Glamočlija, Jasmina

Link to this page

Authority KeyName Variants
307d01f2-41d4-405e-8984-d32671a30d3e
  • Glamočlija, Jasmina (2)

Author's Bibliography

Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing

Zmejkoski, Danica; Spasojević, Dragica; Orlovska, Irina V.; Kozyrovska, Natalia O.; Soković, Marina; Glamočlija, Jasmina; Dmitrović, Svetlana; Matović, Branko; Tasić, Nikola B.; Maksimović, Vuk M.; Sosnin, Mikhail; Radotić, Ksenija

(2018)

TY  - JOUR
AU  - Zmejkoski, Danica
AU  - Spasojević, Dragica
AU  - Orlovska, Irina V.
AU  - Kozyrovska, Natalia O.
AU  - Soković, Marina
AU  - Glamočlija, Jasmina
AU  - Dmitrović, Svetlana
AU  - Matović, Branko
AU  - Tasić, Nikola B.
AU  - Maksimović, Vuk M.
AU  - Sosnin, Mikhail
AU  - Radotić, Ksenija
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7769
AB  - Lignins and lignin-derived compounds are known to have antibacterial properties. The wound healing agents in the form of dressings produce faster skin repair and decrease pain in patients. In order to create an efficient antimicrobial agent in the form of dressing in the treatment of chronic wounds, a composite hydrogel of bacterial cellulose (BC) and dehydrogenative polymer of coniferyl alcohol (DHP), BC-DHP, was designed. Novel composite showed inhibitory or bactericidal effects against selected pathogenic bacteria, including clinically isolated ones. The highest release rate of DHP was in the first hour, while after 24 h there was still slow release of small amounts of DHP from BC-DHP during 72 h monitoring. High-performance liquid chromatography coupled with mass-spectrometry showed that BC-DHP releases DHP oligomers, which are proposed to be antimicrobially active DHP fractions. Scanning electron microscopy and atomic force microscopy micrographs proved a dose-dependent interaction of DHP with BC, which resulted in a decrease of the pore number and size in the cellulose membrane. The Fourier-transform infrared absorption spectra of the BC-DHP showed that DHP was partly bound to the BC matrix. The swelling and crystallinity degree were dose-dependent. All obtained results confirmed BC-DHP composite as a promising hydrogel for wounds healing.
T2  - International Journal of Biological Macromolecules
T1  - Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing
VL  - 118
SP  - 494
EP  - 503
DO  - 10.1016/j.ijbiomac.2018.06.067
ER  - 
@article{
author = "Zmejkoski, Danica and Spasojević, Dragica and Orlovska, Irina V. and Kozyrovska, Natalia O. and Soković, Marina and Glamočlija, Jasmina and Dmitrović, Svetlana and Matović, Branko and Tasić, Nikola B. and Maksimović, Vuk M. and Sosnin, Mikhail and Radotić, Ksenija",
year = "2018",
abstract = "Lignins and lignin-derived compounds are known to have antibacterial properties. The wound healing agents in the form of dressings produce faster skin repair and decrease pain in patients. In order to create an efficient antimicrobial agent in the form of dressing in the treatment of chronic wounds, a composite hydrogel of bacterial cellulose (BC) and dehydrogenative polymer of coniferyl alcohol (DHP), BC-DHP, was designed. Novel composite showed inhibitory or bactericidal effects against selected pathogenic bacteria, including clinically isolated ones. The highest release rate of DHP was in the first hour, while after 24 h there was still slow release of small amounts of DHP from BC-DHP during 72 h monitoring. High-performance liquid chromatography coupled with mass-spectrometry showed that BC-DHP releases DHP oligomers, which are proposed to be antimicrobially active DHP fractions. Scanning electron microscopy and atomic force microscopy micrographs proved a dose-dependent interaction of DHP with BC, which resulted in a decrease of the pore number and size in the cellulose membrane. The Fourier-transform infrared absorption spectra of the BC-DHP showed that DHP was partly bound to the BC matrix. The swelling and crystallinity degree were dose-dependent. All obtained results confirmed BC-DHP composite as a promising hydrogel for wounds healing.",
journal = "International Journal of Biological Macromolecules",
title = "Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing",
volume = "118",
pages = "494-503",
doi = "10.1016/j.ijbiomac.2018.06.067"
}
Zmejkoski, D., Spasojević, D., Orlovska, I. V., Kozyrovska, N. O., Soković, M., Glamočlija, J., Dmitrović, S., Matović, B., Tasić, N. B., Maksimović, V. M., Sosnin, M.,& Radotić, K.. (2018). Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing. in International Journal of Biological Macromolecules, 118, 494-503.
https://doi.org/10.1016/j.ijbiomac.2018.06.067
Zmejkoski D, Spasojević D, Orlovska IV, Kozyrovska NO, Soković M, Glamočlija J, Dmitrović S, Matović B, Tasić NB, Maksimović VM, Sosnin M, Radotić K. Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing. in International Journal of Biological Macromolecules. 2018;118:494-503.
doi:10.1016/j.ijbiomac.2018.06.067 .
Zmejkoski, Danica, Spasojević, Dragica, Orlovska, Irina V., Kozyrovska, Natalia O., Soković, Marina, Glamočlija, Jasmina, Dmitrović, Svetlana, Matović, Branko, Tasić, Nikola B., Maksimović, Vuk M., Sosnin, Mikhail, Radotić, Ksenija, "Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing" in International Journal of Biological Macromolecules, 118 (2018):494-503,
https://doi.org/10.1016/j.ijbiomac.2018.06.067 . .
6
119
56
116

