Zakić, Dimitrije

Link to this page

Authority KeyName Variants
orcid::0000-0002-6531-6239
  • Zakić, Dimitrije (4)
Projects

Author's Bibliography

Cathode ray tube waste glass in concrete preparation - increasing sustainability

Jelić, Ivana; Savić, Aleksandar; Miljojčić, Tatjana; Šljivić-Ivanović, Marija; Janković, Marija; Dimović, Slavko; Zakić, Dimitrije; Antonijevic, Dragi

(Beograd : Savez mašinskih i elektrotehničk ihinženjera i tehničara Srbije (SMEITS) : Društvo za obnovljive izvore električne energije, 2023)

TY  - CONF
AU  - Jelić, Ivana
AU  - Savić, Aleksandar
AU  - Miljojčić, Tatjana
AU  - Šljivić-Ivanović, Marija
AU  - Janković, Marija
AU  - Dimović, Slavko
AU  - Zakić, Dimitrije
AU  - Antonijevic, Dragi
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12571
AB  - The construction sector is responsible for approximately 39% of energy use and process-related carbon dioxide emissions. Mixing waste materials into concrete, as a substitute for cement and/or aggregate, increases energy efficiency and sustainability in general. Additionally, pressure on the environment is decreasing by reducing the amount of exploitation of natural raw materials. On the other hand, the rapid progress of the electronic industry has led to the generation of a large amount of electrical waste before the end of its useful life. Disposal of old monitors and TV screens, i.e. their cathode-ray tubes (CRT), represents a major problem for the environment because CRT waste is classified as hazardous due to its high lead content. This paper deals with an overview of investigations on CRT waste utilization in cement materials in order to increase sustainability and encourage a circular economy in the construction sector.
AB  - Građevinski sektor je odgovoran za približno 39% potrošnje energije i emisija ugljendioksida vezanih za date procese. Mešanje otpadnih materijala u beton, kao zamena za cement i/ili agregat, povećava energetsku efikasnost i održivost uopšteno. Pored toga, smanjuje se i pritisak na životnu sredinu smanjenjem eksploatacije prirodnih sirovina. S druge strane, brzi napredak elektronske industrije doveo je do stvaranja velike količine električnog otpada pre isteka njegovog životnog veka. Odlaganje starih monitora i TV ekrana, odnosno njihovih katodnih cevi (CRT), predstavlja veliki problem za životnu sredinu pošto je otpad od CRT-a klasifikovan kao opasan usled visokog sadržaja olova. Ovaj rad se bavi pregledom istraživanja o korišćenju CRT otpada u cementnim materijalima u cilju povećanja održivosti i podsticanja cirkularne ekonomije u građevinskom sektoru.
PB  - Beograd : Savez mašinskih i elektrotehničk ihinženjera i tehničara Srbije (SMEITS) : Društvo za obnovljive izvore električne energije
C3  - 11th International Conference on Renewable Electrical Power Sources : Proceedings
T1  - Cathode ray tube waste glass in concrete preparation - increasing sustainability
T1  - Otpadno staklo katodnih cevi u pripremi betona - povećavanјe održivosti
SP  - 309
EP  - 315
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12571
ER  - 
@conference{
author = "Jelić, Ivana and Savić, Aleksandar and Miljojčić, Tatjana and Šljivić-Ivanović, Marija and Janković, Marija and Dimović, Slavko and Zakić, Dimitrije and Antonijevic, Dragi",
year = "2023",
