Nakamura, I

Link to this page

Authority KeyName Variants
d194f799-3fdc-44cc-8d07-74cef702129a
  • Nakamura, I (3)
  • Nakamura, T (1)
Projects
No records found.

Author's Bibliography

J-PARC-HI Collaboration

Ahn, J.K.; Akamatsu, Y; Asakawa, M; Ashikaga, S; Busch, O; Chiu, M; Chujo, T; Ćirković, Predrag; Csörgő, T; David, G; Devetak, Damir; Đorđević, Miloš; Esumi, S; Fujii, H; Fukushima, K; Garg, P; Gunji, T; Hachiya, T; Hamagaki, H; Harada, H.; Harada, M; Hasegawa, S; Hatsuda, T; Hirano, T; Hong, B; Hotchi, H; Hwang, Soonwook; Ichikawa, Y; Ichisawa, T; Imai, K; Inaba, M; Itakura, K; Kamiya, J; Kaneta, M; Kato, H.; Kato, S; Kim, B.C.; Kim, E.J.; Kinsho, M; Kitazawa, M; Kovalenko, A; Liu, Y; Luo, X; Maruyama, T; Miake, Y; Milošević, Jovan; Mishra, D; Morita, K; Murase, K; Nađđerđ, Laslo; Nagamiya, S; Nakamura, A.; Nakamura, T; Nara, Y; Naruki, M; Nishio, K; Nonaka, C.; Nonaka, T; Ogino, M; Ohnishi, A; Oka, M; Okabe, A; Okamura, M; Oyama, K; Ozawa, K; Saha, P.K.; Saito, T; Sakaguchi, A.; Sakaguchi, T; Sakai, S; Sako, H; Sato, K.; Sato, S; Sawada, S; Shigaki, K; Shimansky, S; Shimomura, M; Shobuda, Y; Stojanović, Milan; Sugimura, H; Takeuchi, Y; Tamura, F.; Tamura, H.; Tamura, J; Tanaka, K.H.; Tanaka, Y; Tani, N; Tanida, K; Watanabe, Y; Xu, N; Yamamoto, M; Yokkaichi, S; Yoo, I.K.; Yoshimoto, M

(2019)

