Ristić-Fira, A.,& Todorović, D. V. (2016). Radiation dose determines the method for quantification of DNA double strand breaks.
Anais de Academia Brasileira de Ciencias, 88(1), 127-136.
https://doi.org/10.1590/0001-3765201620140553
Bulat TM, Keta OD, Korićanac L, Žakula J, Petrović IM, Ristić-Fira A, Todorović DV. Radiation dose determines the method for quantification of DNA double strand breaks. Anais de Academia Brasileira de Ciencias. 2016;88(1):127-136
Bulat Tanja M., Keta Otilija D., Korićanac Lela, Žakula Jelena, Petrović Ivan M., Ristić-Fira Aleksandra, Todorović Danijela V., "Radiation dose determines the method for quantification of DNA double strand breaks" Anais de Academia Brasileira de Ciencias, 88, no. 1 (2016):127-136,
https://doi.org/10.1590/0001-3765201620140553 .
6
3
4

The impact of autophagy on cell death modalities in CRL-5876 lung adenocarcinoma cells after their exposure to gamma-rays and/or erlotinib

Keta, Otilija D.; Bulat, Tanja M.; Golic, Igor; Incerti, Sebastien; Korac, Aleksandra; Petrović, Ivan M.; Ristić-Fira, Aleksandra

(2016)

TY  - JOUR
AU  - Keta, Otilija D.
AU  - Bulat, Tanja M.
AU  - Golic, Igor
AU  - Incerti, Sebastien
AU  - Korac, Aleksandra
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
PY  - 2016
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1044
AB  - In most patients with lung cancer radiation treatment is used either as single agent or in combination with radiosensitizing drugs. However, the mechanisms underlying combined therapy and its impact on different modes of cell death have not yet been fully elucidated. We aimed to examine effects of single and combined treatments with gamma-rays and erlotinib on radioresistant CRL-5876 human lung adenocarcinoma cells with particular emphasis on cell death. CRL-5876 cells were treated with gamma-rays and/or erlotinib and changes in cell cycle, DNA repair dynamics, ultrastructure, nuclear morphology and protein expression were monitored at different time points. To reveal the relationship between types of cell death that arise after these treatments, autophagy was blocked with chloroquine. We found that higher dose of gamma-rays causes G2/M arrest while adding of erlotinib to this treatment decreases the number of cells in S phase. Impact of erlotinib on kinetics of disappearance of irradiation-induced DNA double strand breaks is reflected in the increase of residual gamma-H2AX foci after 24 h. gamma-rays provoke cytoprotective autophagy which precedes development of senescence. Erlotinib predominantly induces apoptosis and enlarges the number of apoptotic cells in the irradiated CRL-5876 cells. Chloroquine improved cytotoxicity induced by radiation and erlotinib, increased apoptosis and decreased senescence in the CRL-5876 cells. The results obtained on CRL-5876 cells indicate significant radiosensitizing effect of erlotinib and suggest that chloroquine in the combination with the above treatments may have an additional antitumor effect in lung adenocarcinoma.
T2  - Cell Biology and Toxicology
T1  - The impact of autophagy on cell death modalities in CRL-5876 lung adenocarcinoma cells after their exposure to gamma-rays and/or erlotinib
VL  - 32
IS  - 2
SP  - 83
EP  - 101
DO  - 10.1007/s10565-016-9319-z
ER  - 
@article{
author = "Keta, Otilija D. and Bulat, Tanja M. and Golic, Igor and Incerti, Sebastien and Korac, Aleksandra and Petrović, Ivan M. and Ristić-Fira, Aleksandra",
year = "2016",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1044",
abstract = "In most patients with lung cancer radiation treatment is used either as single agent or in combination with radiosensitizing drugs. However, the mechanisms underlying combined therapy and its impact on different modes of cell death have not yet been fully elucidated. We aimed to examine effects of single and combined treatments with gamma-rays and erlotinib on radioresistant CRL-5876 human lung adenocarcinoma cells with particular emphasis on cell death. CRL-5876 cells were treated with gamma-rays and/or erlotinib and changes in cell cycle, DNA repair dynamics, ultrastructure, nuclear morphology and protein expression were monitored at different time points. To reveal the relationship between types of cell death that arise after these treatments, autophagy was blocked with chloroquine. We found that higher dose of gamma-rays causes G2/M arrest while adding of erlotinib to this treatment decreases the number of cells in S phase. Impact of erlotinib on kinetics of disappearance of irradiation-induced DNA double strand breaks is reflected in the increase of residual gamma-H2AX foci after 24 h. gamma-rays provoke cytoprotective autophagy which precedes development of senescence. Erlotinib predominantly induces apoptosis and enlarges the number of apoptotic cells in the irradiated CRL-5876 cells. Chloroquine improved cytotoxicity induced by radiation and erlotinib, increased apoptosis and decreased senescence in the CRL-5876 cells. The results obtained on CRL-5876 cells indicate significant radiosensitizing effect of erlotinib and suggest that chloroquine in the combination with the above treatments may have an additional antitumor effect in lung adenocarcinoma.",
journal = "Cell Biology and Toxicology",
title = "The impact of autophagy on cell death modalities in CRL-5876 lung adenocarcinoma cells after their exposure to gamma-rays and/or erlotinib",
volume = "32",
number = "2",
pages = "83-101",
doi = "10.1007/s10565-016-9319-z"
}
Keta, O. D., Bulat, T. M., Golic, I., Incerti, S., Korac, A., Petrović, I. M.,& Ristić-Fira, A. (2016). The impact of autophagy on cell death modalities in CRL-5876 lung adenocarcinoma cells after their exposure to gamma-rays and/or erlotinib.
Cell Biology and Toxicology, 32(2), 83-101.
https://doi.org/10.1007/s10565-016-9319-z
Keta OD, Bulat TM, Golic I, Incerti S, Korac A, Petrović IM, Ristić-Fira A. The impact of autophagy on cell death modalities in CRL-5876 lung adenocarcinoma cells after their exposure to gamma-rays and/or erlotinib. Cell Biology and Toxicology. 2016;32(2):83-101
Keta Otilija D., Bulat Tanja M., Golic Igor, Incerti Sebastien, Korac Aleksandra, Petrović Ivan M., Ristić-Fira Aleksandra, "The impact of autophagy on cell death modalities in CRL-5876 lung adenocarcinoma cells after their exposure to gamma-rays and/or erlotinib" Cell Biology and Toxicology, 32, no. 2 (2016):83-101,
https://doi.org/10.1007/s10565-016-9319-z .
1
16
14
17