abstract = "The construction sector is responsible for approximately 39% of energy use and process-related carbon dioxide emissions. Mixing waste materials into concrete, as a substitute for cement and/or aggregate, increases energy efficiency and sustainability in general. Additionally, pressure on the environment is decreasing by reducing the amount of exploitation of natural raw materials. On the other hand, the rapid progress of the electronic industry has led to the generation of a large amount of electrical waste before the end of its useful life. Disposal of old monitors and TV screens, i.e. their cathode-ray tubes (CRT), represents a major problem for the environment because CRT waste is classified as hazardous due to its high lead content. This paper deals with an overview of investigations on CRT waste utilization in cement materials in order to increase sustainability and encourage a circular economy in the construction sector., Građevinski sektor je odgovoran za približno 39% potrošnje energije i emisija ugljendioksida vezanih za date procese. Mešanje otpadnih materijala u beton, kao zamena za cement i/ili agregat, povećava energetsku efikasnost i održivost uopšteno. Pored toga, smanjuje se i pritisak na životnu sredinu smanjenjem eksploatacije prirodnih sirovina. S druge strane, brzi napredak elektronske industrije doveo je do stvaranja velike količine električnog otpada pre isteka njegovog životnog veka. Odlaganje starih monitora i TV ekrana, odnosno njihovih katodnih cevi (CRT), predstavlja veliki problem za životnu sredinu pošto je otpad od CRT-a klasifikovan kao opasan usled visokog sadržaja olova. Ovaj rad se bavi pregledom istraživanja o korišćenju CRT otpada u cementnim materijalima u cilju povećanja održivosti i podsticanja cirkularne ekonomije u građevinskom sektoru.",
publisher = "Beograd : Savez mašinskih i elektrotehničk ihinženjera i tehničara Srbije (SMEITS) : Društvo za obnovljive izvore električne energije",
journal = "11th International Conference on Renewable Electrical Power Sources : Proceedings",
title = "Cathode ray tube waste glass in concrete preparation - increasing sustainability, Otpadno staklo katodnih cevi u pripremi betona - povećavanјe održivosti",
pages = "309-315",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12571"
}
Jelić, I., Savić, A., Miljojčić, T., Šljivić-Ivanović, M., Janković, M., Dimović, S., Zakić, D.,& Antonijevic, D.. (2023). Cathode ray tube waste glass in concrete preparation - increasing sustainability. in 11th International Conference on Renewable Electrical Power Sources : Proceedings
Beograd : Savez mašinskih i elektrotehničk ihinženjera i tehničara Srbije (SMEITS) : Društvo za obnovljive izvore električne energije., 309-315.
https://hdl.handle.net/21.15107/rcub_vinar_12571
Jelić I, Savić A, Miljojčić T, Šljivić-Ivanović M, Janković M, Dimović S, Zakić D, Antonijevic D. Cathode ray tube waste glass in concrete preparation - increasing sustainability. in 11th International Conference on Renewable Electrical Power Sources : Proceedings. 2023;:309-315.
https://hdl.handle.net/21.15107/rcub_vinar_12571 .
Jelić, Ivana, Savić, Aleksandar, Miljojčić, Tatjana, Šljivić-Ivanović, Marija, Janković, Marija, Dimović, Slavko, Zakić, Dimitrije, Antonijevic, Dragi, "Cathode ray tube waste glass in concrete preparation - increasing sustainability" in 11th International Conference on Renewable Electrical Power Sources : Proceedings (2023):309-315,
https://hdl.handle.net/21.15107/rcub_vinar_12571 .