TY  - CONF
AU  - Ahn, J.K.
AU  - Akamatsu, Y
AU  - Asakawa, M
AU  - Ashikaga, S
AU  - Busch, O
AU  - Chiu, M
AU  - Chujo, T
AU  - Ćirković, Predrag
AU  - Csörgő, T
AU  - David, G
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Esumi, S
AU  - Fujii, H
AU  - Fukushima, K
AU  - Garg, P
AU  - Gunji, T
AU  - Hachiya, T
AU  - Hamagaki, H
AU  - Harada, H.
AU  - Harada, M
AU  - Hasegawa, S
AU  - Hatsuda, T
AU  - Hirano, T
AU  - Hong, B
AU  - Hotchi, H
AU  - Hwang, Soonwook
AU  - Ichikawa, Y
AU  - Ichisawa, T
AU  - Imai, K
AU  - Inaba, M
AU  - Itakura, K
AU  - Kamiya, J
AU  - Kaneta, M
AU  - Kato, H.
AU  - Kato, S
AU  - Kim, B.C.
AU  - Kim, E.J.
AU  - Kinsho, M
AU  - Kitazawa, M
AU  - Kovalenko, A
AU  - Liu, Y
AU  - Luo, X
AU  - Maruyama, T
AU  - Miake, Y
AU  - Milošević, Jovan
AU  - Mishra, D
AU  - Morita, K
AU  - Murase, K
AU  - Nađđerđ, Laslo
AU  - Nagamiya, S
AU  - Nakamura, A.
AU  - Nakamura, T
AU  - Nara, Y
AU  - Naruki, M
AU  - Nishio, K
AU  - Nonaka, C.
AU  - Nonaka, T
AU  - Ogino, M
AU  - Ohnishi, A
AU  - Oka, M
AU  - Okabe, A
AU  - Okamura, M
AU  - Oyama, K
AU  - Ozawa, K
AU  - Saha, P.K.
AU  - Saito, T
AU  - Sakaguchi, A.
AU  - Sakaguchi, T
AU  - Sakai, S
AU  - Sako, H
AU  - Sato, K.
AU  - Sato, S
AU  - Sawada, S
AU  - Shigaki, K
AU  - Shimansky, S
AU  - Shimomura, M
AU  - Shobuda, Y
AU  - Stojanović, Milan
AU  - Sugimura, H
AU  - Takeuchi, Y
AU  - Tamura, F.
AU  - Tamura, H.
AU  - Tamura, J
AU  - Tanaka, K.H.
AU  - Tanaka, Y
AU  - Tani, N
AU  - Tanida, K
AU  - Watanabe, Y
AU  - Xu, N
AU  - Yamamoto, M
AU  - Yokkaichi, S
AU  - Yoo, I.K.
AU  - Yoshimoto, M
PY  - 2019
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0375947418305074
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8024
C3  - Nuclear Physics A
T1  - J-PARC-HI Collaboration
VL  - 982
SP  - 1038
EP  - 1039
DO  - 10.1016/S0375-9474(18)30507-4
ER  - 
@conference{
author = "Ahn, J.K. and Akamatsu, Y and Asakawa, M and Ashikaga, S and Busch, O and Chiu, M and Chujo, T and Ćirković, Predrag and Csörgő, T and David, G and Devetak, Damir and Đorđević, Miloš and Esumi, S and Fujii, H and Fukushima, K and Garg, P and Gunji, T and Hachiya, T and Hamagaki, H and Harada, H. and Harada, M and Hasegawa, S and Hatsuda, T and Hirano, T and Hong, B and Hotchi, H and Hwang, Soonwook and Ichikawa, Y and Ichisawa, T and Imai, K and Inaba, M and Itakura, K and Kamiya, J and Kaneta, M and Kato, H. and Kato, S and Kim, B.C. and Kim, E.J. and Kinsho, M and Kitazawa, M and Kovalenko, A and Liu, Y and Luo, X and Maruyama, T and Miake, Y and Milošević, Jovan and Mishra, D and Morita, K and Murase, K and Nađđerđ, Laslo and Nagamiya, S and Nakamura, A. and Nakamura, T and Nara, Y and Naruki, M and Nishio, K and Nonaka, C. and Nonaka, T and Ogino, M and Ohnishi, A and Oka, M and Okabe, A and Okamura, M and Oyama, K and Ozawa, K and Saha, P.K. and Saito, T and Sakaguchi, A. and Sakaguchi, T and Sakai, S and Sako, H and Sato, K. and Sato, S and Sawada, S and Shigaki, K and Shimansky, S and Shimomura, M and Shobuda, Y and Stojanović, Milan and Sugimura, H and Takeuchi, Y and Tamura, F. and Tamura, H. and Tamura, J and Tanaka, K.H. and Tanaka, Y and Tani, N and Tanida, K and Watanabe, Y and Xu, N and Yamamoto, M and Yokkaichi, S and Yoo, I.K. and Yoshimoto, M",
year = "2019",
journal = "Nuclear Physics A",
title = "J-PARC-HI Collaboration",
volume = "982",
pages = "1038-1039",
doi = "10.1016/S0375-9474(18)30507-4"
}
