Matović, Branko

Link to this page

Authority KeyName Variants
orcid::0000-0001-8022-1863
  • Matović, Branko (355)
Projects
Synthesis, processing and characterization of nanostructured materials for application in the field of energy, mechanical engineering, environmental protection and biomedicine Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča)
Nanostrukturni neoksidni keramički i karbonski materijali i njihovi kompoziti Ministry of Education, Science and Technological Development of the Republic of Serbia
Physics of nanostructured oxide materials and strongly correlated systems Magmatism and geodynamics of the Balkan Peninsula from Mesozoic to present day: significance for the formation of metallic and non-metallic mineral deposits
Advanced technologies for monitoring and environmental protection from chemical pollutants and radiation burden Nanostructured multifunctional materials and nanocomposites
Nanostrukturni čvrsti rastvori za primenu u elektronici i alternativnim izvorima energije Functional, Functionalized and Advanced Nanomaterials
Lithium-ion batteries and fuel cells - research and development Minerals of Serbia: composition, genesis, application and contribution to the environmental sustainability
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200135 (University of Belgrade, Faculty of Technology and Metallurgy) Optoelectronics nanodimension systems - the rout towards applications
Zero- to Three-Dimensional Nanostructures for Application in Electronics and Renewable Energy Sources: Synthesis, Characterization and Processing Fizika niskodimenzionih i nanometarskih struktura i materijala
Istraživanje savremenih betonskih kompozita na bazi domaćih sirovina, sa posebnim osvrtom na mogućnosti primene betona sa recikliranim agregatom u betonskim konstrukcijama Development and characterization of novel biosorbent for natural and waste water treatment
H2FC - Integrating European Infrastructure to support science and development of Hydrogen- and Fuel Cell Technologies towards European Strategy for Sustainable, Competitive and Secure Energy Investigation of intermetallics and semiconductors and possible application in renewable energy sources
Dynamics of nonlinear physicochemical and biochemical systems with modeling and predicting of their behavior under nonequilibrium conditions Oxide-based environmentally-friendly porous materials for genotoxic substances removal
Development of Methods of Monitoring and Removal of Biologically Actives Substances Aimed at Improving the Quality of the Environment Directed synthesis, structure and properties of multifunctional materials
Combinatorial libraries of heterogeneous catalysts, natural products, and their derivatives and analogues: the way to biologically active compounds Study of structure-function relationships in the plant cell wall and modifications of the wall structure by enzyme engineering
The membranes as sites of interaction between the intracellular and apoplastic environments: studies of the bioenergetics and signaling using biophysical and biochemical techniques. Sinteza i osobine nanostrukturnih metalnih, intermetalnih i kompozitnih materijala
Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan [2-12-1-N1-29]

Author's Bibliography

Program and Book of Abstracts of the 2nd International Conference on Innovative Materials in Extreme Conditions (IMEC2024)

Matović, Branko; Cvijović-Alagić, Ivana; Maksimović, Vesna; Zagorac, Dejan

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13138
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
T1  - Program and Book of Abstracts of the 2nd International Conference on Innovative Materials in Extreme Conditions (IMEC2024)
SP  - 82
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13138
ER  - 
@conference{
editor = "Matović, Branko, Cvijović-Alagić, Ivana, Maksimović, Vesna, Zagorac, Dejan",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
title = "Program and Book of Abstracts of the 2nd International Conference on Innovative Materials in Extreme Conditions (IMEC2024)",
pages = "82",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13138"
}
Matović, B., Cvijović-Alagić, I., Maksimović, V.,& Zagorac, D.. (2024). Program and Book of Abstracts of the 2nd International Conference on Innovative Materials in Extreme Conditions (IMEC2024). 
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 82.
https://hdl.handle.net/21.15107/rcub_vinar_13138
Matović B, Cvijović-Alagić I, Maksimović V, Zagorac D. Program and Book of Abstracts of the 2nd International Conference on Innovative Materials in Extreme Conditions (IMEC2024). 2024;:82.
https://hdl.handle.net/21.15107/rcub_vinar_13138 .
Matović, Branko, Cvijović-Alagić, Ivana, Maksimović, Vesna, Zagorac, Dejan, "Program and Book of Abstracts of the 2nd International Conference on Innovative Materials in Extreme Conditions (IMEC2024)" (2024):82,
https://hdl.handle.net/21.15107/rcub_vinar_13138 .

The high-temperature applicability of the Ti,Nb-Al-C MAX phases-based bulk materials and vacuum-arc deposited films

Prikhna, T.A.; Serbenyuk, T.B.; Ostash, O.P.; Sverdun, V.B.; Kuprin, А.S.; Matović, Branko; Cvijović-Alagić, Ivana; Podhurska, V.Ya.

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Prikhna, T.A.
AU  - Serbenyuk, T.B.
AU  - Ostash, O.P.
AU  - Sverdun, V.B.
AU  - Kuprin, А.S.
AU  - Matović, Branko
AU  - Cvijović-Alagić, Ivana
AU  - Podhurska, V.Ya.
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13140
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - The high-temperature applicability of the Ti,Nb-Al-C MAX phases-based bulk materials and vacuum-arc deposited films
SP  - 26
EP  - 26
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13140
ER  - 
@conference{
author = "Prikhna, T.A. and Serbenyuk, T.B. and Ostash, O.P. and Sverdun, V.B. and Kuprin, А.S. and Matović, Branko and Cvijović-Alagić, Ivana and Podhurska, V.Ya.",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "The high-temperature applicability of the Ti,Nb-Al-C MAX phases-based bulk materials and vacuum-arc deposited films",
pages = "26-26",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13140"
}
Prikhna, T.A., Serbenyuk, T.B., Ostash, O.P., Sverdun, V.B., Kuprin, А.S., Matović, B., Cvijović-Alagić, I.,& Podhurska, V.Ya.. (2024). The high-temperature applicability of the Ti,Nb-Al-C MAX phases-based bulk materials and vacuum-arc deposited films. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 26-26.
https://hdl.handle.net/21.15107/rcub_vinar_13140
Prikhna T, Serbenyuk T, Ostash O, Sverdun V, Kuprin А, Matović B, Cvijović-Alagić I, Podhurska V. The high-temperature applicability of the Ti,Nb-Al-C MAX phases-based bulk materials and vacuum-arc deposited films. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:26-26.
https://hdl.handle.net/21.15107/rcub_vinar_13140 .
Prikhna, T.A., Serbenyuk, T.B., Ostash, O.P., Sverdun, V.B., Kuprin, А.S., Matović, Branko, Cvijović-Alagić, Ivana, Podhurska, V.Ya., "The high-temperature applicability of the Ti,Nb-Al-C MAX phases-based bulk materials and vacuum-arc deposited films" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):26-26,
https://hdl.handle.net/21.15107/rcub_vinar_13140 .

Hydrogen embrittlement in additively manufactured metals: A concise review

Cvijović-Alagić, Ivana; Maletaškić, Jelena; Pavkov, Vladimir; Putić, Slaviša; Matović, Branko; Maksimović, Vesna

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Cvijović-Alagić, Ivana
AU  - Maletaškić, Jelena
AU  - Pavkov, Vladimir
AU  - Putić, Slaviša
AU  - Matović, Branko
AU  - Maksimović, Vesna
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13200
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Hydrogen embrittlement in additively manufactured metals: A concise review
SP  - 57
EP  - 57
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13200
ER  - 
@conference{
author = "Cvijović-Alagić, Ivana and Maletaškić, Jelena and Pavkov, Vladimir and Putić, Slaviša and Matović, Branko and Maksimović, Vesna",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Hydrogen embrittlement in additively manufactured metals: A concise review",
pages = "57-57",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13200"
}
Cvijović-Alagić, I., Maletaškić, J., Pavkov, V., Putić, S., Matović, B.,& Maksimović, V.. (2024). Hydrogen embrittlement in additively manufactured metals: A concise review. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 57-57.
https://hdl.handle.net/21.15107/rcub_vinar_13200
Cvijović-Alagić I, Maletaškić J, Pavkov V, Putić S, Matović B, Maksimović V. Hydrogen embrittlement in additively manufactured metals: A concise review. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:57-57.
https://hdl.handle.net/21.15107/rcub_vinar_13200 .
Cvijović-Alagić, Ivana, Maletaškić, Jelena, Pavkov, Vladimir, Putić, Slaviša, Matović, Branko, Maksimović, Vesna, "Hydrogen embrittlement in additively manufactured metals: A concise review" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):57-57,
https://hdl.handle.net/21.15107/rcub_vinar_13200 .

Hafnium Carbide: Prediction of Crystalline Structures and Investigation of Mechanical Properties

Zagorac, Jelena; Schön, Johann Christian; Matović, Branko; Butulija, Svetlana; Zagorac, Dejan

(2024)