Development of low carbon and energy-efficient geopolymer-based paving blocks

Jelić, Ivana; Savić, Aleksandar; Miljojčić, Tatjana; Šljivić-Ivanović, Marija; Dimović, Slavko; Janković, Marija; Perović, Ivana; Zakić, Dimitrije; Antonijević, Dragi

(2023)

TY  - JOUR
AU  - Jelić, Ivana
AU  - Savić, Aleksandar
AU  - Miljojčić, Tatjana
AU  - Šljivić-Ivanović, Marija
AU  - Dimović, Slavko
AU  - Janković, Marija
AU  - Perović, Ivana
AU  - Zakić, Dimitrije
AU  - Antonijević, Dragi
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12100
AB  - The development of energy-efficient and low-carbon geopolymer-based paving blocks made from waste, as an environmental-friendly material, was evaluated. Ground concrete (GC) and solid brick (SB) powder, as the representatives of construction and demolition waste (C&DW), with the addition of fly ash (FA) and silica fume (SF), were used. Waste samples were characterized in terms of surface functional groups and radioactivity. The FT-IR spectra showed the required amorphous or semi-crystalline alumino-silicate structure. The gamma spectrometry confirmed waste samples' radiological safety. Hardened geopolymer samples were subjected to physical-mechanical investigation comprising of density, water content, compressive and flexural strengths determination. Based on strength characteristics, the three best prototype mixtures were selected and subjected to further compressive strength determination and durability assessment. Prototype sample SBFASFp1, with a compressive strength of 18.7 MPa, was shown the highest value of all samples, almost the same as the corresponding SBFASF1 sample. Freeze-thaw and the subsequent carbonation tests, as durability indicators, showed that the SBFASF1 sample had the slightest strength decrease, making it most durable in these conditions. These satisfactory test results showed the favorable effects of alternatives to cementitious materials, encouraging their utilization and contributing to the sustainability of the construction sector.
T2  - Science of Sintering
T1  - Development of low carbon and energy-efficient geopolymer-based paving blocks
IS  - InPress
SP  - 59
DO  - 10.2298/SOS231009059J
ER  - 
@article{
author = "Jelić, Ivana and Savić, Aleksandar and Miljojčić, Tatjana and Šljivić-Ivanović, Marija and Dimović, Slavko and Janković, Marija and Perović, Ivana and Zakić, Dimitrije and Antonijević, Dragi",
year = "2023",
abstract = "The development of energy-efficient and low-carbon geopolymer-based paving blocks made from waste, as an environmental-friendly material, was evaluated. Ground concrete (GC) and solid brick (SB) powder, as the representatives of construction and demolition waste (C&DW), with the addition of fly ash (FA) and silica fume (SF), were used. Waste samples were characterized in terms of surface functional groups and radioactivity. The FT-IR spectra showed the required amorphous or semi-crystalline alumino-silicate structure. The gamma spectrometry confirmed waste samples' radiological safety. Hardened geopolymer samples were subjected to physical-mechanical investigation comprising of density, water content, compressive and flexural strengths determination. Based on strength characteristics, the three best prototype mixtures were selected and subjected to further compressive strength determination and durability assessment. Prototype sample SBFASFp1, with a compressive strength of 18.7 MPa, was shown the highest value of all samples, almost the same as the corresponding SBFASF1 sample. Freeze-thaw and the subsequent carbonation tests, as durability indicators, showed that the SBFASF1 sample had the slightest strength decrease, making it most durable in these conditions. These satisfactory test results showed the favorable effects of alternatives to cementitious materials, encouraging their utilization and contributing to the sustainability of the construction sector.",
journal = "Science of Sintering",
title = "Development of low carbon and energy-efficient geopolymer-based paving blocks",
number = "InPress",
pages = "59",
doi = "10.2298/SOS231009059J"
}
Jelić, I., Savić, A., Miljojčić, T., Šljivić-Ivanović, M., Dimović, S., Janković, M., Perović, I., Zakić, D.,& Antonijević, D.. (2023). Development of low carbon and energy-efficient geopolymer-based paving blocks. in Science of Sintering(InPress), 59.
https://doi.org/10.2298/SOS231009059J
Jelić I, Savić A, Miljojčić T, Šljivić-Ivanović M, Dimović S, Janković M, Perović I, Zakić D, Antonijević D. Development of low carbon and energy-efficient geopolymer-based paving blocks. in Science of Sintering. 2023;(InPress):59.
doi:10.2298/SOS231009059J .
Jelić, Ivana, Savić, Aleksandar, Miljojčić, Tatjana, Šljivić-Ivanović, Marija, Dimović, Slavko, Janković, Marija, Perović, Ivana, Zakić, Dimitrije, Antonijević, Dragi, "Development of low carbon and energy-efficient geopolymer-based paving blocks" in Science of Sintering, no. InPress (2023):59,
https://doi.org/10.2298/SOS231009059J . .