Radiosensitivity of human ovarian carcinoma and melanoma cells to gamma-rays and protons

Keta, Otilija D.; Todorović, Danijela V.; Popović, Nataša M.; Korićanac, Lela; Cuttone, Giacomo; Petrović, Ivan M.; Ristić-Fira, Aleksandra

(2014)

TY  - JOUR
AU  - Keta, Otilija D.
AU  - Todorović, Danijela V.
AU  - Popović, Nataša M.
AU  - Korićanac, Lela
AU  - Cuttone, Giacomo
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
PY  - 2014
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/5447
AB  - Introduction: Proton radiation offers physical advantages over conventional radiation. Radiosensitivity of human 59M ovarian cancer and HTB140 melanoma cells was investigated after exposure to gamma-rays and protons. Material and methods: Irradiations were performed in the middle of a 62 MeV therapeutic proton spread out Bragg peak with doses ranging from 2 to 16 Gy. The mean energy of protons was 34.88+/-2.15 MeV, corresponding to the linear energy transfer of 4.7+/-0.2 keV/mu m. Irradiations with gamma-rays were performed using the same doses. Viability, proliferation and survival were assessed 7 days after both types of irradiation while analyses of cell cycle and apoptosis were performed 48 h after irradiation. Results: Results showed that gamma-rays and protons reduced the number of viable cells for both cell lines, with stronger inactivation achieved after irradiation with protons. Surviving fractions for 59M were 0.91+/-0.01 for gamma-rays and 0.81+/-0.01 for protons, while those for HTB140 cells were 0.93+/-0.01 for gamma-rays and 0.86+/-0.01 for protons. Relative biological effectiveness of protons, being 2.47+/-0.22 for 59M and 2.08+/-0.36 for HTB140, indicated that protons provoked better cell elimination than gamma-rays. After proton irradiation proliferation capacity of the two cell lines was slightly higher as compared to gamma-rays. Proliferation was higher for 59M than for HTB140 cells after both types of irradiation. Induction of apoptosis and G2 arrest detected after proton irradiation were more prominent in 59M cells. Conclusions: The obtained results suggest that protons exert better antitumour effects on ovarian carcinoma and melanoma cells than gamma-rays. The dissimilar response of these cells to radiation is related to their different features.
T2  - Archives of Medical Science
T1  - Radiosensitivity of human ovarian carcinoma and melanoma cells to gamma-rays and protons
VL  - 10
IS  - 3
SP  - 578
EP  - 586
DO  - 10.5114/aoms.2014.43751
ER  - 
@article{
author = "Keta, Otilija D. and Todorović, Danijela V. and Popović, Nataša M. and Korićanac, Lela and Cuttone, Giacomo and Petrović, Ivan M. and Ristić-Fira, Aleksandra",
year = "2014",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/5447",
abstract = "Introduction: Proton radiation offers physical advantages over conventional radiation. Radiosensitivity of human 59M ovarian cancer and HTB140 melanoma cells was investigated after exposure to gamma-rays and protons. Material and methods: Irradiations were performed in the middle of a 62 MeV therapeutic proton spread out Bragg peak with doses ranging from 2 to 16 Gy. The mean energy of protons was 34.88+/-2.15 MeV, corresponding to the linear energy transfer of 4.7+/-0.2 keV/mu m. Irradiations with gamma-rays were performed using the same doses. Viability, proliferation and survival were assessed 7 days after both types of irradiation while analyses of cell cycle and apoptosis were performed 48 h after irradiation. Results: Results showed that gamma-rays and protons reduced the number of viable cells for both cell lines, with stronger inactivation achieved after irradiation with protons. Surviving fractions for 59M were 0.91+/-0.01 for gamma-rays and 0.81+/-0.01 for protons, while those for HTB140 cells were 0.93+/-0.01 for gamma-rays and 0.86+/-0.01 for protons. Relative biological effectiveness of protons, being 2.47+/-0.22 for 59M and 2.08+/-0.36 for HTB140, indicated that protons provoked better cell elimination than gamma-rays. After proton irradiation proliferation capacity of the two cell lines was slightly higher as compared to gamma-rays. Proliferation was higher for 59M than for HTB140 cells after both types of irradiation. Induction of apoptosis and G2 arrest detected after proton irradiation were more prominent in 59M cells. Conclusions: The obtained results suggest that protons exert better antitumour effects on ovarian carcinoma and melanoma cells than gamma-rays. The dissimilar response of these cells to radiation is related to their different features.",
journal = "Archives of Medical Science",
title = "Radiosensitivity of human ovarian carcinoma and melanoma cells to gamma-rays and protons",
volume = "10",
number = "3",
pages = "578-586",
doi = "10.5114/aoms.2014.43751"
}
Keta, O. D., Todorović, D. V., Popović, N. M., Korićanac, L., Cuttone, G., Petrović, I. M.,& Ristić-Fira, A. (2014). Radiosensitivity of human ovarian carcinoma and melanoma cells to gamma-rays and protons.
Archives of Medical Science, 10(3), 578-586.
https://doi.org/10.5114/aoms.2014.43751
Keta OD, Todorović DV, Popović NM, Korićanac L, Cuttone G, Petrović IM, Ristić-Fira A. Radiosensitivity of human ovarian carcinoma and melanoma cells to gamma-rays and protons. Archives of Medical Science. 2014;10(3):578-586
Keta Otilija D., Todorović Danijela V., Popović Nataša M., Korićanac Lela, Cuttone Giacomo, Petrović Ivan M., Ristić-Fira Aleksandra, "Radiosensitivity of human ovarian carcinoma and melanoma cells to gamma-rays and protons" Archives of Medical Science, 10, no. 3 (2014):578-586,
https://doi.org/10.5114/aoms.2014.43751 .
8
8
10