TY  - JOUR
AU  - Zagorac, Jelena
AU  - Schön, Johann Christian
AU  - Matović, Branko
AU  - Butulija, Svetlana
AU  - Zagorac, Dejan
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13134
AB  - Hafnium carbide (HfC) is a refractory compound known for its exceptional mechanical, thermal, and electrical properties. This compound has gained significant attention in materials science and engineering due to its high melting point, extreme hardness, and excellent thermal stability. This study presents crystal structure prediction via energy landscape explorations of pristine hafnium carbide supplemented by data mining. Apart from the well-known equilibrium rock salt phase, we predict eight new polymorphs of HfC. The predicted HfC phases appear in the energy landscape with known structure types such as the WC type, NiAs type, 5-5 type, sphalerite (ZnS) type, TlI type, and CsCl type; in addition, we predict two new structure types denoted as ortho_HfC and HfC_polytype, respectively. Moreover, we have investigated the structural characteristics and mechanical properties of hafnium carbide at the DFT level of computation, which opens diverse applications in various technological domains.
T2  - Crystals
T1  - Hafnium Carbide: Prediction of Crystalline Structures and Investigation of Mechanical Properties
VL  - 14
IS  - 4
SP  - 340
DO  - 10.3390/cryst14040340
ER  - 
@article{
author = "Zagorac, Jelena and Schön, Johann Christian and Matović, Branko and Butulija, Svetlana and Zagorac, Dejan",
year = "2024",
abstract = "Hafnium carbide (HfC) is a refractory compound known for its exceptional mechanical, thermal, and electrical properties. This compound has gained significant attention in materials science and engineering due to its high melting point, extreme hardness, and excellent thermal stability. This study presents crystal structure prediction via energy landscape explorations of pristine hafnium carbide supplemented by data mining. Apart from the well-known equilibrium rock salt phase, we predict eight new polymorphs of HfC. The predicted HfC phases appear in the energy landscape with known structure types such as the WC type, NiAs type, 5-5 type, sphalerite (ZnS) type, TlI type, and CsCl type; in addition, we predict two new structure types denoted as ortho_HfC and HfC_polytype, respectively. Moreover, we have investigated the structural characteristics and mechanical properties of hafnium carbide at the DFT level of computation, which opens diverse applications in various technological domains.",
journal = "Crystals",
title = "Hafnium Carbide: Prediction of Crystalline Structures and Investigation of Mechanical Properties",
volume = "14",
number = "4",
pages = "340",
doi = "10.3390/cryst14040340"
}
Zagorac, J., Schön, J. C., Matović, B., Butulija, S.,& Zagorac, D.. (2024). Hafnium Carbide: Prediction of Crystalline Structures and Investigation of Mechanical Properties. in Crystals, 14(4), 340.
https://doi.org/10.3390/cryst14040340
Zagorac J, Schön JC, Matović B, Butulija S, Zagorac D. Hafnium Carbide: Prediction of Crystalline Structures and Investigation of Mechanical Properties. in Crystals. 2024;14(4):340.
doi:10.3390/cryst14040340 .
Zagorac, Jelena, Schön, Johann Christian, Matović, Branko, Butulija, Svetlana, Zagorac, Dejan, "Hafnium Carbide: Prediction of Crystalline Structures and Investigation of Mechanical Properties" in Crystals, 14, no. 4 (2024):340,
https://doi.org/10.3390/cryst14040340 . .

The Roles of Impurities and Surface Area on Thermal Stability and Oxidation Resistance of BN Nanoplatelets

Kostoglou, Nikolaos; Stock, Sebastian; Solomi, Angelos; Holzapfel, Damian M.; Hinder, Steven; Baker, Mark; Constantinides, Georgios; Ryzhkov, Vladislav; Maletaškić, Jelena; Matović, Branko; Schneider, Jochen M.; Rebholz, Claus; Mitterer, Christian

(2024)

TY  - JOUR
AU  - Kostoglou, Nikolaos
AU  - Stock, Sebastian
AU  - Solomi, Angelos
AU  - Holzapfel, Damian M.
AU  - Hinder, Steven
AU  - Baker, Mark
AU  - Constantinides, Georgios
AU  - Ryzhkov, Vladislav
AU  - Maletaškić, Jelena
AU  - Matović, Branko
AU  - Schneider, Jochen M.
AU  - Rebholz, Claus
AU  - Mitterer, Christian
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13135
AB  - This study considers the influence of purity and surface area on the thermal and oxidation properties of hexagonal boron nitride (h-BN) nanoplatelets, which represent crucial factors in hightemperature oxidizing environments. Three h-BN nanoplatelet-based materials, synthesized with different purity levels and surface areas (~3, ~56, and ~140 m2/g), were compared, including a commercial BN reference. All materials were systematically analyzed by various characterization techniques, including gas pycnometry, scanning electron microscopy, X-ray diffraction, Fouriertransform infrared radiation, X-ray photoelectron spectroscopy, gas sorption analysis, and thermal gravimetric analysis coupled with differential scanning calorimetry. Results indicated that the thermal stability and oxidation resistance of the synthesized materials were improved by up to ~13.5% (or by 120 ◦C) with an increase in purity. Furthermore, the reference material with its high purity and low surface area (~4 m2/g) showed superior performance, which was attributed to the minimized reactive sites for oxygen diffusion due to lower surface area availability and fewer possible defects, highlighting the critical roles of both sample purity and accessible surface area in h-BN thermooxidative stability. These findings highlight the importance of focusing on purity and surface area control in developing BN-based nanomaterials, offering a path to enhance their performance in extreme thermal and oxidative conditions.
T2  - Nanomaterials
T1  - The Roles of Impurities and Surface Area on Thermal Stability and Oxidation Resistance of BN Nanoplatelets
VL  - 14
IS  - 7
SP  - 601
DO  - 10.3390/nano14070601
ER  - 
@article{
author = "Kostoglou, Nikolaos and Stock, Sebastian and Solomi, Angelos and Holzapfel, Damian M. and Hinder, Steven and Baker, Mark and Constantinides, Georgios and Ryzhkov, Vladislav and Maletaškić, Jelena and Matović, Branko and Schneider, Jochen M. and Rebholz, Claus and Mitterer, Christian",
year = "2024",
abstract = "This study considers the influence of purity and surface area on the thermal and oxidation properties of hexagonal boron nitride (h-BN) nanoplatelets, which represent crucial factors in hightemperature oxidizing environments. Three h-BN nanoplatelet-based materials, synthesized with different purity levels and surface areas (~3, ~56, and ~140 m2/g), were compared, including a commercial BN reference. All materials were systematically analyzed by various characterization techniques, including gas pycnometry, scanning electron microscopy, X-ray diffraction, Fouriertransform infrared radiation, X-ray photoelectron spectroscopy, gas sorption analysis, and thermal gravimetric analysis coupled with differential scanning calorimetry. Results indicated that the thermal stability and oxidation resistance of the synthesized materials were improved by up to ~13.5% (or by 120 ◦C) with an increase in purity. Furthermore, the reference material with its high purity and low surface area (~4 m2/g) showed superior performance, which was attributed to the minimized reactive sites for oxygen diffusion due to lower surface area availability and fewer possible defects, highlighting the critical roles of both sample purity and accessible surface area in h-BN thermooxidative stability. These findings highlight the importance of focusing on purity and surface area control in developing BN-based nanomaterials, offering a path to enhance their performance in extreme thermal and oxidative conditions.",
journal = "Nanomaterials",
title = "The Roles of Impurities and Surface Area on Thermal Stability and Oxidation Resistance of BN Nanoplatelets",
volume = "14",
number = "7",
pages = "601",
doi = "10.3390/nano14070601"
}
Kostoglou, N., Stock, S., Solomi, A., Holzapfel, D. M., Hinder, S., Baker, M., Constantinides, G., Ryzhkov, V., Maletaškić, J., Matović, B., Schneider, J. M., Rebholz, C.,& Mitterer, C.. (2024). The Roles of Impurities and Surface Area on Thermal Stability and Oxidation Resistance of BN Nanoplatelets. in Nanomaterials, 14(7), 601.
https://doi.org/10.3390/nano14070601
Kostoglou N, Stock S, Solomi A, Holzapfel DM, Hinder S, Baker M, Constantinides G, Ryzhkov V, Maletaškić J, Matović B, Schneider JM, Rebholz C, Mitterer C. The Roles of Impurities and Surface Area on Thermal Stability and Oxidation Resistance of BN Nanoplatelets. in Nanomaterials. 2024;14(7):601.
doi:10.3390/nano14070601 .
Kostoglou, Nikolaos, Stock, Sebastian, Solomi, Angelos, Holzapfel, Damian M., Hinder, Steven, Baker, Mark, Constantinides, Georgios, Ryzhkov, Vladislav, Maletaškić, Jelena, Matović, Branko, Schneider, Jochen M., Rebholz, Claus, Mitterer, Christian, "The Roles of Impurities and Surface Area on Thermal Stability and Oxidation Resistance of BN Nanoplatelets" in Nanomaterials, 14, no. 7 (2024):601,
https://doi.org/10.3390/nano14070601 . .

Synthesis and characterization of ceria doped with mercury

Minović Arsić, Tamara; Maletaškić, Jelena; Butulija, Svetlana; Nidžović, Emilija; Erčić, Jelena; Prekajski Đorđević, Marija; Matović, Branko

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Minović Arsić, Tamara
AU  - Maletaškić, Jelena
AU  - Butulija, Svetlana
AU  - Nidžović, Emilija
AU  - Erčić, Jelena
AU  - Prekajski Đorđević, Marija
AU  - Matović, Branko
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13171
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Synthesis and characterization of ceria doped with mercury
SP  - 77
EP  - 77
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13171
ER  - 
@conference{
author = "Minović Arsić, Tamara and Maletaškić, Jelena and Butulija, Svetlana and Nidžović, Emilija and Erčić, Jelena and Prekajski Đorđević, Marija and Matović, Branko",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Synthesis and characterization of ceria doped with mercury",
pages = "77-77",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13171"
}
Minović Arsić, T., Maletaškić, J., Butulija, S., Nidžović, E., Erčić, J., Prekajski Đorđević, M.,& Matović, B.. (2024). Synthesis and characterization of ceria doped with mercury. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 77-77.
https://hdl.handle.net/21.15107/rcub_vinar_13171
Minović Arsić T, Maletaškić J, Butulija S, Nidžović E, Erčić J, Prekajski Đorđević M, Matović B. Synthesis and characterization of ceria doped with mercury. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:77-77.
https://hdl.handle.net/21.15107/rcub_vinar_13171 .
Minović Arsić, Tamara, Maletaškić, Jelena, Butulija, Svetlana, Nidžović, Emilija, Erčić, Jelena, Prekajski Đorđević, Marija, Matović, Branko, "Synthesis and characterization of ceria doped with mercury" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):77-77,
https://hdl.handle.net/21.15107/rcub_vinar_13171 .