Application of Copper Mining Waste in Radionuclide and Heavy Metal Immobilization

Dimović, Slavko; Jelić, Ivana V.; Šljivić-Ivanović, Marija Z.; Štirbanović, Zoran; Gardić, Vojka; Marković, Radmila; Savić, Aleksandar R.; Zakić, Dimitrije

(2021)

TY  - JOUR
AU  - Dimović, Slavko
AU  - Jelić, Ivana V.
AU  - Šljivić-Ivanović, Marija Z.
AU  - Štirbanović, Zoran
AU  - Gardić, Vojka
AU  - Marković, Radmila
AU  - Savić, Aleksandar R.
AU  - Zakić, Dimitrije
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10031
AB  - Copper slag flotation tailings (CSFT), as the end waste from copper mining, are evaluated for radionuclide and heavy metal immobilization. Characterization of CSFT based on grain size and mineral composition, surface functional groups, pH and electrical conductivity in aqueous media, thermogravimetric analysis (TGA), determination of characteristic temperatures in sample melting process, leachability, and toxicity tests is conducted. The screening sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), and Pb(II) inactive isotopes from single-component solutions is performed. The Cd(II) ions show better sorption potential than other ions, with a sorption capacity of 0.08 mmol g−1 at the highest initial concentration. Sorption decreases in the sequence Cd(II) > Pb(II) > Zn(II) > Mn(II) > Ni(II) > Co(II) at all initial concentrations. Although CSFT shows lower sorption capability than synthetic sorbents based on fayalite and magnetite, its inexpensiveness and substantial accessible amount represent great advantages in wider utilization.
T2  - CLEAN - Soil Air Water
T1  - Application of Copper Mining Waste in Radionuclide and Heavy Metal Immobilization
IS  - 10
SP  - 2000419
DO  - 10.1002/clen.202000419
ER  - 
@article{
author = "Dimović, Slavko and Jelić, Ivana V. and Šljivić-Ivanović, Marija Z. and Štirbanović, Zoran and Gardić, Vojka and Marković, Radmila and Savić, Aleksandar R. and Zakić, Dimitrije",
year = "2021",
abstract = "Copper slag flotation tailings (CSFT), as the end waste from copper mining, are evaluated for radionuclide and heavy metal immobilization. Characterization of CSFT based on grain size and mineral composition, surface functional groups, pH and electrical conductivity in aqueous media, thermogravimetric analysis (TGA), determination of characteristic temperatures in sample melting process, leachability, and toxicity tests is conducted. The screening sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), and Pb(II) inactive isotopes from single-component solutions is performed. The Cd(II) ions show better sorption potential than other ions, with a sorption capacity of 0.08 mmol g−1 at the highest initial concentration. Sorption decreases in the sequence Cd(II) > Pb(II) > Zn(II) > Mn(II) > Ni(II) > Co(II) at all initial concentrations. Although CSFT shows lower sorption capability than synthetic sorbents based on fayalite and magnetite, its inexpensiveness and substantial accessible amount represent great advantages in wider utilization.",
journal = "CLEAN - Soil Air Water",
title = "Application of Copper Mining Waste in Radionuclide and Heavy Metal Immobilization",
number = "10",
pages = "2000419",
doi = "10.1002/clen.202000419"
}
Dimović, S., Jelić, I. V., Šljivić-Ivanović, M. Z., Štirbanović, Z., Gardić, V., Marković, R., Savić, A. R.,& Zakić, D.. (2021). Application of Copper Mining Waste in Radionuclide and Heavy Metal Immobilization. in CLEAN - Soil Air Water(10), 2000419.
https://doi.org/10.1002/clen.202000419
Dimović S, Jelić IV, Šljivić-Ivanović MZ, Štirbanović Z, Gardić V, Marković R, Savić AR, Zakić D. Application of Copper Mining Waste in Radionuclide and Heavy Metal Immobilization. in CLEAN - Soil Air Water. 2021;(10):2000419.
doi:10.1002/clen.202000419 .
Dimović, Slavko, Jelić, Ivana V., Šljivić-Ivanović, Marija Z., Štirbanović, Zoran, Gardić, Vojka, Marković, Radmila, Savić, Aleksandar R., Zakić, Dimitrije, "Application of Copper Mining Waste in Radionuclide and Heavy Metal Immobilization" in CLEAN - Soil Air Water, no. 10 (2021):2000419,
https://doi.org/10.1002/clen.202000419 . .
1
1

