Pizurova, Nadežda

Link to this page

Authority KeyName Variants
e3582ec9-fc0e-482b-847f-7c9de991b555
  • Pizurova, Nadežda (1)
Projects

Author's Bibliography

The glassy behaviour of poorly crystalline Fe2O3 nanorods obtained by thermal decomposition of ferrous oxalate

Perović, Marija M.; Kusigerski, Vladan; Mraković, Ana Đ.; Spasojević, Vojislav; Blanuša, Jovan; Nikolić, Violeta N.; Schneeweiss, Oldřich B.; David, B.; Pizurova, Nadežda

(2015)

TY  - JOUR
AU  - Perović, Marija M.
AU  - Kusigerski, Vladan
AU  - Mraković, Ana Đ.
AU  - Spasojević, Vojislav
AU  - Blanuša, Jovan
AU  - Nikolić, Violeta N.
AU  - Schneeweiss, Oldřich B.
AU  - David, B.
AU  - Pizurova, Nadežda
PY  - 2015
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/429
AB  - Nanorod ferrous oxalate dihydrate (FeC2O4 x 2H(2)O) which had been synthesized by the microemulsion method, was used as a precursor in the thermal decomposition process performed in air atmosphere. The formation of nanocrystalline hematite as the final product was preceded by the appearence of an intermediate product. Comprehensive study comprising several complementary techniques (x-ray diffraction, transmission electron microscopy, selected area electron diffraction, thermogravimetric/differential thermal analyses and SQUID magnetometry) confirmed that the intermediate product corresponds to the poorly crystalline Fe2O3. Due to the specific nanorod shape and poorly crystalline structure, the investigated Fe2O3 showed high coercive field value of similar to 0.5 T at 5 K. Special attention in this study was devoted to the peculiar magnetic properties of poorly crystalline Fe2O3, which were thoroughly investigated by employing sophisticated experimental procedures such as relaxation of thermoremanent magnetization for different cooling fields, zero field and field cooled memory effects as well as aging experiments for different waiting times. At low temperatures and weak applied magnetic fields, the investigated system behaves similarly to spin glasses, manifesting slow, collective relaxation dynamics of magnetic moments through memory, rejuvenation and aging effects.
T2  - Nanotechnology
T1  - The glassy behaviour of poorly crystalline Fe2O3 nanorods obtained by thermal decomposition of ferrous oxalate
VL  - 26
IS  - 11
DO  - 10.1088/0957-4484/26/11/115705
ER  - 
@article{
author = "Perović, Marija M. and Kusigerski, Vladan and Mraković, Ana Đ. and Spasojević, Vojislav and Blanuša, Jovan and Nikolić, Violeta N. and Schneeweiss, Oldřich B. and David, B. and Pizurova, Nadežda",
year = "2015",
abstract = "Nanorod ferrous oxalate dihydrate (FeC2O4 x 2H(2)O) which had been synthesized by the microemulsion method, was used as a precursor in the thermal decomposition process performed in air atmosphere. The formation of nanocrystalline hematite as the final product was preceded by the appearence of an intermediate product. Comprehensive study comprising several complementary techniques (x-ray diffraction, transmission electron microscopy, selected area electron diffraction, thermogravimetric/differential thermal analyses and SQUID magnetometry) confirmed that the intermediate product corresponds to the poorly crystalline Fe2O3. Due to the specific nanorod shape and poorly crystalline structure, the investigated Fe2O3 showed high coercive field value of similar to 0.5 T at 5 K. Special attention in this study was devoted to the peculiar magnetic properties of poorly crystalline Fe2O3, which were thoroughly investigated by employing sophisticated experimental procedures such as relaxation of thermoremanent magnetization for different cooling fields, zero field and field cooled memory effects as well as aging experiments for different waiting times. At low temperatures and weak applied magnetic fields, the investigated system behaves similarly to spin glasses, manifesting slow, collective relaxation dynamics of magnetic moments through memory, rejuvenation and aging effects.",
journal = "Nanotechnology",
title = "The glassy behaviour of poorly crystalline Fe2O3 nanorods obtained by thermal decomposition of ferrous oxalate",
volume = "26",
number = "11",
doi = "10.1088/0957-4484/26/11/115705"
}
Perović, M. M., Kusigerski, V., Mraković, A. Đ., Spasojević, V., Blanuša, J., Nikolić, V. N., Schneeweiss, O. B., David, B.,& Pizurova, N.. (2015). The glassy behaviour of poorly crystalline Fe2O3 nanorods obtained by thermal decomposition of ferrous oxalate. in Nanotechnology, 26(11).
https://doi.org/10.1088/0957-4484/26/11/115705
Perović MM, Kusigerski V, Mraković AĐ, Spasojević V, Blanuša J, Nikolić VN, Schneeweiss OB, David B, Pizurova N. The glassy behaviour of poorly crystalline Fe2O3 nanorods obtained by thermal decomposition of ferrous oxalate. in Nanotechnology. 2015;26(11).
doi:10.1088/0957-4484/26/11/115705 .
Perović, Marija M., Kusigerski, Vladan, Mraković, Ana Đ., Spasojević, Vojislav, Blanuša, Jovan, Nikolić, Violeta N., Schneeweiss, Oldřich B., David, B., Pizurova, Nadežda, "The glassy behaviour of poorly crystalline Fe2O3 nanorods obtained by thermal decomposition of ferrous oxalate" in Nanotechnology, 26, no. 11 (2015),
https://doi.org/10.1088/0957-4484/26/11/115705 . .
6
4
5