High-entropy stabilized Zr0.2Hf0.2Ce0.2Yb0.2Gd0.2O2-δ with fluorite structure

Prekajski Đorđević, Marija; Maletaškić, Jelena; Butulija, Svetlana; Nidžović, Emilija; Luković, Aleksa; Kumar, Ravi; Matović, Branko

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Prekajski Đorđević, Marija
AU  - Maletaškić, Jelena
AU  - Butulija, Svetlana
AU  - Nidžović, Emilija
AU  - Luković, Aleksa
AU  - Kumar, Ravi
AU  - Matović, Branko
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13168
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - High-entropy stabilized Zr0.2Hf0.2Ce0.2Yb0.2Gd0.2O2-δ with fluorite structure
SP  - 74
EP  - 74
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13168
ER  - 
@conference{
author = "Prekajski Đorđević, Marija and Maletaškić, Jelena and Butulija, Svetlana and Nidžović, Emilija and Luković, Aleksa and Kumar, Ravi and Matović, Branko",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "High-entropy stabilized Zr0.2Hf0.2Ce0.2Yb0.2Gd0.2O2-δ with fluorite structure",
pages = "74-74",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13168"
}
Prekajski Đorđević, M., Maletaškić, J., Butulija, S., Nidžović, E., Luković, A., Kumar, R.,& Matović, B.. (2024). High-entropy stabilized Zr0.2Hf0.2Ce0.2Yb0.2Gd0.2O2-δ with fluorite structure. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 74-74.
https://hdl.handle.net/21.15107/rcub_vinar_13168
Prekajski Đorđević M, Maletaškić J, Butulija S, Nidžović E, Luković A, Kumar R, Matović B. High-entropy stabilized Zr0.2Hf0.2Ce0.2Yb0.2Gd0.2O2-δ with fluorite structure. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:74-74.
https://hdl.handle.net/21.15107/rcub_vinar_13168 .
Prekajski Đorđević, Marija, Maletaškić, Jelena, Butulija, Svetlana, Nidžović, Emilija, Luković, Aleksa, Kumar, Ravi, Matović, Branko, "High-entropy stabilized Zr0.2Hf0.2Ce0.2Yb0.2Gd0.2O2-δ with fluorite structure" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):74-74,
https://hdl.handle.net/21.15107/rcub_vinar_13168 .

Structure-property relationship of AlN/BN mixed compounds on DFT level

Zagorac, Dejan; Zagorac, Jelena; Fonović, Matej; Škundrić, Tamara; Pejić, Milan; Jovanović, Dušica; Đukić, Miloš B.; Matović, Branko

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Zagorac, Dejan
AU  - Zagorac, Jelena
AU  - Fonović, Matej
AU  - Škundrić, Tamara
AU  - Pejić, Milan
AU  - Jovanović, Dušica
AU  - Đukić, Miloš B.
AU  - Matović, Branko
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13165
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Structure-property relationship of AlN/BN mixed compounds on DFT level
SP  - 70
EP  - 70
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13165
ER  - 
@conference{
author = "Zagorac, Dejan and Zagorac, Jelena and Fonović, Matej and Škundrić, Tamara and Pejić, Milan and Jovanović, Dušica and Đukić, Miloš B. and Matović, Branko",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Structure-property relationship of AlN/BN mixed compounds on DFT level",
pages = "70-70",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13165"
}
Zagorac, D., Zagorac, J., Fonović, M., Škundrić, T., Pejić, M., Jovanović, D., Đukić, M. B.,& Matović, B.. (2024). Structure-property relationship of AlN/BN mixed compounds on DFT level. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 70-70.
https://hdl.handle.net/21.15107/rcub_vinar_13165
Zagorac D, Zagorac J, Fonović M, Škundrić T, Pejić M, Jovanović D, Đukić MB, Matović B. Structure-property relationship of AlN/BN mixed compounds on DFT level. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:70-70.
https://hdl.handle.net/21.15107/rcub_vinar_13165 .
Zagorac, Dejan, Zagorac, Jelena, Fonović, Matej, Škundrić, Tamara, Pejić, Milan, Jovanović, Dušica, Đukić, Miloš B., Matović, Branko, "Structure-property relationship of AlN/BN mixed compounds on DFT level" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):70-70,
https://hdl.handle.net/21.15107/rcub_vinar_13165 .

Energy Landscape Exploration of Novel Rare Earth Chalcohalides LaXY(X=O,S; Y=I,F)

Pejić, Milan; Zagorac, Dejan; Zagorac, Jelena; Škundrić, Tamara; Jovanović, Dušica; Matović, Branko

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Pejić, Milan
AU  - Zagorac, Dejan
AU  - Zagorac, Jelena
AU  - Škundrić, Tamara
AU  - Jovanović, Dušica
AU  - Matović, Branko
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13170
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Energy Landscape Exploration of Novel Rare Earth Chalcohalides LaXY(X=O,S; Y=I,F)
SP  - 76
EP  - 76
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13170
ER  - 
@conference{
author = "Pejić, Milan and Zagorac, Dejan and Zagorac, Jelena and Škundrić, Tamara and Jovanović, Dušica and Matović, Branko",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Energy Landscape Exploration of Novel Rare Earth Chalcohalides LaXY(X=O,S; Y=I,F)",
pages = "76-76",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13170"
}
Pejić, M., Zagorac, D., Zagorac, J., Škundrić, T., Jovanović, D.,& Matović, B.. (2024). Energy Landscape Exploration of Novel Rare Earth Chalcohalides LaXY(X=O,S; Y=I,F). in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 76-76.
https://hdl.handle.net/21.15107/rcub_vinar_13170
Pejić M, Zagorac D, Zagorac J, Škundrić T, Jovanović D, Matović B. Energy Landscape Exploration of Novel Rare Earth Chalcohalides LaXY(X=O,S; Y=I,F). in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:76-76.
https://hdl.handle.net/21.15107/rcub_vinar_13170 .
Pejić, Milan, Zagorac, Dejan, Zagorac, Jelena, Škundrić, Tamara, Jovanović, Dušica, Matović, Branko, "Energy Landscape Exploration of Novel Rare Earth Chalcohalides LaXY(X=O,S; Y=I,F)" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):76-76,
https://hdl.handle.net/21.15107/rcub_vinar_13170 .

Activating agricultural residues: Corn cob as a resource for adsorption-based pollution management

Mihailović, Ružica; Zarubica, Aleksandra; Matović, Branko; Butulija, Svetlana

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Mihailović, Ružica
AU  - Zarubica, Aleksandra
AU  - Matović, Branko
AU  - Butulija, Svetlana
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13163
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Activating agricultural residues: Corn cob as a resource for adsorption-based pollution management
SP  - 67
EP  - 67
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13163
ER  - 
@conference{
author = "Mihailović, Ružica and Zarubica, Aleksandra and Matović, Branko and Butulija, Svetlana",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Activating agricultural residues: Corn cob as a resource for adsorption-based pollution management",
pages = "67-67",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13163"
}
Mihailović, R., Zarubica, A., Matović, B.,& Butulija, S.. (2024). Activating agricultural residues: Corn cob as a resource for adsorption-based pollution management. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 67-67.
https://hdl.handle.net/21.15107/rcub_vinar_13163
Mihailović R, Zarubica A, Matović B, Butulija S. Activating agricultural residues: Corn cob as a resource for adsorption-based pollution management. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:67-67.
https://hdl.handle.net/21.15107/rcub_vinar_13163 .
Mihailović, Ružica, Zarubica, Aleksandra, Matović, Branko, Butulija, Svetlana, "Activating agricultural residues: Corn cob as a resource for adsorption-based pollution management" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):67-67,
https://hdl.handle.net/21.15107/rcub_vinar_13163 .

Bacterial Cellulose-Cerium Oxide Hydrogel for Tailored Redox Balance in Biomedical Extremes

Butulija, Svetlana; Filipović Tričković, Jelena; Valenta Šobot, Ana; Todorović, Bratislav; Petrović, Sanja; Ilić, Bojana; Zmejkoski, Danica; Matović, Branko

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Butulija, Svetlana
AU  - Filipović Tričković, Jelena
AU  - Valenta Šobot, Ana
AU  - Todorović, Bratislav
AU  - Petrović, Sanja
AU  - Ilić, Bojana
AU  - Zmejkoski, Danica
AU  - Matović, Branko
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13167
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Bacterial Cellulose-Cerium Oxide Hydrogel for Tailored Redox Balance in Biomedical Extremes
SP  - 73
EP  - 73
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13167
ER  - 
@conference{
author = "Butulija, Svetlana and Filipović Tričković, Jelena and Valenta Šobot, Ana and Todorović, Bratislav and Petrović, Sanja and Ilić, Bojana and Zmejkoski, Danica and Matović, Branko",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Bacterial Cellulose-Cerium Oxide Hydrogel for Tailored Redox Balance in Biomedical Extremes",
pages = "73-73",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13167"
}
Butulija, S., Filipović Tričković, J., Valenta Šobot, A., Todorović, B., Petrović, S., Ilić, B., Zmejkoski, D.,& Matović, B.. (2024). Bacterial Cellulose-Cerium Oxide Hydrogel for Tailored Redox Balance in Biomedical Extremes. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 73-73.
https://hdl.handle.net/21.15107/rcub_vinar_13167
Butulija S, Filipović Tričković J, Valenta Šobot A, Todorović B, Petrović S, Ilić B, Zmejkoski D, Matović B. Bacterial Cellulose-Cerium Oxide Hydrogel for Tailored Redox Balance in Biomedical Extremes. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:73-73.
https://hdl.handle.net/21.15107/rcub_vinar_13167 .
Butulija, Svetlana, Filipović Tričković, Jelena, Valenta Šobot, Ana, Todorović, Bratislav, Petrović, Sanja, Ilić, Bojana, Zmejkoski, Danica, Matović, Branko, "Bacterial Cellulose-Cerium Oxide Hydrogel for Tailored Redox Balance in Biomedical Extremes" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):73-73,
https://hdl.handle.net/21.15107/rcub_vinar_13167 .