Thermomechanical behavior of bio-fiber composite thermal insulation panels

Savić, Aleksandar; Antonijević, Dragi; Jelić, Ivana V.; Zakić, Dimitrije

(2020)

TY  - JOUR
AU  - Savić, Aleksandar
AU  - Antonijević, Dragi
AU  - Jelić, Ivana V.
AU  - Zakić, Dimitrije
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9669
AB  - The thermomechanical properties of the bio-fiber composite, as material for the production of thermal insulation panels, were evaluated. The observed mixtures were composed of Miscanthus × giganteus bio-fibers, mineral binders (cement or lime), pozzolanic materials (zeolite and fly ash), and water. The favorable heat transfer behavior of composites based on Miscanthus × giganteus bio-fibers was already affirmed by literature data of similar natural bio-fiber materials, the author’s previous experimental results, and consideration of dynamic heat transfer processes in the insulated outer wall exposed to variable ambient conditions. The experimental assessment was focused on the bearing capacity (i.e. compressive and flexural strength), water absorption, and durability (i.e. resistance to freeze-thaw and carbonation), because there is scarce literature data regarding these properties, whose thorough understanding and systematization are highly important for a wider application of biomass-based thermal insulation materials. The obtained results were evaluated through the comparison to published data from similar bio-based thermal insulations, as well as from conventional thermo-insulation materials such as polystyrene and stone or glass wool.
T2  - Energy and Buildings
T1  - Thermomechanical behavior of bio-fiber composite thermal insulation panels
VL  - 229
SP  - 110511
DO  - 10.1016/j.enbuild.2020.110511
ER  - 
@article{
author = "Savić, Aleksandar and Antonijević, Dragi and Jelić, Ivana V. and Zakić, Dimitrije",
year = "2020",
abstract = "The thermomechanical properties of the bio-fiber composite, as material for the production of thermal insulation panels, were evaluated. The observed mixtures were composed of Miscanthus × giganteus bio-fibers, mineral binders (cement or lime), pozzolanic materials (zeolite and fly ash), and water. The favorable heat transfer behavior of composites based on Miscanthus × giganteus bio-fibers was already affirmed by literature data of similar natural bio-fiber materials, the author’s previous experimental results, and consideration of dynamic heat transfer processes in the insulated outer wall exposed to variable ambient conditions. The experimental assessment was focused on the bearing capacity (i.e. compressive and flexural strength), water absorption, and durability (i.e. resistance to freeze-thaw and carbonation), because there is scarce literature data regarding these properties, whose thorough understanding and systematization are highly important for a wider application of biomass-based thermal insulation materials. The obtained results were evaluated through the comparison to published data from similar bio-based thermal insulations, as well as from conventional thermo-insulation materials such as polystyrene and stone or glass wool.",
journal = "Energy and Buildings",
title = "Thermomechanical behavior of bio-fiber composite thermal insulation panels",
volume = "229",
pages = "110511",
doi = "10.1016/j.enbuild.2020.110511"
}
Savić, A., Antonijević, D., Jelić, I. V.,& Zakić, D.. (2020). Thermomechanical behavior of bio-fiber composite thermal insulation panels. in Energy and Buildings, 229, 110511.
https://doi.org/10.1016/j.enbuild.2020.110511
Savić A, Antonijević D, Jelić IV, Zakić D. Thermomechanical behavior of bio-fiber composite thermal insulation panels. in Energy and Buildings. 2020;229:110511.
doi:10.1016/j.enbuild.2020.110511 .
Savić, Aleksandar, Antonijević, Dragi, Jelić, Ivana V., Zakić, Dimitrije, "Thermomechanical behavior of bio-fiber composite thermal insulation panels" in Energy and Buildings, 229 (2020):110511,
https://doi.org/10.1016/j.enbuild.2020.110511 . .
1
23
3
17