Ahn, J.K., Akamatsu, Y., Asakawa, M., Ashikaga, S., Busch, O., Chiu, M., Chujo, T., Ćirković, P., Csörgő, T., David, G., Devetak, D., Đorđević, M., Esumi, S., Fujii, H., Fukushima, K., Garg, P., Gunji, T., Hachiya, T., Hamagaki, H., Harada, H., Harada, M., Hasegawa, S., Hatsuda, T., Hirano, T., Hong, B., Hotchi, H., Hwang, S., Ichikawa, Y., Ichisawa, T., Imai, K., Inaba, M., Itakura, K., Kamiya, J., Kaneta, M., Kato, H., Kato, S., Kim, B.C., Kim, E.J., Kinsho, M., Kitazawa, M., Kovalenko, A., Liu, Y., Luo, X., Maruyama, T., Miake, Y., Milošević, J., Mishra, D., Morita, K., Murase, K., Nađđerđ, L., Nagamiya, S., Nakamura, A., Nakamura, T., Nara, Y., Naruki, M., Nishio, K., Nonaka, C., Nonaka, T., Ogino, M., Ohnishi, A., Oka, M., Okabe, A., Okamura, M., Oyama, K., Ozawa, K., Saha, P.K., Saito, T., Sakaguchi, A., Sakaguchi, T., Sakai, S., Sako, H., Sato, K., Sato, S., Sawada, S., Shigaki, K., Shimansky, S., Shimomura, M., Shobuda, Y., Stojanović, M., Sugimura, H., Takeuchi, Y., Tamura, F., Tamura, H., Tamura, J., Tanaka, K.H., Tanaka, Y., Tani, N., Tanida, K., Watanabe, Y., Xu, N., Yamamoto, M., Yokkaichi, S., Yoo, I.K.,& Yoshimoto, M.. (2019). J-PARC-HI Collaboration. in Nuclear Physics A, 982, 1038-1039.
https://doi.org/10.1016/S0375-9474(18)30507-4
Ahn J, Akamatsu Y, Asakawa M, Ashikaga S, Busch O, Chiu M, Chujo T, Ćirković P, Csörgő T, David G, Devetak D, Đorđević M, Esumi S, Fujii H, Fukushima K, Garg P, Gunji T, Hachiya T, Hamagaki H, Harada H, Harada M, Hasegawa S, Hatsuda T, Hirano T, Hong B, Hotchi H, Hwang S, Ichikawa Y, Ichisawa T, Imai K, Inaba M, Itakura K, Kamiya J, Kaneta M, Kato H, Kato S, Kim B, Kim E, Kinsho M, Kitazawa M, Kovalenko A, Liu Y, Luo X, Maruyama T, Miake Y, Milošević J, Mishra D, Morita K, Murase K, Nađđerđ L, Nagamiya S, Nakamura A, Nakamura T, Nara Y, Naruki M, Nishio K, Nonaka C, Nonaka T, Ogino M, Ohnishi A, Oka M, Okabe A, Okamura M, Oyama K, Ozawa K, Saha P, Saito T, Sakaguchi A, Sakaguchi T, Sakai S, Sako H, Sato K, Sato S, Sawada S, Shigaki K, Shimansky S, Shimomura M, Shobuda Y, Stojanović M, Sugimura H, Takeuchi Y, Tamura F, Tamura H, Tamura J, Tanaka K, Tanaka Y, Tani N, Tanida K, Watanabe Y, Xu N, Yamamoto M, Yokkaichi S, Yoo I, Yoshimoto M. J-PARC-HI Collaboration. in Nuclear Physics A. 2019;982:1038-1039.
doi:10.1016/S0375-9474(18)30507-4 .
Ahn, J.K., Akamatsu, Y, Asakawa, M, Ashikaga, S, Busch, O, Chiu, M, Chujo, T, Ćirković, Predrag, Csörgő, T, David, G, Devetak, Damir, Đorđević, Miloš, Esumi, S, Fujii, H, Fukushima, K, Garg, P, Gunji, T, Hachiya, T, Hamagaki, H, Harada, H., Harada, M, Hasegawa, S, Hatsuda, T, Hirano, T, Hong, B, Hotchi, H, Hwang, Soonwook, Ichikawa, Y, Ichisawa, T, Imai, K, Inaba, M, Itakura, K, Kamiya, J, Kaneta, M, Kato, H., Kato, S, Kim, B.C., Kim, E.J., Kinsho, M, Kitazawa, M, Kovalenko, A, Liu, Y, Luo, X, Maruyama, T, Miake, Y, Milošević, Jovan, Mishra, D, Morita, K, Murase, K, Nađđerđ, Laslo, Nagamiya, S, Nakamura, A., Nakamura, T, Nara, Y, Naruki, M, Nishio, K, Nonaka, C., Nonaka, T, Ogino, M, Ohnishi, A, Oka, M, Okabe, A, Okamura, M, Oyama, K, Ozawa, K, Saha, P.K., Saito, T, Sakaguchi, A., Sakaguchi, T, Sakai, S, Sako, H, Sato, K., Sato, S, Sawada, S, Shigaki, K, Shimansky, S, Shimomura, M, Shobuda, Y, Stojanović, Milan, Sugimura, H, Takeuchi, Y, Tamura, F., Tamura, H., Tamura, J, Tanaka, K.H., Tanaka, Y, Tani, N, Tanida, K, Watanabe, Y, Xu, N, Yamamoto, M, Yokkaichi, S, Yoo, I.K., Yoshimoto, M, "J-PARC-HI Collaboration" in Nuclear Physics A, 982 (2019):1038-1039,
https://doi.org/10.1016/S0375-9474(18)30507-4 . .