Multidisciplinary approach in investigating ZnO/ZnS core/shell nanostructures

Zagorac, Jelena; Jovanović, Dušica; Zagorac, Dejan; Škundrić, Tamara; Pejić, Milan; Šrot, Vesna; Matović, Branko

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Zagorac, Jelena
AU  - Jovanović, Dušica
AU  - Zagorac, Dejan
AU  - Škundrić, Tamara
AU  - Pejić, Milan
AU  - Šrot, Vesna
AU  - Matović, Branko
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13166
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Multidisciplinary approach in investigating ZnO/ZnS core/shell nanostructures
SP  - 72
EP  - 72
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13166
ER  - 
@conference{
author = "Zagorac, Jelena and Jovanović, Dušica and Zagorac, Dejan and Škundrić, Tamara and Pejić, Milan and Šrot, Vesna and Matović, Branko",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Multidisciplinary approach in investigating ZnO/ZnS core/shell nanostructures",
pages = "72-72",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13166"
}
Zagorac, J., Jovanović, D., Zagorac, D., Škundrić, T., Pejić, M., Šrot, V.,& Matović, B.. (2024). Multidisciplinary approach in investigating ZnO/ZnS core/shell nanostructures. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 72-72.
https://hdl.handle.net/21.15107/rcub_vinar_13166
Zagorac J, Jovanović D, Zagorac D, Škundrić T, Pejić M, Šrot V, Matović B. Multidisciplinary approach in investigating ZnO/ZnS core/shell nanostructures. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:72-72.
https://hdl.handle.net/21.15107/rcub_vinar_13166 .
Zagorac, Jelena, Jovanović, Dušica, Zagorac, Dejan, Škundrić, Tamara, Pejić, Milan, Šrot, Vesna, Matović, Branko, "Multidisciplinary approach in investigating ZnO/ZnS core/shell nanostructures" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):72-72,
https://hdl.handle.net/21.15107/rcub_vinar_13166 .

Basaltic Glass-Ceramic Composites: Exploring Structural, Morphological, and Thermal Insights for Ballistic Protection and Radiation Shielding Applications

Luković, Aleksa; Diana Carolina Lago; Jozef Kraxner; Galusek, Dušan; Matović, Branko; Srećković-Batoćanin, Danica; Maletaškić, Jelena

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Luković, Aleksa
AU  - Diana Carolina Lago
AU  - Jozef Kraxner
AU  - Galusek, Dušan
AU  - Matović, Branko
AU  - Srećković-Batoćanin, Danica
AU  - Maletaškić, Jelena
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13169
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Basaltic Glass-Ceramic Composites: Exploring Structural, Morphological, and Thermal Insights for Ballistic Protection and Radiation Shielding Applications
SP  - 75
EP  - 75
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13169
ER  - 
@conference{
author = "Luković, Aleksa and Diana Carolina Lago and Jozef Kraxner and Galusek, Dušan and Matović, Branko and Srećković-Batoćanin, Danica and Maletaškić, Jelena",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Basaltic Glass-Ceramic Composites: Exploring Structural, Morphological, and Thermal Insights for Ballistic Protection and Radiation Shielding Applications",
pages = "75-75",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13169"
}
Luković, A., Diana Carolina Lago, Jozef Kraxner, Galusek, D., Matović, B., Srećković-Batoćanin, D.,& Maletaškić, J.. (2024). Basaltic Glass-Ceramic Composites: Exploring Structural, Morphological, and Thermal Insights for Ballistic Protection and Radiation Shielding Applications. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 75-75.
https://hdl.handle.net/21.15107/rcub_vinar_13169
Luković A, Diana Carolina Lago, Jozef Kraxner, Galusek D, Matović B, Srećković-Batoćanin D, Maletaškić J. Basaltic Glass-Ceramic Composites: Exploring Structural, Morphological, and Thermal Insights for Ballistic Protection and Radiation Shielding Applications. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:75-75.
https://hdl.handle.net/21.15107/rcub_vinar_13169 .
Luković, Aleksa, Diana Carolina Lago, Jozef Kraxner, Galusek, Dušan, Matović, Branko, Srećković-Batoćanin, Danica, Maletaškić, Jelena, "Basaltic Glass-Ceramic Composites: Exploring Structural, Morphological, and Thermal Insights for Ballistic Protection and Radiation Shielding Applications" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):75-75,
https://hdl.handle.net/21.15107/rcub_vinar_13169 .

Structure, mechanical characteristics and high-temperature stability of sintered under high and by hot pressing ZrB2- and HfB2–based composites

Prikhna, Tetiana; Barvitskyi, Pavlo; Matović, Branko; Zagorac, Dejan; Lokatkina, Anastasiya; Büchner, Bernd; Werner, Jochen; Karpets, Myroslav; Kluge, Robert; Moshchil, Viktor; Bondar, Anatolii; Borymskyi, Olexander; Devin, Leonid; Ponomarov, Semyon

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Prikhna, Tetiana
AU  - Barvitskyi, Pavlo
AU  - Matović, Branko
AU  - Zagorac, Dejan
AU  - Lokatkina, Anastasiya
AU  - Büchner, Bernd
AU  - Werner, Jochen
AU  - Karpets, Myroslav
AU  - Kluge, Robert
AU  - Moshchil, Viktor
AU  - Bondar, Anatolii
AU  - Borymskyi, Olexander
AU  - Devin, Leonid
AU  - Ponomarov, Semyon
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13153
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Structure, mechanical characteristics and high-temperature stability of sintered under high and by hot pressing ZrB2- and HfB2–based composites
SP  - 55
EP  - 55
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13153
ER  - 
@conference{
author = "Prikhna, Tetiana and Barvitskyi, Pavlo and Matović, Branko and Zagorac, Dejan and Lokatkina, Anastasiya and Büchner, Bernd and Werner, Jochen and Karpets, Myroslav and Kluge, Robert and Moshchil, Viktor and Bondar, Anatolii and Borymskyi, Olexander and Devin, Leonid and Ponomarov, Semyon",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Structure, mechanical characteristics and high-temperature stability of sintered under high and by hot pressing ZrB2- and HfB2–based composites",
pages = "55-55",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13153"
}
Prikhna, T., Barvitskyi, P., Matović, B., Zagorac, D., Lokatkina, A., Büchner, B., Werner, J., Karpets, M., Kluge, R., Moshchil, V., Bondar, A., Borymskyi, O., Devin, L.,& Ponomarov, S.. (2024). Structure, mechanical characteristics and high-temperature stability of sintered under high and by hot pressing ZrB2- and HfB2–based composites. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 55-55.
https://hdl.handle.net/21.15107/rcub_vinar_13153
Prikhna T, Barvitskyi P, Matović B, Zagorac D, Lokatkina A, Büchner B, Werner J, Karpets M, Kluge R, Moshchil V, Bondar A, Borymskyi O, Devin L, Ponomarov S. Structure, mechanical characteristics and high-temperature stability of sintered under high and by hot pressing ZrB2- and HfB2–based composites. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:55-55.
https://hdl.handle.net/21.15107/rcub_vinar_13153 .
Prikhna, Tetiana, Barvitskyi, Pavlo, Matović, Branko, Zagorac, Dejan, Lokatkina, Anastasiya, Büchner, Bernd, Werner, Jochen, Karpets, Myroslav, Kluge, Robert, Moshchil, Viktor, Bondar, Anatolii, Borymskyi, Olexander, Devin, Leonid, Ponomarov, Semyon, "Structure, mechanical characteristics and high-temperature stability of sintered under high and by hot pressing ZrB2- and HfB2–based composites" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):55-55,
https://hdl.handle.net/21.15107/rcub_vinar_13153 .

Characterization of high pressure oxygenated EuBCO and GdBCO coated conductors

Prikhna, Tetiana; Kethamkuzhi, Aiswarya; Vlad, Roxana; Matović, Branko; Ponomarov, Semyon; Kluge, Robert; Karpets, Myroslav; Moshchil, Viktor E.; Obradors, Xavier; Gutierrez, Joffre; Büchner, Bernd; Puig, Teresa

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Prikhna, Tetiana
AU  - Kethamkuzhi, Aiswarya
AU  - Vlad, Roxana
AU  - Matović, Branko
AU  - Ponomarov, Semyon
AU  - Kluge, Robert
AU  - Karpets, Myroslav
AU  - Moshchil, Viktor E.
AU  - Obradors, Xavier
AU  - Gutierrez, Joffre
AU  - Büchner, Bernd
AU  - Puig, Teresa
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13158
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Characterization of high pressure oxygenated EuBCO and GdBCO coated conductors
SP  - 62
EP  - 62
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13158
ER  - 
@conference{
author = "Prikhna, Tetiana and Kethamkuzhi, Aiswarya and Vlad, Roxana and Matović, Branko and Ponomarov, Semyon and Kluge, Robert and Karpets, Myroslav and Moshchil, Viktor E. and Obradors, Xavier and Gutierrez, Joffre and Büchner, Bernd and Puig, Teresa",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Characterization of high pressure oxygenated EuBCO and GdBCO coated conductors",
pages = "62-62",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13158"
}
Prikhna, T., Kethamkuzhi, A., Vlad, R., Matović, B., Ponomarov, S., Kluge, R., Karpets, M., Moshchil, V. E., Obradors, X., Gutierrez, J., Büchner, B.,& Puig, T.. (2024). Characterization of high pressure oxygenated EuBCO and GdBCO coated conductors. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 62-62.
https://hdl.handle.net/21.15107/rcub_vinar_13158
Prikhna T, Kethamkuzhi A, Vlad R, Matović B, Ponomarov S, Kluge R, Karpets M, Moshchil VE, Obradors X, Gutierrez J, Büchner B, Puig T. Characterization of high pressure oxygenated EuBCO and GdBCO coated conductors. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:62-62.
https://hdl.handle.net/21.15107/rcub_vinar_13158 .
Prikhna, Tetiana, Kethamkuzhi, Aiswarya, Vlad, Roxana, Matović, Branko, Ponomarov, Semyon, Kluge, Robert, Karpets, Myroslav, Moshchil, Viktor E., Obradors, Xavier, Gutierrez, Joffre, Büchner, Bernd, Puig, Teresa, "Characterization of high pressure oxygenated EuBCO and GdBCO coated conductors" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):62-62,
https://hdl.handle.net/21.15107/rcub_vinar_13158 .