Lignin model compound in alginate hydrogel: a strong antimicrobial agent with high potential in wound treatment

Spasojević, Dragica; Zmejkoski, Danica; Glamočlija, Jasmina; Nikolić, Miloš M.; Soković, Marina; Milošević, Verica; Jarić, Ivana; Stojanović, Marijana; Marinković, Emilija; Barisani-Asenbauer, Talin; Prodanović, Radivoje; Jovanović, Miloš; Radotić, Ksenija

(2016)

TY  - JOUR
AU  - Spasojević, Dragica
AU  - Zmejkoski, Danica
AU  - Glamočlija, Jasmina
AU  - Nikolić, Miloš M.
AU  - Soković, Marina
AU  - Milošević, Verica
AU  - Jarić, Ivana
AU  - Stojanović, Marijana
AU  - Marinković, Emilija
AU  - Barisani-Asenbauer, Talin
AU  - Prodanović, Radivoje
AU  - Jovanović, Miloš
AU  - Radotić, Ksenija
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1336
AB  - Nowadays bacterial resistance to known antibiotics is a serious health problem. In order to achieve more efficient treatment, lately there is an effort to find new substances, such as certain biomaterials, that are non-toxic to humans with antibiotic potential. Lignins and lignin-derived compounds have been proposed to be good candidates for use in medicine and health maintenance. In this study, the antibacterial activity of the lignin model polymer dehydrogenate polymer (DHP) in alginate hydrogel (Alg) was studied. The obtained results show that DHP-Alg has strong antimicrobial activity against several bacterial strains and biofilms and does not have a toxic effect on human epithelial cells. These results strongly suggest its application as a wound healing agent or as an adjunct substance for wound treatments. (C) 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
T2  - International Journal of Antimicrobial Agents
T1  - Lignin model compound in alginate hydrogel: a strong antimicrobial agent with high potential in wound treatment
VL  - 48
IS  - 6
SP  - 732
EP  - 735
DO  - 10.1016/j.ijantimicag.2016.08.014
ER  - 
@article{
author = "Spasojević, Dragica and Zmejkoski, Danica and Glamočlija, Jasmina and Nikolić, Miloš M. and Soković, Marina and Milošević, Verica and Jarić, Ivana and Stojanović, Marijana and Marinković, Emilija and Barisani-Asenbauer, Talin and Prodanović, Radivoje and Jovanović, Miloš and Radotić, Ksenija",
year = "2016",
abstract = "Nowadays bacterial resistance to known antibiotics is a serious health problem. In order to achieve more efficient treatment, lately there is an effort to find new substances, such as certain biomaterials, that are non-toxic to humans with antibiotic potential. Lignins and lignin-derived compounds have been proposed to be good candidates for use in medicine and health maintenance. In this study, the antibacterial activity of the lignin model polymer dehydrogenate polymer (DHP) in alginate hydrogel (Alg) was studied. The obtained results show that DHP-Alg has strong antimicrobial activity against several bacterial strains and biofilms and does not have a toxic effect on human epithelial cells. These results strongly suggest its application as a wound healing agent or as an adjunct substance for wound treatments. (C) 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.",
journal = "International Journal of Antimicrobial Agents",
title = "Lignin model compound in alginate hydrogel: a strong antimicrobial agent with high potential in wound treatment",
volume = "48",
number = "6",
pages = "732-735",
doi = "10.1016/j.ijantimicag.2016.08.014"
}
Spasojević, D., Zmejkoski, D., Glamočlija, J., Nikolić, M. M., Soković, M., Milošević, V., Jarić, I., Stojanović, M., Marinković, E., Barisani-Asenbauer, T., Prodanović, R., Jovanović, M.,& Radotić, K.. (2016). Lignin model compound in alginate hydrogel: a strong antimicrobial agent with high potential in wound treatment. in International Journal of Antimicrobial Agents, 48(6), 732-735.
https://doi.org/10.1016/j.ijantimicag.2016.08.014
Spasojević D, Zmejkoski D, Glamočlija J, Nikolić MM, Soković M, Milošević V, Jarić I, Stojanović M, Marinković E, Barisani-Asenbauer T, Prodanović R, Jovanović M, Radotić K. Lignin model compound in alginate hydrogel: a strong antimicrobial agent with high potential in wound treatment. in International Journal of Antimicrobial Agents. 2016;48(6):732-735.
doi:10.1016/j.ijantimicag.2016.08.014 .
Spasojević, Dragica, Zmejkoski, Danica, Glamočlija, Jasmina, Nikolić, Miloš M., Soković, Marina, Milošević, Verica, Jarić, Ivana, Stojanović, Marijana, Marinković, Emilija, Barisani-Asenbauer, Talin, Prodanović, Radivoje, Jovanović, Miloš, Radotić, Ksenija, "Lignin model compound in alginate hydrogel: a strong antimicrobial agent with high potential in wound treatment" in International Journal of Antimicrobial Agents, 48, no. 6 (2016):732-735,
https://doi.org/10.1016/j.ijantimicag.2016.08.014 . .
3
44
21
40