Dynamical symmetry breaking and the Nambu-Goldstone theorem in the Gaussian wave functional approximation

Dmitrasinovic, V; Nakamura, I

(2003)

TY  - JOUR
AU  - Dmitrasinovic, V
AU  - Nakamura, I
PY  - 2003
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/2640
AB  - We analyze the group-theoretical ramifications of the Nambu-Goldstone (NG) theorem in the self-consistent relativistic variational Gaussian wave functional approximation to spinless field theories. In an illustrative example we show how the Nambu-Goldstone theorem would work in the O(N) symmetric phi(4) scalar field theory, if the residual symmetry of the vacuum were lesser than O(N-1), e.g., if the vacuum were O(N-2), or O(N-3),... symmetric. (This does not imply that any of the lesser vacua is actually the absolute energy minimum: stability analysis has not been done.) The requisite number of NG bosons would be (2N-3), or (3N-6),..., respectively, which may exceed N, the number of elementary fields in the Lagrangian. We show how the requisite new NG bosons would appear even in channels that do not carry the same quantum numbers as one of N elementary particles [scalar field quanta, or Castillejo-Dalitz-Dyson (CDD) poles] in the Lagrangian, i.e., in those flavor channels that have no CDD poles. The corresponding Nambu-Goldstone bosons are composites (bound states) of pairs of massive elementary (CDD) scalar fields excitations. As a nontrivial example of this method we apply it to the physically more interesting t Hooft sigma model (an extended N-f=2 bosonic linear sigma model with four scalar and four pseudoscalar fields), with spontaneously and explicitly broken chiral O(4)xO(2)similar or equal toSU(R)(2)xSU(L)(2)xU(A)(1) symmetry. (C) 2003 American Institute of Physics.
T2  - Journal of Mathematical Physics
T1  - Dynamical symmetry breaking and the Nambu-Goldstone theorem in the Gaussian wave functional approximation
VL  - 44
IS  - 7
SP  - 2839
EP  - 2852
DO  - 10.1063/1.1576907
ER  - 
@article{
author = "Dmitrasinovic, V and Nakamura, I",
year = "2003",
abstract = "We analyze the group-theoretical ramifications of the Nambu-Goldstone (NG) theorem in the self-consistent relativistic variational Gaussian wave functional approximation to spinless field theories. In an illustrative example we show how the Nambu-Goldstone theorem would work in the O(N) symmetric phi(4) scalar field theory, if the residual symmetry of the vacuum were lesser than O(N-1), e.g., if the vacuum were O(N-2), or O(N-3),... symmetric. (This does not imply that any of the lesser vacua is actually the absolute energy minimum: stability analysis has not been done.) The requisite number of NG bosons would be (2N-3), or (3N-6),..., respectively, which may exceed N, the number of elementary fields in the Lagrangian. We show how the requisite new NG bosons would appear even in channels that do not carry the same quantum numbers as one of N elementary particles [scalar field quanta, or Castillejo-Dalitz-Dyson (CDD) poles] in the Lagrangian, i.e., in those flavor channels that have no CDD poles. The corresponding Nambu-Goldstone bosons are composites (bound states) of pairs of massive elementary (CDD) scalar fields excitations. As a nontrivial example of this method we apply it to the physically more interesting t Hooft sigma model (an extended N-f=2 bosonic linear sigma model with four scalar and four pseudoscalar fields), with spontaneously and explicitly broken chiral O(4)xO(2)similar or equal toSU(R)(2)xSU(L)(2)xU(A)(1) symmetry. (C) 2003 American Institute of Physics.",
journal = "Journal of Mathematical Physics",
title = "Dynamical symmetry breaking and the Nambu-Goldstone theorem in the Gaussian wave functional approximation",
volume = "44",
number = "7",
pages = "2839-2852",
doi = "10.1063/1.1576907"
}
Dmitrasinovic, V.,& Nakamura, I.. (2003). Dynamical symmetry breaking and the Nambu-Goldstone theorem in the Gaussian wave functional approximation. in Journal of Mathematical Physics, 44(7), 2839-2852.
https://doi.org/10.1063/1.1576907
Dmitrasinovic V, Nakamura I. Dynamical symmetry breaking and the Nambu-Goldstone theorem in the Gaussian wave functional approximation. in Journal of Mathematical Physics. 2003;44(7):2839-2852.
doi:10.1063/1.1576907 .
Dmitrasinovic, V, Nakamura, I, "Dynamical symmetry breaking and the Nambu-Goldstone theorem in the Gaussian wave functional approximation" in Journal of Mathematical Physics, 44, no. 7 (2003):2839-2852,
https://doi.org/10.1063/1.1576907 . .
5
5
5