Ablation performance of rare-earth modified ZrB2–SiC composites under oxyacetylene torch test

Ünsal, Hakan; Kovalčíková, Alexandra; Hičák, Michal; Chlup, Zdnek; Dlouhý, Ivo; Matović, Branko; Tatarko, Peter

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Ünsal, Hakan
AU  - Kovalčíková, Alexandra
AU  - Hičák, Michal
AU  - Chlup, Zdnek
AU  - Dlouhý, Ivo
AU  - Matović, Branko
AU  - Tatarko, Peter
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13143
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Ablation performance of rare-earth modified ZrB2–SiC composites under oxyacetylene torch test
SP  - 36
EP  - 36
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13143
ER  - 
@conference{
author = "Ünsal, Hakan and Kovalčíková, Alexandra and Hičák, Michal and Chlup, Zdnek and Dlouhý, Ivo and Matović, Branko and Tatarko, Peter",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Ablation performance of rare-earth modified ZrB2–SiC composites under oxyacetylene torch test",
pages = "36-36",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13143"
}
Ünsal, H., Kovalčíková, A., Hičák, M., Chlup, Z., Dlouhý, I., Matović, B.,& Tatarko, P.. (2024). Ablation performance of rare-earth modified ZrB2–SiC composites under oxyacetylene torch test. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 36-36.
https://hdl.handle.net/21.15107/rcub_vinar_13143
Ünsal H, Kovalčíková A, Hičák M, Chlup Z, Dlouhý I, Matović B, Tatarko P. Ablation performance of rare-earth modified ZrB2–SiC composites under oxyacetylene torch test. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:36-36.
https://hdl.handle.net/21.15107/rcub_vinar_13143 .
Ünsal, Hakan, Kovalčíková, Alexandra, Hičák, Michal, Chlup, Zdnek, Dlouhý, Ivo, Matović, Branko, Tatarko, Peter, "Ablation performance of rare-earth modified ZrB2–SiC composites under oxyacetylene torch test" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):36-36,
https://hdl.handle.net/21.15107/rcub_vinar_13143 .

DFT study of new hybrid organic-inorganic perovskites: guanidinium-BX3 substituted by B=(Sr2+, Ca2+, Mg2+, Be2+) and X=(Cl-, F-)

Jovanović, Dušica; Zagorac, Dejan; Schön, Christian J.; Matović, Branko; Zarubica, Aleksandra; Zagorac, Jelena

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Jovanović, Dušica
AU  - Zagorac, Dejan
AU  - Schön, Christian J.
AU  - Matović, Branko
AU  - Zarubica, Aleksandra
AU  - Zagorac, Jelena
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13148
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - DFT study of new hybrid organic-inorganic perovskites: guanidinium-BX3 substituted by B=(Sr2+, Ca2+, Mg2+, Be2+) and X=(Cl-, F-)
SP  - 48
EP  - 48
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13148
ER  - 
@conference{
author = "Jovanović, Dušica and Zagorac, Dejan and Schön, Christian J. and Matović, Branko and Zarubica, Aleksandra and Zagorac, Jelena",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "DFT study of new hybrid organic-inorganic perovskites: guanidinium-BX3 substituted by B=(Sr2+, Ca2+, Mg2+, Be2+) and X=(Cl-, F-)",
pages = "48-48",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13148"
}
Jovanović, D., Zagorac, D., Schön, C. J., Matović, B., Zarubica, A.,& Zagorac, J.. (2024). DFT study of new hybrid organic-inorganic perovskites: guanidinium-BX3 substituted by B=(Sr2+, Ca2+, Mg2+, Be2+) and X=(Cl-, F-). in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 48-48.
https://hdl.handle.net/21.15107/rcub_vinar_13148
Jovanović D, Zagorac D, Schön CJ, Matović B, Zarubica A, Zagorac J. DFT study of new hybrid organic-inorganic perovskites: guanidinium-BX3 substituted by B=(Sr2+, Ca2+, Mg2+, Be2+) and X=(Cl-, F-). in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:48-48.
https://hdl.handle.net/21.15107/rcub_vinar_13148 .
Jovanović, Dušica, Zagorac, Dejan, Schön, Christian J., Matović, Branko, Zarubica, Aleksandra, Zagorac, Jelena, "DFT study of new hybrid organic-inorganic perovskites: guanidinium-BX3 substituted by B=(Sr2+, Ca2+, Mg2+, Be2+) and X=(Cl-, F-)" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):48-48,
https://hdl.handle.net/21.15107/rcub_vinar_13148 .

Boron nitride nanotubes versus carbon nanotubes: A thermal stability and oxidation behavior study

Kostoglou, Nikolaos; Tampaxis, Christos; Charalambopoulou, Georgia; Constantinides, Georgios; Ryzhkov, Vladislav; Doumanidis, Charalabos; Matović, Branko; Mitterer, Christian; Rebholz, Claus

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Kostoglou, Nikolaos
AU  - Tampaxis, Christos
AU  - Charalambopoulou, Georgia
AU  - Constantinides, Georgios
AU  - Ryzhkov, Vladislav
AU  - Doumanidis, Charalabos
AU  - Matović, Branko
AU  - Mitterer, Christian
AU  - Rebholz, Claus
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13151
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Boron nitride nanotubes versus carbon nanotubes: A thermal stability and oxidation behavior study
SP  - 52
EP  - 52
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13151
ER  - 
@conference{
author = "Kostoglou, Nikolaos and Tampaxis, Christos and Charalambopoulou, Georgia and Constantinides, Georgios and Ryzhkov, Vladislav and Doumanidis, Charalabos and Matović, Branko and Mitterer, Christian and Rebholz, Claus",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Boron nitride nanotubes versus carbon nanotubes: A thermal stability and oxidation behavior study",
pages = "52-52",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13151"
}
Kostoglou, N., Tampaxis, C., Charalambopoulou, G., Constantinides, G., Ryzhkov, V., Doumanidis, C., Matović, B., Mitterer, C.,& Rebholz, C.. (2024). Boron nitride nanotubes versus carbon nanotubes: A thermal stability and oxidation behavior study. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 52-52.
https://hdl.handle.net/21.15107/rcub_vinar_13151
Kostoglou N, Tampaxis C, Charalambopoulou G, Constantinides G, Ryzhkov V, Doumanidis C, Matović B, Mitterer C, Rebholz C. Boron nitride nanotubes versus carbon nanotubes: A thermal stability and oxidation behavior study. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:52-52.
https://hdl.handle.net/21.15107/rcub_vinar_13151 .
Kostoglou, Nikolaos, Tampaxis, Christos, Charalambopoulou, Georgia, Constantinides, Georgios, Ryzhkov, Vladislav, Doumanidis, Charalabos, Matović, Branko, Mitterer, Christian, Rebholz, Claus, "Boron nitride nanotubes versus carbon nanotubes: A thermal stability and oxidation behavior study" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):52-52,
https://hdl.handle.net/21.15107/rcub_vinar_13151 .

Purity and surface area: Key factors on thermal stability and oxidation resistance of BN nanoplatelets

Kostoglou, Nikolaos; Stock, Sebastian; Solom, Angelos; Holzapfel, Damian; Hinder, Steven; Baker, Mark; Constantinides, Georgios; Ryzhkov, Vladislav; Maletaškić, Jelena; Matović, Branko; Schneider, Jochen; Rebholz, Claus; Mitterer, Christian

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Kostoglou, Nikolaos
AU  - Stock, Sebastian
AU  - Solom, Angelos
AU  - Holzapfel, Damian
AU  - Hinder, Steven
AU  - Baker, Mark
AU  - Constantinides, Georgios
AU  - Ryzhkov, Vladislav
AU  - Maletaškić, Jelena
AU  - Matović, Branko
AU  - Schneider, Jochen
AU  - Rebholz, Claus
AU  - Mitterer, Christian
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13152
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Purity and surface area: Key factors on thermal stability and oxidation resistance of BN nanoplatelets
SP  - 53
EP  - 53
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13152
ER  - 
@conference{
author = "Kostoglou, Nikolaos and Stock, Sebastian and Solom, Angelos and Holzapfel, Damian and Hinder, Steven and Baker, Mark and Constantinides, Georgios and Ryzhkov, Vladislav and Maletaškić, Jelena and Matović, Branko and Schneider, Jochen and Rebholz, Claus and Mitterer, Christian",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Purity and surface area: Key factors on thermal stability and oxidation resistance of BN nanoplatelets",
pages = "53-53",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13152"
}
Kostoglou, N., Stock, S., Solom, A., Holzapfel, D., Hinder, S., Baker, M., Constantinides, G., Ryzhkov, V., Maletaškić, J., Matović, B., Schneider, J., Rebholz, C.,& Mitterer, C.. (2024). Purity and surface area: Key factors on thermal stability and oxidation resistance of BN nanoplatelets. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 53-53.
https://hdl.handle.net/21.15107/rcub_vinar_13152
Kostoglou N, Stock S, Solom A, Holzapfel D, Hinder S, Baker M, Constantinides G, Ryzhkov V, Maletaškić J, Matović B, Schneider J, Rebholz C, Mitterer C. Purity and surface area: Key factors on thermal stability and oxidation resistance of BN nanoplatelets. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:53-53.
https://hdl.handle.net/21.15107/rcub_vinar_13152 .
Kostoglou, Nikolaos, Stock, Sebastian, Solom, Angelos, Holzapfel, Damian, Hinder, Steven, Baker, Mark, Constantinides, Georgios, Ryzhkov, Vladislav, Maletaškić, Jelena, Matović, Branko, Schneider, Jochen, Rebholz, Claus, Mitterer, Christian, "Purity and surface area: Key factors on thermal stability and oxidation resistance of BN nanoplatelets" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):53-53,
https://hdl.handle.net/21.15107/rcub_vinar_13152 .