Radiosensitization of Non-Small Cell Lung Carcinoma By Egfr Inhibition

Keta, Otilija D.; Bulat, Tanja M.; Korićanac, Lela; Žakula, Jelena; Cuttone, Giacomo; Privitera, Giuseppe; Petrović, Ivan M.; Ristić-Fira, Aleksandra

(2014)

TY  - JOUR
AU  - Keta, Otilija D.
AU  - Bulat, Tanja M.
AU  - Korićanac, Lela
AU  - Žakula, Jelena
AU  - Cuttone, Giacomo
AU  - Privitera, Giuseppe
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
PY  - 2014
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/167
AB  - Molecular targeted cancer therapy is a promising treatment strategy. Considering the central role of the epidermal growth factor receptor in cell proliferation and survival, there are indications that targeted agents like tyrosine kinase inhibitors, i. e., erlotinib, may enhance the antitumor treatment by radiation. The aim of this study is to analyze the inactivation effects of gamma-rays and to test the radiosensitizing potential of erlotinib on human lung adenocarcinoma cells in vitro. Irradiations were performed with doses ranging from 1 Gy to 8 Gy. In order to increase the radiosensitivity of CRL-5876 lung adenocarcinoma cells, the cells were treated with a clinically relevant concentration of 2 mu M erlotinib. The effects of single and combined treatments were monitored using clonogenic survival, cell viability and proliferation assays at different time points. For the detection and visualization of the phosphorylated histone H2AX (gamma-H2AX), an important biological marker of DNA double-strand break formation, fluorescence inununocytochemistry, was performed. The response to the treatment was monitored at four time points: 30 min, 2, 6, and 24 h. Irradiations with gamma-rays resulted in significant cell inactivation regarding all analyzed biological endpoints. Combined treatments revealed consistent cell inactivation. Moreover, compared to gamma-rays alone, elevated levels of gamma-H2AX foci were observed after pretreatment with erlotinib, indicating radiosensitization through impaired DNA repair.
T2  - Nuclear technology and radiation protection
T1  - Radiosensitization of Non-Small Cell Lung Carcinoma By Egfr Inhibition
VL  - 29
IS  - 3
SP  - 233
EP  - 241
DO  - 10.2298/NTRP1403233K
ER  - 
@article{
author = "Keta, Otilija D. and Bulat, Tanja M. and Korićanac, Lela and Žakula, Jelena and Cuttone, Giacomo and Privitera, Giuseppe and Petrović, Ivan M. and Ristić-Fira, Aleksandra",
year = "2014",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/167",
abstract = "Molecular targeted cancer therapy is a promising treatment strategy. Considering the central role of the epidermal growth factor receptor in cell proliferation and survival, there are indications that targeted agents like tyrosine kinase inhibitors, i. e., erlotinib, may enhance the antitumor treatment by radiation. The aim of this study is to analyze the inactivation effects of gamma-rays and to test the radiosensitizing potential of erlotinib on human lung adenocarcinoma cells in vitro. Irradiations were performed with doses ranging from 1 Gy to 8 Gy. In order to increase the radiosensitivity of CRL-5876 lung adenocarcinoma cells, the cells were treated with a clinically relevant concentration of 2 mu M erlotinib. The effects of single and combined treatments were monitored using clonogenic survival, cell viability and proliferation assays at different time points. For the detection and visualization of the phosphorylated histone H2AX (gamma-H2AX), an important biological marker of DNA double-strand break formation, fluorescence inununocytochemistry, was performed. The response to the treatment was monitored at four time points: 30 min, 2, 6, and 24 h. Irradiations with gamma-rays resulted in significant cell inactivation regarding all analyzed biological endpoints. Combined treatments revealed consistent cell inactivation. Moreover, compared to gamma-rays alone, elevated levels of gamma-H2AX foci were observed after pretreatment with erlotinib, indicating radiosensitization through impaired DNA repair.",
journal = "Nuclear technology and radiation protection",
title = "Radiosensitization of Non-Small Cell Lung Carcinoma By Egfr Inhibition",
volume = "29",
number = "3",
pages = "233-241",
doi = "10.2298/NTRP1403233K"
}
Keta, O. D., Bulat, T. M., Korićanac, L., Žakula, J., Cuttone, G., Privitera, G., Petrović, I. M.,& Ristić-Fira, A. (2014). Radiosensitization of Non-Small Cell Lung Carcinoma By Egfr Inhibition.
Nuclear technology and radiation protection, 29(3), 233-241.
https://doi.org/10.2298/NTRP1403233K
Keta OD, Bulat TM, Korićanac L, Žakula J, Cuttone G, Privitera G, Petrović IM, Ristić-Fira A. Radiosensitization of Non-Small Cell Lung Carcinoma By Egfr Inhibition. Nuclear technology and radiation protection. 2014;29(3):233-241
Keta Otilija D., Bulat Tanja M., Korićanac Lela, Žakula Jelena, Cuttone Giacomo, Privitera Giuseppe, Petrović Ivan M., Ristić-Fira Aleksandra, "Radiosensitization of Non-Small Cell Lung Carcinoma By Egfr Inhibition" Nuclear technology and radiation protection, 29, no. 3 (2014):233-241,
https://doi.org/10.2298/NTRP1403233K .
2
2
2

Spatio-Temporal Radiation Biology with Conventionally or Laser-Accelerated Particles for ELIMED

Ristić-Fira, Aleksandra; Bulat, Tanja M.; Keta, Otilija D.; Romano, Francesco; Cirrone, Giuseppe Antonio Pablo; Cuttone, Giacomo; Petrović, Ivan M.

(2013)