Linear Sigma model in the Gaussian wave functional approximation II: analyticity of the S-matrix and the effective potential/action

Nakamura, I; Dmitrasinovic, V

(2003)

TY  - JOUR
AU  - Nakamura, I
AU  - Dmitrasinovic, V
PY  - 2003
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/2587
AB  - We show an explicit connection between the solution to the equations of motion in the Gaussian functional approximation [I. Nakamura, V. Dmitrasinovic, Prog. Theor. Phys. 106 (2001) 11951 and the minimum of the (Gaussian) effective potential/action of the linear Sigma model, as well as with the N/D method in dispersion theory. The resulting equations contain analytic functions with branch cuts in the complex mass squared plane. Therefore the minimum of the effective action may lie in the complex mass squared plane. Many solutions to these equations can be found on the second, third, etc. Riemann sheets of the equation, though their physical interpretation is not clear. Our results and the established properties of the S-matrix in general, and of the N/D solutions in particular, guide us to the correct choice of the Riemann sheet. We count the number of states and find only one in each spin-parity and isospin channel with quantum numbers corresponding to the fields in the Lagrangian, i.e., to Castillejo-Dalitz-Dyson (CDD) poles. We examine the numerical solutions in both the strong and weak coupling regimes and calculate the Kallen-Lehmann spectral densities and then use them for physical interpretation. (C) 2002 Elsevier Science B.V. All rights reserved.
T2  - Nuclear Physics A
T1  - Linear Sigma model in the Gaussian wave functional approximation II: analyticity of the S-matrix and the effective potential/action
VL  - 713
IS  - 1-2
SP  - 133
EP  - 147
DO  - 10.1016/S0375-9474(02)01293-9
ER  - 
@article{
author = "Nakamura, I and Dmitrasinovic, V",
year = "2003",
abstract = "We show an explicit connection between the solution to the equations of motion in the Gaussian functional approximation [I. Nakamura, V. Dmitrasinovic, Prog. Theor. Phys. 106 (2001) 11951 and the minimum of the (Gaussian) effective potential/action of the linear Sigma model, as well as with the N/D method in dispersion theory. The resulting equations contain analytic functions with branch cuts in the complex mass squared plane. Therefore the minimum of the effective action may lie in the complex mass squared plane. Many solutions to these equations can be found on the second, third, etc. Riemann sheets of the equation, though their physical interpretation is not clear. Our results and the established properties of the S-matrix in general, and of the N/D solutions in particular, guide us to the correct choice of the Riemann sheet. We count the number of states and find only one in each spin-parity and isospin channel with quantum numbers corresponding to the fields in the Lagrangian, i.e., to Castillejo-Dalitz-Dyson (CDD) poles. We examine the numerical solutions in both the strong and weak coupling regimes and calculate the Kallen-Lehmann spectral densities and then use them for physical interpretation. (C) 2002 Elsevier Science B.V. All rights reserved.",
journal = "Nuclear Physics A",
title = "Linear Sigma model in the Gaussian wave functional approximation II: analyticity of the S-matrix and the effective potential/action",
volume = "713",
number = "1-2",
pages = "133-147",
doi = "10.1016/S0375-9474(02)01293-9"
}
Nakamura, I.,& Dmitrasinovic, V.. (2003). Linear Sigma model in the Gaussian wave functional approximation II: analyticity of the S-matrix and the effective potential/action. in Nuclear Physics A, 713(1-2), 133-147.
https://doi.org/10.1016/S0375-9474(02)01293-9
Nakamura I, Dmitrasinovic V. Linear Sigma model in the Gaussian wave functional approximation II: analyticity of the S-matrix and the effective potential/action. in Nuclear Physics A. 2003;713(1-2):133-147.
doi:10.1016/S0375-9474(02)01293-9 .
Nakamura, I, Dmitrasinovic, V, "Linear Sigma model in the Gaussian wave functional approximation II: analyticity of the S-matrix and the effective potential/action" in Nuclear Physics A, 713, no. 1-2 (2003):133-147,
https://doi.org/10.1016/S0375-9474(02)01293-9 . .
4
4
4