Multicomponent solid solution with pyrochlore structure

Matović, Branko; Maletaškić, Jelena; Maksimović, Vesna; Dimitrijević, Stevan P.; Todorović, Bratislav; Pejić, Milan; Zagorac, Dejan; Zagorac, Jelena B.; Zeng, Yu-Ping; Cvijović-Alagić, Ivana

(2023)

TY  - JOUR
AU  - Matović, Branko
AU  - Maletaškić, Jelena
AU  - Maksimović, Vesna
AU  - Dimitrijević, Stevan P.
AU  - Todorović, Bratislav
AU  - Pejić, Milan
AU  - Zagorac, Dejan
AU  - Zagorac, Jelena B.
AU  - Zeng, Yu-Ping
AU  - Cvijović-Alagić, Ivana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10697
AB  - Multicomponent oxide with pyrochlore structure (A2B2O7), containing 7 different A-site cations and 3 B-site cations in equiatomic amounts, was synthesized. Powders with nominal composition (La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 were fabricated through a reaction of metal nitrates (A-site) and metal chlorides (B-site) with sodium hydroxide during the solid state displacement reaction. Room temperature synthesis initially resulted in the obtainment of amorphous powders, which crystallized after subsequent calcination to form single crystalline compounds. Crystalline high-entropy ceramic powders formation took place at temperatures as low as 750 °C. During calcination, defective fluorite (F-A2B2O7) and crystal pyrochlore (Py-A2B2O7) structures coexist. A large number of cations induce the obtainment of stable high-entropy pyrochlores. Results showed that sintering at 1650 °C lead to pure crystalline single-phase pyrochlore formation. High-density ceramic, free of additives, was obtained after powders were compacted and subjected to pressureless sintering at 1650 °C. Multicomponent pyrochlore structure was investigated using the theoretical and experimental multi-methodological approach.
T2  - Boletin de la Sociedad Espanola de Ceramica y Vidrio
T1  - Multicomponent solid solution with pyrochlore structure
T1  - Solución sólida multicomponente con estructura de pirocloro
VL  - 62
IS  - 6
SP  - 515
EP  - 526
DO  - 10.1016/j.bsecv.2023.01.005
ER  - 
@article{
author = "Matović, Branko and Maletaškić, Jelena and Maksimović, Vesna and Dimitrijević, Stevan P. and Todorović, Bratislav and Pejić, Milan and Zagorac, Dejan and Zagorac, Jelena B. and Zeng, Yu-Ping and Cvijović-Alagić, Ivana",
year = "2023",
abstract = "Multicomponent oxide with pyrochlore structure (A2B2O7), containing 7 different A-site cations and 3 B-site cations in equiatomic amounts, was synthesized. Powders with nominal composition (La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 were fabricated through a reaction of metal nitrates (A-site) and metal chlorides (B-site) with sodium hydroxide during the solid state displacement reaction. Room temperature synthesis initially resulted in the obtainment of amorphous powders, which crystallized after subsequent calcination to form single crystalline compounds. Crystalline high-entropy ceramic powders formation took place at temperatures as low as 750 °C. During calcination, defective fluorite (F-A2B2O7) and crystal pyrochlore (Py-A2B2O7) structures coexist. A large number of cations induce the obtainment of stable high-entropy pyrochlores. Results showed that sintering at 1650 °C lead to pure crystalline single-phase pyrochlore formation. High-density ceramic, free of additives, was obtained after powders were compacted and subjected to pressureless sintering at 1650 °C. Multicomponent pyrochlore structure was investigated using the theoretical and experimental multi-methodological approach.",
journal = "Boletin de la Sociedad Espanola de Ceramica y Vidrio",
title = "Multicomponent solid solution with pyrochlore structure, Solución sólida multicomponente con estructura de pirocloro",
volume = "62",
number = "6",
pages = "515-526",
doi = "10.1016/j.bsecv.2023.01.005"
}
Matović, B., Maletaškić, J., Maksimović, V., Dimitrijević, S. P., Todorović, B., Pejić, M., Zagorac, D., Zagorac, J. B., Zeng, Y.,& Cvijović-Alagić, I.. (2023). Multicomponent solid solution with pyrochlore structure. in Boletin de la Sociedad Espanola de Ceramica y Vidrio, 62(6), 515-526.
https://doi.org/10.1016/j.bsecv.2023.01.005
Matović B, Maletaškić J, Maksimović V, Dimitrijević SP, Todorović B, Pejić M, Zagorac D, Zagorac JB, Zeng Y, Cvijović-Alagić I. Multicomponent solid solution with pyrochlore structure. in Boletin de la Sociedad Espanola de Ceramica y Vidrio. 2023;62(6):515-526.
doi:10.1016/j.bsecv.2023.01.005 .
Matović, Branko, Maletaškić, Jelena, Maksimović, Vesna, Dimitrijević, Stevan P., Todorović, Bratislav, Pejić, Milan, Zagorac, Dejan, Zagorac, Jelena B., Zeng, Yu-Ping, Cvijović-Alagić, Ivana, "Multicomponent solid solution with pyrochlore structure" in Boletin de la Sociedad Espanola de Ceramica y Vidrio, 62, no. 6 (2023):515-526,
https://doi.org/10.1016/j.bsecv.2023.01.005 . .
1

Novel basalt-stainless steel composite materials with improved fracture toughness

Pavkov, Vladimir; Bakić, Gordana; Maksimović, Vesna; Cvijović-Alagić, Ivana; Bučevac, Dušan; Matović, Branko

(2023)

TY  - JOUR
AU  - Pavkov, Vladimir
AU  - Bakić, Gordana
AU  - Maksimović, Vesna
AU  - Cvijović-Alagić, Ivana
AU  - Bučevac, Dušan
AU  - Matović, Branko
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11323
AB  - This paper presents the technological process for obtaining basalt-stainless steel composite materials and testing their physical and mechanical properties. The phases of the technological process consist of: milling, homogenization, pressing, and sintering to obtain composite materials with improved fracture toughness. Andesite basalt from the deposit site "Donje Jarinje", Serbia, was used as a matrix in the composites, while commercial austenitic stainless steel 316L in the amount of 0-30 wt.% was used as a reinforcement. Although the increase of 316L amount caused a continuous decrease in the relative density of sintered samples, the relative density of sample containing 30 wt.% of 316L was above 94%. The 316L grains, which possess a larger coefficient of thermal expansion than the basalt matrix, shrinking faster during cooling from sintering temperature resulting in the formation of compressive residual stress in the basalt matrix surrounding the spherical steel grains. The presence of this stress activated toughening mechanisms such as crack deflection and toughening due to compressive residual stress. The addition of 20 wt.% of reinforcing 316L particles increased the fracture toughness of basalt by more than 30%. The relative density of these samples was measured to be 97%, whereas macrohardness was found to be 6.2 GPa.
T2  - Science of Sintering
T1  - Novel basalt-stainless steel composite materials with improved fracture toughness
VL  - 55
IS  - 2
SP  - 145
EP  - 158
DO  - 10.2298/SOS220429002P
ER  - 
@article{
author = "Pavkov, Vladimir and Bakić, Gordana and Maksimović, Vesna and Cvijović-Alagić, Ivana and Bučevac, Dušan and Matović, Branko",
year = "2023",
abstract = "This paper presents the technological process for obtaining basalt-stainless steel composite materials and testing their physical and mechanical properties. The phases of the technological process consist of: milling, homogenization, pressing, and sintering to obtain composite materials with improved fracture toughness. Andesite basalt from the deposit site "Donje Jarinje", Serbia, was used as a matrix in the composites, while commercial austenitic stainless steel 316L in the amount of 0-30 wt.% was used as a reinforcement. Although the increase of 316L amount caused a continuous decrease in the relative density of sintered samples, the relative density of sample containing 30 wt.% of 316L was above 94%. The 316L grains, which possess a larger coefficient of thermal expansion than the basalt matrix, shrinking faster during cooling from sintering temperature resulting in the formation of compressive residual stress in the basalt matrix surrounding the spherical steel grains. The presence of this stress activated toughening mechanisms such as crack deflection and toughening due to compressive residual stress. The addition of 20 wt.% of reinforcing 316L particles increased the fracture toughness of basalt by more than 30%. The relative density of these samples was measured to be 97%, whereas macrohardness was found to be 6.2 GPa.",
journal = "Science of Sintering",
title = "Novel basalt-stainless steel composite materials with improved fracture toughness",
volume = "55",
number = "2",
pages = "145-158",
doi = "10.2298/SOS220429002P"
}
Pavkov, V., Bakić, G., Maksimović, V., Cvijović-Alagić, I., Bučevac, D.,& Matović, B.. (2023). Novel basalt-stainless steel composite materials with improved fracture toughness. in Science of Sintering, 55(2), 145-158.
https://doi.org/10.2298/SOS220429002P
Pavkov V, Bakić G, Maksimović V, Cvijović-Alagić I, Bučevac D, Matović B. Novel basalt-stainless steel composite materials with improved fracture toughness. in Science of Sintering. 2023;55(2):145-158.
doi:10.2298/SOS220429002P .
Pavkov, Vladimir, Bakić, Gordana, Maksimović, Vesna, Cvijović-Alagić, Ivana, Bučevac, Dušan, Matović, Branko, "Novel basalt-stainless steel composite materials with improved fracture toughness" in Science of Sintering, 55, no. 2 (2023):145-158,
https://doi.org/10.2298/SOS220429002P . .