TY  - CONF
AU  - Ristić-Fira, Aleksandra
AU  - Bulat, Tanja M.
AU  - Keta, Otilija D.
AU  - Romano, Francesco
AU  - Cirrone, Giuseppe Antonio Pablo
AU  - Cuttone, Giacomo
AU  - Petrović, Ivan M.
PY  - 2013
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7005
AB  - The aim of this study is to investigate the behavior of radio-resistant human malignant cells, thus enabling better understanding of radiobiological effects of ions in such a case. Radiation sources such as accelerated continuous ion beams and laser technology-based ultra short radiation sources with energy of around 10 MeV will be used. The HTB140 melanoma cells are chosen since it has been shown that they represent the limit case of cellular radio-resistance among the studied tumour cell lines. These cells are particularly interesting as they provide data on the very edge of inactivation capacity of each beam line that is tested. After exposing the cell monolayers to continuous radiations of low (gamma-rays) and high (protons) linear energy transfer, the kinetics of disappearance of the phosphorylated histone H2AX (gamma-H2AX) foci per cell will be determined. The same procedure will be performed with the pulsed high dose rate protons. Detection and quantification of gamma-H2AX foci will be performed by immunohistochemical 3D time-dependent imaging analyses using laser scanning confocal microscopy. Immunoblotting will enable the follow-up of the relation between gamma-H2AX and cell cycle arrest via the p53/p21 pathway. In such a way the spatio-temporal changes on sub-cellular level will be visualized, quantified and compared. These results will show whether there is a difference in the effects on cells between continuous and pulsed irradiation mode. Therefore, they will contribute to the database that might promote pulsed sources for medical treatments of malignant growths.
C3  - AIP Conference Proceedings
T1  - Spatio-Temporal Radiation Biology with Conventionally or Laser-Accelerated Particles for ELIMED
VL  - 1546
SP  - 101
EP  - 104
DO  - 10.1063/1.4816616
ER  - 
@conference{
author = "Ristić-Fira, Aleksandra and Bulat, Tanja M. and Keta, Otilija D. and Romano, Francesco and Cirrone, Giuseppe Antonio Pablo and Cuttone, Giacomo and Petrović, Ivan M.",
year = "2013",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/7005",
abstract = "The aim of this study is to investigate the behavior of radio-resistant human malignant cells, thus enabling better understanding of radiobiological effects of ions in such a case. Radiation sources such as accelerated continuous ion beams and laser technology-based ultra short radiation sources with energy of around 10 MeV will be used. The HTB140 melanoma cells are chosen since it has been shown that they represent the limit case of cellular radio-resistance among the studied tumour cell lines. These cells are particularly interesting as they provide data on the very edge of inactivation capacity of each beam line that is tested. After exposing the cell monolayers to continuous radiations of low (gamma-rays) and high (protons) linear energy transfer, the kinetics of disappearance of the phosphorylated histone H2AX (gamma-H2AX) foci per cell will be determined. The same procedure will be performed with the pulsed high dose rate protons. Detection and quantification of gamma-H2AX foci will be performed by immunohistochemical 3D time-dependent imaging analyses using laser scanning confocal microscopy. Immunoblotting will enable the follow-up of the relation between gamma-H2AX and cell cycle arrest via the p53/p21 pathway. In such a way the spatio-temporal changes on sub-cellular level will be visualized, quantified and compared. These results will show whether there is a difference in the effects on cells between continuous and pulsed irradiation mode. Therefore, they will contribute to the database that might promote pulsed sources for medical treatments of malignant growths.",
journal = "AIP Conference Proceedings",
title = "Spatio-Temporal Radiation Biology with Conventionally or Laser-Accelerated Particles for ELIMED",
volume = "1546",
pages = "101-104",
doi = "10.1063/1.4816616"
}
Ristić-Fira, A., Bulat, T. M., Keta, O. D., Romano, F., Cirrone, G. A. P., Cuttone, G.,& Petrović, I. M. (2013). Spatio-Temporal Radiation Biology with Conventionally or Laser-Accelerated Particles for ELIMED.
AIP Conference Proceedings, 1546, 101-104.
https://doi.org/10.1063/1.4816616
Ristić-Fira A, Bulat TM, Keta OD, Romano F, Cirrone GAP, Cuttone G, Petrović IM. Spatio-Temporal Radiation Biology with Conventionally or Laser-Accelerated Particles for ELIMED. AIP Conference Proceedings. 2013;1546:101-104
Ristić-Fira Aleksandra, Bulat Tanja M., Keta Otilija D., Romano Francesco, Cirrone Giuseppe Antonio Pablo, Cuttone Giacomo, Petrović Ivan M., "Spatio-Temporal Radiation Biology with Conventionally or Laser-Accelerated Particles for ELIMED" AIP Conference Proceedings, 1546 (2013):101-104,
https://doi.org/10.1063/1.4816616 .

Carbon Ions Induce DNA Double Strand Breaks and Apoptosis in Htb140 Melanoma Cells

Korićanac, Lela; Žakula, Jelena; Keta, Otilija D.; Cirrone, Giuseppe Antonio Pablo; Cuttone, Giacomo; Ristić-Fira, Aleksandra; Petrović, Ivan M.

(2013)