Linear Sigma model in the Gaussian functional approximation

Nakamura, I; Dmitrasinovic, V

(2001)

TY  - JOUR
AU  - Nakamura, I
AU  - Dmitrasinovic, V
PY  - 2001
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/2489
AB  - We apply a self-consistent relativistic mean-field variational Gaussian functional (or Hartree) approximation to the linear sigma model with spontaneously and explicitly broken chiral O(4) symmetry. We set up the self-consistency, or gap and the Bethe-Salpeter equations. We check and confirm the chiral Ward-Takahashi identities. among them the Nambu-Goldstone theorem and the (partial) axial current conservation (CAC], both in and away from the chiral limit. With explicit chiral symmetry breaking, we confirm the Dashen relation for the pion mass and partial CAC. We solve numerically the gap and Bethe-Salpeter equations, discuss the solutions properties and the. particle content of the theory
T2  - Progress of Theoretical Physics
T1  - Linear Sigma model in the Gaussian functional approximation
VL  - 106
IS  - 6
SP  - 1195
EP  - 1212
DO  - 10.1143/PTP.106.1195
ER  - 
@article{
author = "Nakamura, I and Dmitrasinovic, V",
year = "2001",
abstract = "We apply a self-consistent relativistic mean-field variational Gaussian functional (or Hartree) approximation to the linear sigma model with spontaneously and explicitly broken chiral O(4) symmetry. We set up the self-consistency, or gap and the Bethe-Salpeter equations. We check and confirm the chiral Ward-Takahashi identities. among them the Nambu-Goldstone theorem and the (partial) axial current conservation (CAC], both in and away from the chiral limit. With explicit chiral symmetry breaking, we confirm the Dashen relation for the pion mass and partial CAC. We solve numerically the gap and Bethe-Salpeter equations, discuss the solutions properties and the. particle content of the theory",
journal = "Progress of Theoretical Physics",
title = "Linear Sigma model in the Gaussian functional approximation",
volume = "106",
number = "6",
pages = "1195-1212",
doi = "10.1143/PTP.106.1195"
}
Nakamura, I.,& Dmitrasinovic, V.. (2001). Linear Sigma model in the Gaussian functional approximation. in Progress of Theoretical Physics, 106(6), 1195-1212.
https://doi.org/10.1143/PTP.106.1195
Nakamura I, Dmitrasinovic V. Linear Sigma model in the Gaussian functional approximation. in Progress of Theoretical Physics. 2001;106(6):1195-1212.
doi:10.1143/PTP.106.1195 .
Nakamura, I, Dmitrasinovic, V, "Linear Sigma model in the Gaussian functional approximation" in Progress of Theoretical Physics, 106, no. 6 (2001):1195-1212,
https://doi.org/10.1143/PTP.106.1195 . .
9
10
11