Heavily doped high-entropy A2B2O7 pyrochlore

Matović, Branko; Maletaškić, Jelena; Maksimović, Vesna; Zagorac, Jelena; Luković, Aleksa; Zeng, Yu-Ping; Cvijović-Alagić, Ivana

(2023)

TY  - JOUR
AU  - Matović, Branko
AU  - Maletaškić, Jelena
AU  - Maksimović, Vesna
AU  - Zagorac, Jelena
AU  - Luković, Aleksa
AU  - Zeng, Yu-Ping
AU  - Cvijović-Alagić, Ivana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11324
AB  - A novel class of high-entropy pyrochlore compounds with multiple elements at the A and B site positions (A2B2O7) was successfully obtained. Powders with (La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 nominal composition were fabricated from pure metal oxides obtained through a reaction of metal nitrates (for site A) and metal chlorides (for site B) with sodium hydroxide during the solid-state displacement reaction (SSDR). The phase evolution was analyzed using XRD method. During the thermal treatment of ten individual metal oxides, the single pyrochlore phase was created. The present study showed that the highdensity (98%TD) ceramics with a hardness of 8.1GPa was successfully obtained after pressureless sintering at 1650 °C for 4 h. Results of the Raman study and the Rietveld structural refinement showed that sintered highentropy ceramics is characterized by a single-phase pyrochlore structure, which was investigated in detail.
T2  - Processing and Application of Ceramics
T1  - Heavily doped high-entropy A2B2O7 pyrochlore
VL  - 17
IS  - 2
SP  - 113
EP  - 117
DO  - 10.2298/PAC2302113M
ER  - 
@article{
author = "Matović, Branko and Maletaškić, Jelena and Maksimović, Vesna and Zagorac, Jelena and Luković, Aleksa and Zeng, Yu-Ping and Cvijović-Alagić, Ivana",
year = "2023",
abstract = "A novel class of high-entropy pyrochlore compounds with multiple elements at the A and B site positions (A2B2O7) was successfully obtained. Powders with (La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 nominal composition were fabricated from pure metal oxides obtained through a reaction of metal nitrates (for site A) and metal chlorides (for site B) with sodium hydroxide during the solid-state displacement reaction (SSDR). The phase evolution was analyzed using XRD method. During the thermal treatment of ten individual metal oxides, the single pyrochlore phase was created. The present study showed that the highdensity (98%TD) ceramics with a hardness of 8.1GPa was successfully obtained after pressureless sintering at 1650 °C for 4 h. Results of the Raman study and the Rietveld structural refinement showed that sintered highentropy ceramics is characterized by a single-phase pyrochlore structure, which was investigated in detail.",
journal = "Processing and Application of Ceramics",
title = "Heavily doped high-entropy A2B2O7 pyrochlore",
volume = "17",
number = "2",
pages = "113-117",
doi = "10.2298/PAC2302113M"
}
Matović, B., Maletaškić, J., Maksimović, V., Zagorac, J., Luković, A., Zeng, Y.,& Cvijović-Alagić, I.. (2023). Heavily doped high-entropy A2B2O7 pyrochlore. in Processing and Application of Ceramics, 17(2), 113-117.
https://doi.org/10.2298/PAC2302113M
Matović B, Maletaškić J, Maksimović V, Zagorac J, Luković A, Zeng Y, Cvijović-Alagić I. Heavily doped high-entropy A2B2O7 pyrochlore. in Processing and Application of Ceramics. 2023;17(2):113-117.
doi:10.2298/PAC2302113M .
Matović, Branko, Maletaškić, Jelena, Maksimović, Vesna, Zagorac, Jelena, Luković, Aleksa, Zeng, Yu-Ping, Cvijović-Alagić, Ivana, "Heavily doped high-entropy A2B2O7 pyrochlore" in Processing and Application of Ceramics, 17, no. 2 (2023):113-117,
https://doi.org/10.2298/PAC2302113M . .

High-Density Glass-Ceramic Materials Obtained by Powder Metallurgy

Pavkov, Vladimir; Bakić, Gordana; Maksimović, Vesna; Cvijović-Alagić, Ivana; Prekajski-Đorđević, Marija D.; Bučevac, Dušan; Matović, Branko; Rakin, Marko

(Belgrade : Association of Metallurgical Engineers of Serbia (AMES), 2023)

TY  - CONF
AU  - Pavkov, Vladimir
AU  - Bakić, Gordana
AU  - Maksimović, Vesna
AU  - Cvijović-Alagić, Ivana
AU  - Prekajski-Đorđević, Marija D.
AU  - Bučevac, Dušan
AU  - Matović, Branko
AU  - Rakin, Marko
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11345
AB  - In modern industry, there is an increasing demand for environmentally friendly and light structural materials with good physical and mechanical properties, produced from cheap natural raw materials available in large quantities. One of the materials that meet the mentioned criteria is basalt. Basalt is a natural igneous rock of volcanic origin, created by the pouring of magma on the Earth's surface, the amount of which is significant in the territory of Serbia. Since basalt does not exhibit toxic, carcinogenic, or mutagenic effects, it is in the true sense a non-hazardous material and belongs to the group of eco-friendly materials. In this research, andesite basalt aggregate from the "Donje Jarinje" site, in Serbia, was used to obtain high-density glass-ceramic materials. High-density glass-ceramic materials were obtained by powder metallurgy process, which consisted of the following methods: dry grinding, homogenization, cold uniaxial and isostatic powder pressing and sintering in the air. In order to achieve a high-density of the materials, the green compacts were sintered in the temperature range from 1040 to 1080 °C. After confirming that the highest density materials were achieved at the sintering temperature of 1060 °C, the sintering time was optimized in the time interval from 30 to 240 min. After the experimental test, the optimal sintering parameters for obtaining high-density glass-ceramic material at the temperature of 1060 °C for 60 min were achieved, whose relative density is 99.50%, and hardness is 6.70 GPa. The characterization of andesite basalt powder was performed using the laser light diffraction method, scanning electron microscopy and X-ray diffraction method, while the characterization of sintered glass-ceramic materials was performed using the Archimedes method, X-ray diffraction method, optical light microscopy and Vickers hardness test. The results of this research confirmed that by applying powder metallurgy and sintering in the air, high-density glass-ceramic materials could be obtained for various industrial applications in the civil engineering, chemical and food industries, as well as for the making of containers for the storage of nuclear waste. Also, high-density glass-ceramic materials would be suitable for making a matrix in modern composite materials.
PB  - Belgrade : Association of Metallurgical Engineers of Serbia (AMES)
C3  - MME SEE : 5th Metallurgical & Materials Engineering Congress of South-East Europe, June 7-10, 2023; Trebinje, Bosnia and Herzegovina
T1  - High-Density Glass-Ceramic Materials Obtained by Powder Metallurgy
SP  - 48
EP  - 48
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11345
ER  - 
@conference{
author = "Pavkov, Vladimir and Bakić, Gordana and Maksimović, Vesna and Cvijović-Alagić, Ivana and Prekajski-Đorđević, Marija D. and Bučevac, Dušan and Matović, Branko and Rakin, Marko",
year = "2023",
abstract = "In modern industry, there is an increasing demand for environmentally friendly and light structural materials with good physical and mechanical properties, produced from cheap natural raw materials available in large quantities. One of the materials that meet the mentioned criteria is basalt. Basalt is a natural igneous rock of volcanic origin, created by the pouring of magma on the Earth's surface, the amount of which is significant in the territory of Serbia. Since basalt does not exhibit toxic, carcinogenic, or mutagenic effects, it is in the true sense a non-hazardous material and belongs to the group of eco-friendly materials. In this research, andesite basalt aggregate from the "Donje Jarinje" site, in Serbia, was used to obtain high-density glass-ceramic materials. High-density glass-ceramic materials were obtained by powder metallurgy process, which consisted of the following methods: dry grinding, homogenization, cold uniaxial and isostatic powder pressing and sintering in the air. In order to achieve a high-density of the materials, the green compacts were sintered in the temperature range from 1040 to 1080 °C. After confirming that the highest density materials were achieved at the sintering temperature of 1060 °C, the sintering time was optimized in the time interval from 30 to 240 min. After the experimental test, the optimal sintering parameters for obtaining high-density glass-ceramic material at the temperature of 1060 °C for 60 min were achieved, whose relative density is 99.50%, and hardness is 6.70 GPa. The characterization of andesite basalt powder was performed using the laser light diffraction method, scanning electron microscopy and X-ray diffraction method, while the characterization of sintered glass-ceramic materials was performed using the Archimedes method, X-ray diffraction method, optical light microscopy and Vickers hardness test. The results of this research confirmed that by applying powder metallurgy and sintering in the air, high-density glass-ceramic materials could be obtained for various industrial applications in the civil engineering, chemical and food industries, as well as for the making of containers for the storage of nuclear waste. Also, high-density glass-ceramic materials would be suitable for making a matrix in modern composite materials.",
publisher = "Belgrade : Association of Metallurgical Engineers of Serbia (AMES)",
journal = "MME SEE : 5th Metallurgical & Materials Engineering Congress of South-East Europe, June 7-10, 2023; Trebinje, Bosnia and Herzegovina",
title = "High-Density Glass-Ceramic Materials Obtained by Powder Metallurgy",
pages = "48-48",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11345"
}
Pavkov, V., Bakić, G., Maksimović, V., Cvijović-Alagić, I., Prekajski-Đorđević, M. D., Bučevac, D., Matović, B.,& Rakin, M.. (2023). High-Density Glass-Ceramic Materials Obtained by Powder Metallurgy. in MME SEE : 5th Metallurgical & Materials Engineering Congress of South-East Europe, June 7-10, 2023; Trebinje, Bosnia and Herzegovina
Belgrade : Association of Metallurgical Engineers of Serbia (AMES)., 48-48.
https://hdl.handle.net/21.15107/rcub_vinar_11345
Pavkov V, Bakić G, Maksimović V, Cvijović-Alagić I, Prekajski-Đorđević MD, Bučevac D, Matović B, Rakin M. High-Density Glass-Ceramic Materials Obtained by Powder Metallurgy. in MME SEE : 5th Metallurgical & Materials Engineering Congress of South-East Europe, June 7-10, 2023; Trebinje, Bosnia and Herzegovina. 2023;:48-48.
https://hdl.handle.net/21.15107/rcub_vinar_11345 .
Pavkov, Vladimir, Bakić, Gordana, Maksimović, Vesna, Cvijović-Alagić, Ivana, Prekajski-Đorđević, Marija D., Bučevac, Dušan, Matović, Branko, Rakin, Marko, "High-Density Glass-Ceramic Materials Obtained by Powder Metallurgy" in MME SEE : 5th Metallurgical & Materials Engineering Congress of South-East Europe, June 7-10, 2023; Trebinje, Bosnia and Herzegovina (2023):48-48,
https://hdl.handle.net/21.15107/rcub_vinar_11345 .