TY  - JOUR
AU  - Korićanac, Lela
AU  - Žakula, Jelena
AU  - Keta, Otilija D.
AU  - Cirrone, Giuseppe Antonio Pablo
AU  - Cuttone, Giacomo
AU  - Ristić-Fira, Aleksandra
AU  - Petrović, Ivan M.
PY  - 2013
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/5593
AB  - This study was conducted in order to evaluate the ability of carbon ions to induce DNA double-strand breaks and apoptosis in the radio-resistant human HTB140 melanoma cells. The cells were irradiated with C-12 ions having the linear energy transfer of 258 keV/mu m. Irradiations were performed in the dose range from 2 to 16 Gy. Induction of DNA double-strand breaks was evaluated 2 hour after irradiation through expression of gamma H2AX protein. Increased level of gamma H2AX detected in irradiated samples was especially high after irradiation with 12 and 16 Gy. Dose dependent increase of apoptosis was detected 48 hour after irradiation by flow-cytometry, with the maximum value of 20.4% after irradiation with 16 Gy, and the apoptotic index of 9.3. Pro-apoptotic effects of carbon ion beams were confirmed by changes of key molecules of the mitochondrial apoptotic pathway, p53 protein expression, Bax/Bcl-2 ratio and caspase-3 activation.
T2  - Nuclear technology and radiation protection
T1  - Carbon Ions Induce DNA Double Strand Breaks and Apoptosis in Htb140 Melanoma Cells
VL  - 28
IS  - 2
SP  - 195
EP  - 203
DO  - 10.2298/NTRP1302195K
ER  - 
@article{
author = "Korićanac, Lela and Žakula, Jelena and Keta, Otilija D. and Cirrone, Giuseppe Antonio Pablo and Cuttone, Giacomo and Ristić-Fira, Aleksandra and Petrović, Ivan M.",
year = "2013",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/5593",
abstract = "This study was conducted in order to evaluate the ability of carbon ions to induce DNA double-strand breaks and apoptosis in the radio-resistant human HTB140 melanoma cells. The cells were irradiated with C-12 ions having the linear energy transfer of 258 keV/mu m. Irradiations were performed in the dose range from 2 to 16 Gy. Induction of DNA double-strand breaks was evaluated 2 hour after irradiation through expression of gamma H2AX protein. Increased level of gamma H2AX detected in irradiated samples was especially high after irradiation with 12 and 16 Gy. Dose dependent increase of apoptosis was detected 48 hour after irradiation by flow-cytometry, with the maximum value of 20.4% after irradiation with 16 Gy, and the apoptotic index of 9.3. Pro-apoptotic effects of carbon ion beams were confirmed by changes of key molecules of the mitochondrial apoptotic pathway, p53 protein expression, Bax/Bcl-2 ratio and caspase-3 activation.",
journal = "Nuclear technology and radiation protection",
title = "Carbon Ions Induce DNA Double Strand Breaks and Apoptosis in Htb140 Melanoma Cells",
volume = "28",
number = "2",
pages = "195-203",
doi = "10.2298/NTRP1302195K"
}