Characterization of High-Entropy A2B2O7 Pyrochlore Obtained via Combustion Synthesis and Post-Calcination

Matović, Branko; Maletaškić, Jelena; Maksimović, Vesna; Dimitrijević, Silvana; Todorović, Branislav; Zagorac, Jelena; Zeng, Yu-Ping; Cvijović-Alagić, Ivana

(Belgrade : Institute for Multidisciplinary Research, University of Belgrade, 2023)

TY  - CONF
AU  - Matović, Branko
AU  - Maletaškić, Jelena
AU  - Maksimović, Vesna
AU  - Dimitrijević, Silvana
AU  - Todorović, Branislav
AU  - Zagorac, Jelena
AU  - Zeng, Yu-Ping
AU  - Cvijović-Alagić, Ivana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11346
AB  - The goal of this research was to obtain a chemically complex multicomponent
oxide with the A2B2O7 pyrochlore structure with nominal composition
(La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 that contains 10 different
cations in equiatomic amounts which was obtained by reacting metal nitrates (site
A) and metal chlorides (site B) with glycine during the combustion reaction. The
powder synthesized initially was found to be amorphous based on XRD analysis. To
convert the powder into a crystalline pyrochlore structure, the powder underwent
post-calcination at various temperatures ranging from 600–1500 °C. It was
discovered that the desired monophase pyrochlore structure (A2B2O7) was obtained
after calcination at 900 °C. To create a high-density ceramic pellet, the powder
calcined at 900 °C was subjected to pressureless sintering at 1650 °C for four hours
in the presence of air. The resulting pellet had a density of 97% of the theoretical
density and was free from any additives. This process likely caused the powder
particles to fuse together, creating a solid, dense pellet.
PB  - Belgrade : Institute for Multidisciplinary Research, University of Belgrade
C3  - 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts
T1  - Characterization of High-Entropy A2B2O7 Pyrochlore Obtained via Combustion Synthesis and Post-Calcination
SP  - 84
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11346
ER  - 
@conference{
author = "Matović, Branko and Maletaškić, Jelena and Maksimović, Vesna and Dimitrijević, Silvana and Todorović, Branislav and Zagorac, Jelena and Zeng, Yu-Ping and Cvijović-Alagić, Ivana",
year = "2023",
abstract = "The goal of this research was to obtain a chemically complex multicomponent
oxide with the A2B2O7 pyrochlore structure with nominal composition
(La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 that contains 10 different
cations in equiatomic amounts which was obtained by reacting metal nitrates (site
A) and metal chlorides (site B) with glycine during the combustion reaction. The
powder synthesized initially was found to be amorphous based on XRD analysis. To
convert the powder into a crystalline pyrochlore structure, the powder underwent
post-calcination at various temperatures ranging from 600–1500 °C. It was
discovered that the desired monophase pyrochlore structure (A2B2O7) was obtained
after calcination at 900 °C. To create a high-density ceramic pellet, the powder
calcined at 900 °C was subjected to pressureless sintering at 1650 °C for four hours
in the presence of air. The resulting pellet had a density of 97% of the theoretical
density and was free from any additives. This process likely caused the powder
particles to fuse together, creating a solid, dense pellet.",
publisher = "Belgrade : Institute for Multidisciplinary Research, University of Belgrade",
journal = "7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts",
title = "Characterization of High-Entropy A2B2O7 Pyrochlore Obtained via Combustion Synthesis and Post-Calcination",
pages = "84",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11346"
}
Matović, B., Maletaškić, J., Maksimović, V., Dimitrijević, S., Todorović, B., Zagorac, J., Zeng, Y.,& Cvijović-Alagić, I.. (2023). Characterization of High-Entropy A2B2O7 Pyrochlore Obtained via Combustion Synthesis and Post-Calcination. in 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts
Belgrade : Institute for Multidisciplinary Research, University of Belgrade., 84.
https://hdl.handle.net/21.15107/rcub_vinar_11346
Matović B, Maletaškić J, Maksimović V, Dimitrijević S, Todorović B, Zagorac J, Zeng Y, Cvijović-Alagić I. Characterization of High-Entropy A2B2O7 Pyrochlore Obtained via Combustion Synthesis and Post-Calcination. in 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts. 2023;:84.
https://hdl.handle.net/21.15107/rcub_vinar_11346 .
Matović, Branko, Maletaškić, Jelena, Maksimović, Vesna, Dimitrijević, Silvana, Todorović, Branislav, Zagorac, Jelena, Zeng, Yu-Ping, Cvijović-Alagić, Ivana, "Characterization of High-Entropy A2B2O7 Pyrochlore Obtained via Combustion Synthesis and Post-Calcination" in 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts (2023):84,
https://hdl.handle.net/21.15107/rcub_vinar_11346 .

Andesite Basalt as a Natural Raw Material for Obtaining Glass-Ceramics

Pavkov, Vladimir; Bakić, Gordana; Maksimović, Vesna; Bučevac, Dušan; Prekajski-Đorđević, Marija D.; Cvijović-Alagić, Ivana; Matović, Branko

(Belgrade : Institute for Multidisciplinary Research, University of Belgrade, 2023)

TY  - CONF
AU  - Pavkov, Vladimir
AU  - Bakić, Gordana
AU  - Maksimović, Vesna
AU  - Bučevac, Dušan
AU  - Prekajski-Đorđević, Marija D.
AU  - Cvijović-Alagić, Ivana
AU  - Matović, Branko
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11347
AB  - The industrial requirements in the 21st century are environmentally friendly and light construction materials with good physical-mechanical properties manufactured from cheap natural raw materials available in large quantities. One of these materials is basalt. Basalt is a natural igneous rock of volcanic origin, with a significant amount in Serbia. Basalt belongs to the group of non-hazardous and eco-friendly materials. Andesite basalt aggregate from the "Donje Jarinje" site, Serbia, was used as the starting natural raw material for obtaining the glass-ceramic material. The aggregate is from 2 to 5 mm in size. The aggregate was milled in the tungsten-carbide vibrating cup mill for 30 min to obtain a fine powder for synthesis. The homogenization of andesite basalt powder and binder was carried out in the mortar and pestle for 10 min. The paraplast was used as a binder with a content of 0.6 wt.%. After that, uniaxial pressing of the powder at a pressure of 50 MPa was performed. A forming green compact, cold isostatic pressing was performed with a pressure of 230 MPa to increase its density. The sintering was carried out at the temperature of 1060 °C for 60 min in the air. The sintered glass-ceramic sample was a relative density of 99.5%, a macrohardness of 6.7 GPa and a fracture toughness of 2.2 MPa·m1/2 [1]. The andesite basalt powder was characterized using the laser light diffraction method, X-ray diffraction method and scanning electron microscopy. Sintered glassceramic material was characterized using the X-ray diffraction method, Archimedes principle, scanning electron and optical light microscopy and the Vickers hardness test. The glass-ceramic material obtained by sintering andesite basalt powder could be used for various industrial applications in the civil engineering, mechanical, chemical, and petrochemical industries, as well as for the making of containers to store nuclear waste.
PB  - Belgrade : Institute for Multidisciplinary Research, University of Belgrade
C3  - 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts
T1  - Andesite Basalt as a Natural Raw Material for Obtaining Glass-Ceramics
SP  - 87
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11347
ER  - 
@conference{
author = "Pavkov, Vladimir and Bakić, Gordana and Maksimović, Vesna and Bučevac, Dušan and Prekajski-Đorđević, Marija D. and Cvijović-Alagić, Ivana and Matović, Branko",
year = "2023",
abstract = "The industrial requirements in the 21st century are environmentally friendly and light construction materials with good physical-mechanical properties manufactured from cheap natural raw materials available in large quantities. One of these materials is basalt. Basalt is a natural igneous rock of volcanic origin, with a significant amount in Serbia. Basalt belongs to the group of non-hazardous and eco-friendly materials. Andesite basalt aggregate from the "Donje Jarinje" site, Serbia, was used as the starting natural raw material for obtaining the glass-ceramic material. The aggregate is from 2 to 5 mm in size. The aggregate was milled in the tungsten-carbide vibrating cup mill for 30 min to obtain a fine powder for synthesis. The homogenization of andesite basalt powder and binder was carried out in the mortar and pestle for 10 min. The paraplast was used as a binder with a content of 0.6 wt.%. After that, uniaxial pressing of the powder at a pressure of 50 MPa was performed. A forming green compact, cold isostatic pressing was performed with a pressure of 230 MPa to increase its density. The sintering was carried out at the temperature of 1060 °C for 60 min in the air. The sintered glass-ceramic sample was a relative density of 99.5%, a macrohardness of 6.7 GPa and a fracture toughness of 2.2 MPa·m1/2 [1]. The andesite basalt powder was characterized using the laser light diffraction method, X-ray diffraction method and scanning electron microscopy. Sintered glassceramic material was characterized using the X-ray diffraction method, Archimedes principle, scanning electron and optical light microscopy and the Vickers hardness test. The glass-ceramic material obtained by sintering andesite basalt powder could be used for various industrial applications in the civil engineering, mechanical, chemical, and petrochemical industries, as well as for the making of containers to store nuclear waste.",
publisher = "Belgrade : Institute for Multidisciplinary Research, University of Belgrade",
journal = "7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts",
title = "Andesite Basalt as a Natural Raw Material for Obtaining Glass-Ceramics",
pages = "87",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11347"
}
Pavkov, V., Bakić, G., Maksimović, V., Bučevac, D., Prekajski-Đorđević, M. D., Cvijović-Alagić, I.,& Matović, B.. (2023). Andesite Basalt as a Natural Raw Material for Obtaining Glass-Ceramics. in 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts
Belgrade : Institute for Multidisciplinary Research, University of Belgrade., 87.
https://hdl.handle.net/21.15107/rcub_vinar_11347
Pavkov V, Bakić G, Maksimović V, Bučevac D, Prekajski-Đorđević MD, Cvijović-Alagić I, Matović B. Andesite Basalt as a Natural Raw Material for Obtaining Glass-Ceramics. in 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts. 2023;:87.
https://hdl.handle.net/21.15107/rcub_vinar_11347 .
Pavkov, Vladimir, Bakić, Gordana, Maksimović, Vesna, Bučevac, Dušan, Prekajski-Đorđević, Marija D., Cvijović-Alagić, Ivana, Matović, Branko, "Andesite Basalt as a Natural Raw Material for Obtaining Glass-Ceramics" in 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts (2023):87,
https://hdl.handle.net/21.15107/rcub_vinar_11347 .