Korićanac, L., Žakula, J., Keta, O. D., Cirrone, G. A. P., Cuttone, G., Ristić-Fira, A.,& Petrović, I. M. (2013). Carbon Ions Induce DNA Double Strand Breaks and Apoptosis in Htb140 Melanoma Cells.
Nuclear technology and radiation protection, 28(2), 195-203.
https://doi.org/10.2298/NTRP1302195K
Korićanac L, Žakula J, Keta OD, Cirrone GAP, Cuttone G, Ristić-Fira A, Petrović IM. Carbon Ions Induce DNA Double Strand Breaks and Apoptosis in Htb140 Melanoma Cells. Nuclear technology and radiation protection. 2013;28(2):195-203
Korićanac Lela, Žakula Jelena, Keta Otilija D., Cirrone Giuseppe Antonio Pablo, Cuttone Giacomo, Ristić-Fira Aleksandra, Petrović Ivan M., "Carbon Ions Induce DNA Double Strand Breaks and Apoptosis in Htb140 Melanoma Cells" Nuclear technology and radiation protection, 28, no. 2 (2013):195-203,
https://doi.org/10.2298/NTRP1302195K .
2
2
2

Response of human lung adenocarcinoma cells to proton radiation and erlotinib

Ristić-Fira, Aleksandra; Petrović, Ivan M.; Todorović, D; Korićanac, Lela; Keta, Otilija D.; Bulat, T; Cirrone, Giuseppe Antonio Pablo; Romano, Francesco; Cuttone, Giacomo

(2012)

TY  - CONF
AU  - Ristić-Fira, Aleksandra
AU  - Petrović, Ivan M.
AU  - Todorović, D
AU  - Korićanac, Lela
AU  - Keta, Otilija D.
AU  - Bulat, T
AU  - Cirrone, Giuseppe Antonio Pablo
AU  - Romano, Francesco
AU  - Cuttone, Giacomo
PY  - 2012
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8642
C3  - Radiotherapy and Oncology
T1  - Response of human lung adenocarcinoma cells to proton radiation and erlotinib
VL  - 102
SP  - S106
EP  - S107
DO  - 10.1016/S0167-8140(12)70182-2
ER  - 
@conference{
author = "Ristić-Fira, Aleksandra and Petrović, Ivan M. and Todorović, D and Korićanac, Lela and Keta, Otilija D. and Bulat, T and Cirrone, Giuseppe Antonio Pablo and Romano, Francesco and Cuttone, Giacomo",
year = "2012",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/8642",
journal = "Radiotherapy and Oncology",
title = "Response of human lung adenocarcinoma cells to proton radiation and erlotinib",
volume = "102",
pages = "S106-S107",
doi = "10.1016/S0167-8140(12)70182-2"
}
Ristić-Fira, A., Petrović, I. M., Todorović, D., Korićanac, L., Keta, O. D., Bulat, T., Cirrone, G. A. P., Romano, F.,& Cuttone, G. (2012). Response of human lung adenocarcinoma cells to proton radiation and erlotinib.
Radiotherapy and Oncology, 102, S106-S107.
https://doi.org/10.1016/S0167-8140(12)70182-2
Ristić-Fira A, Petrović IM, Todorović D, Korićanac L, Keta OD, Bulat T, Cirrone GAP, Romano F, Cuttone G. Response of human lung adenocarcinoma cells to proton radiation and erlotinib. Radiotherapy and Oncology. 2012;102:S106-S107
Ristić-Fira Aleksandra, Petrović Ivan M., Todorović D, Korićanac Lela, Keta Otilija D., Bulat T, Cirrone Giuseppe Antonio Pablo, Romano Francesco, Cuttone Giacomo, "Response of human lung adenocarcinoma cells to proton radiation and erlotinib" Radiotherapy and Oncology, 102 (2012):S106-S107,
https://doi.org/10.1016/S0167-8140(12)70182-2 .

Proton Inactivation of Melanomacells Enhanced By Fotemustine

Ristić-Fira, Aleksandra; Korićanac, Lela; Žakula, Jelena; Keta, Otilija D.; Iannolo, Gioacchin; Cuttone, Giacomo; Petrović, Ivan M.

(2011)

TY  - JOUR
AU  - Ristić-Fira, Aleksandra
AU  - Korićanac, Lela
AU  - Žakula, Jelena
AU  - Keta, Otilija D.
AU  - Iannolo, Gioacchin
AU  - Cuttone, Giacomo
AU  - Petrović, Ivan M.
PY  - 2011
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/6905
AB  - Response of human HTB140 melanoma cells to proton irradiation in combination with fotemustine (FM) was investigated. Effects of these agents were analysed on cell proliferation and induction of apoptosis. Cells pretreated with 100- or 250-mu M of FM were irradiated in the middle of the therapeutic 62-MeV proton spread-out Bragg peak, with a dose of 16 Gy. All treatments reduced proliferation and survival of melanoma cells. The most pronounced effects of the combined treatment were obtained for cell survivals. The level of apoptosis increased after all applied treatments. Particularly good pro-apoptotic effect was achieved when proton irradiation was combined with 250 mu M of FM. This was followed by the increased expression of p53 gene. The obtained results have shown that combined application of FM and protons significantly reduced growth of this resistant melanoma cell line.
T2  - Radiation Protection Dosimetry
T1  - Proton Inactivation of Melanomacells Enhanced By Fotemustine
VL  - 143
IS  - 2-4
SP  - 503
EP  - 507
DO  - 10.1093/rpd/ncq527
ER  - 
@article{
author = "Ristić-Fira, Aleksandra and Korićanac, Lela and Žakula, Jelena and Keta, Otilija D. and Iannolo, Gioacchin and Cuttone, Giacomo and Petrović, Ivan M.",
year = "2011",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/6905",
abstract = "Response of human HTB140 melanoma cells to proton irradiation in combination with fotemustine (FM) was investigated. Effects of these agents were analysed on cell proliferation and induction of apoptosis. Cells pretreated with 100- or 250-mu M of FM were irradiated in the middle of the therapeutic 62-MeV proton spread-out Bragg peak, with a dose of 16 Gy. All treatments reduced proliferation and survival of melanoma cells. The most pronounced effects of the combined treatment were obtained for cell survivals. The level of apoptosis increased after all applied treatments. Particularly good pro-apoptotic effect was achieved when proton irradiation was combined with 250 mu M of FM. This was followed by the increased expression of p53 gene. The obtained results have shown that combined application of FM and protons significantly reduced growth of this resistant melanoma cell line.",
journal = "Radiation Protection Dosimetry",
title = "Proton Inactivation of Melanomacells Enhanced By Fotemustine",
volume = "143",
number = "2-4",
pages = "503-507",
doi = "10.1093/rpd/ncq527"
}
Ristić-Fira, A., Korićanac, L., Žakula, J., Keta, O. D., Iannolo, G., Cuttone, G.,& Petrović, I. M. (2011). Proton Inactivation of Melanomacells Enhanced By Fotemustine.
Radiation Protection Dosimetry, 143(2-4), 503-507.
https://doi.org/10.1093/rpd/ncq527
Ristić-Fira A, Korićanac L, Žakula J, Keta OD, Iannolo G, Cuttone G, Petrović IM. Proton Inactivation of Melanomacells Enhanced By Fotemustine. Radiation Protection Dosimetry. 2011;143(2-4):503-507
Ristić-Fira Aleksandra, Korićanac Lela, Žakula Jelena, Keta Otilija D., Iannolo Gioacchin, Cuttone Giacomo, Petrović Ivan M., "Proton Inactivation of Melanomacells Enhanced By Fotemustine" Radiation Protection Dosimetry, 143, no. 2-4 (2011):503-507,
https://doi.org/10.1093/rpd/ncq527 .
1
2
2

Response of Human HTB140 Melanoma Cells to Conventional Radiation and Hadrons

Ristić-Fira, Aleksandra; Todorović, Danijela V.; Žakula, Jelena; Keta, Otilija D.; Cirrone, Giuseppe Antonio Pablo; Cuttone, Giacomo; Petrović, Ivan M.

(2011)

TY  - JOUR
AU  - Ristić-Fira, Aleksandra
AU  - Todorović, Danijela V.
AU  - Žakula, Jelena
AU  - Keta, Otilija D.
AU  - Cirrone, Giuseppe Antonio Pablo
AU  - Cuttone, Giacomo
AU  - Petrović, Ivan M.
PY  - 2011
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/4537
AB  - Conventional radiotherapy with X-and gamma-rays is one of the common and effective treatments of cancer. High energy hadrons, i.e., charged particles like protons and (12)C ions, due to their specific physics and radiobiological advantages are increasingly used. In this study, effectiveness of different radiation types is evaluated on the radio-resistant human HTB140 melanoma cells. The cells were irradiated with gamma-rays, the 62 MeV protons at the Bragg peak and in the middle of the spread-out Bragg peak (SOBP), as well as with the 62 MeV/u (12)C ions. The doses ranged from 2 to 24 Gy. Cell survival and proliferation were assessed 7 days after irradiation, whereas apoptosis was evaluated after 48 h. The acquired results confirmed the high radio-resistance of cells, showing better effectiveness of protons than gamma-rays. The best efficiency was obtained with (12)C ions due to higher linear energy transfer. All analyzed radiation qualities reduced cell proliferation. The highest proliferation was detected for (12)C ions because of their large killing capacity followed by small induction of reparable lesions. This enabled unharmed cells to preserve proliferative activity. Irradiations with protons and (12)C ions revealed similar moderate pro-apoptotic ability that is in agreement with the level of cellular radio-resistance.
T2  - Physiological Research
T1  - Response of Human HTB140 Melanoma Cells to Conventional Radiation and Hadrons
VL  - 60
SP  - S129
EP  - S135
ER  - 
@article{
author = "Ristić-Fira, Aleksandra and Todorović, Danijela V. and Žakula, Jelena and Keta, Otilija D. and Cirrone, Giuseppe Antonio Pablo and Cuttone, Giacomo and Petrović, Ivan M.",
year = "2011",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/4537",
abstract = "Conventional radiotherapy with X-and gamma-rays is one of the common and effective treatments of cancer. High energy hadrons, i.e., charged particles like protons and (12)C ions, due to their specific physics and radiobiological advantages are increasingly used. In this study, effectiveness of different radiation types is evaluated on the radio-resistant human HTB140 melanoma cells. The cells were irradiated with gamma-rays, the 62 MeV protons at the Bragg peak and in the middle of the spread-out Bragg peak (SOBP), as well as with the 62 MeV/u (12)C ions. The doses ranged from 2 to 24 Gy. Cell survival and proliferation were assessed 7 days after irradiation, whereas apoptosis was evaluated after 48 h. The acquired results confirmed the high radio-resistance of cells, showing better effectiveness of protons than gamma-rays. The best efficiency was obtained with (12)C ions due to higher linear energy transfer. All analyzed radiation qualities reduced cell proliferation. The highest proliferation was detected for (12)C ions because of their large killing capacity followed by small induction of reparable lesions. This enabled unharmed cells to preserve proliferative activity. Irradiations with protons and (12)C ions revealed similar moderate pro-apoptotic ability that is in agreement with the level of cellular radio-resistance.",
journal = "Physiological Research",
title = "Response of Human HTB140 Melanoma Cells to Conventional Radiation and Hadrons",
volume = "60",
pages = "S129-S135"
}
Ristić-Fira, A., Todorović, D. V., Žakula, J., Keta, O. D., Cirrone, G. A. P., Cuttone, G.,& Petrović, I. M. (2011). Response of Human HTB140 Melanoma Cells to Conventional Radiation and Hadrons.
Physiological Research, 60, S129-S135.
Ristić-Fira A, Todorović DV, Žakula J, Keta OD, Cirrone GAP, Cuttone G, Petrović IM. Response of Human HTB140 Melanoma Cells to Conventional Radiation and Hadrons. Physiological Research. 2011;60:S129-S135
Ristić-Fira Aleksandra, Todorović Danijela V., Žakula Jelena, Keta Otilija D., Cirrone Giuseppe Antonio Pablo, Cuttone Giacomo, Petrović Ivan M., "Response of Human HTB140 Melanoma Cells to Conventional Radiation and Hadrons" Physiological Research, 60 (2011):S129-S135
6