Hong, Junyu

Link to this page

Authority KeyName Variants
021d1371-2891-451e-b007-253106d705fa
  • Hong, Junyu (2)
Projects
International Postdoctoral Exchange Fellowship Program [20180056] China Postdoctoral Science Foundation [2017M622848]
Government of Guangzhou City for international joint project [201704030020] Guangdong Province [U1801253]
Joint Funds of the National Natural Science Foundation of China (NSFC) and Yunnan Province [U U1702254] National Natural Science Foundation of China [21771195]
National Natural Science Foundation of China [51672315] National Natural Science Foundation of China (NSFC) [21771195]
National Natural Science Foundation of China (NSFC) [51902355] National Natural Science Foundation of China (NSFC) [U1301242]
National Natural Science Foundation of China (NSFC) [U1702254] National Natural Science Foundation of China (NSFC) [U1801253]
National Natural Science Foundation of Guangdong Province [2016A030313305] Science and Technology Planning Project of Guangdong Province for Applied Science and Technology Research and Development [2015B090927002]
Science and Technology Planning Project of Guangdong Province for Applied Science and Technology Research and Development [2016B090931007] Science and Technology Planning Project of Guangdong Province for Applied Science and Technology Research and Development [2017B090917001]
Science and Technology Planning Project of Guangzhou City [201604016005] Science and Technology Planning Project of Guangzhou City [201704030020]
Special Fund of Guangdong Province Project for Applied Science and Technology Research and Development [2015B090927002] Special Fund of Guangdong Province Project for Applied Science and Technology Research and Development [2016B090931007]
Special Fund of Guangdong Province Project for Applied Science and Technology Research and Development [2017B090917001]

Author's Bibliography

Structural modulation induced intensity enhancement of full color spectra: A case of Ba3ZnTa2-xNbxO9:Eu3+phosphors

Li, Xiaohui; Zhou, Lei; Hong, Junyu; He, Shiman; Jing, Xiping; Dramićanin, Miroslav; Shi, Jianxin; Wu, Mingmei

(2020)

TY  - JOUR
AU  - Li, Xiaohui
AU  - Zhou, Lei
AU  - Hong, Junyu
AU  - He, Shiman
AU  - Jing, Xiping
AU  - Dramićanin, Miroslav
AU  - Shi, Jianxin
AU  - Wu, Mingmei
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9016
AB  - Modulation of structural order-disorder transition and structural oxygen defects can provide fundamental insights in the optimization of luminescence performances of phosphors. In this study, the luminescence of Ba3ZnTa2O9(BZT) was systematically elucidated, including the emission arising from the charge transfer (Nb5+/Ta5+ O2-) and anti-site oxygen defect emission due to the B-site disordering (defect type: [2ZnNb3-+ 3Vo2+]), as corroborated by the electronic structural calculations and detailed experiments. We present a two-step design for the optimization of luminescence properties of Ba3ZnTa2O9phosphor. In the first step, the B-site equivalent doping (Ta5+substituted by Nb5+) was used to modulate the B-site atomic arrangement, which induced the formation of the cubic phase with B-site full disordering. In the second step, the A-site nonequivalent doping (Ba2+substituted by Eu3+) was used to decrease the oxygen defect concentration. After the two-step optimization, the photoluminescence excitation spectrum of Ba3-yEuyZnNb2O9(y= 0.1) shows a broad band excitation (300-400 nm), which is a good match with the near-UV LED chip emission. Even more importantly, the emission spectrum covers the entire visible spectral region and exhibits a remarkably enhanced emission intensity (a 40 times enhancement when compared to that of the intrinsic BZT). The fabricated LED device comprising an n-UV chip (= 370 nm) and a single-component Ba3-yEuyZnNb2O9(y= 0.1) phosphor coating emits a warm white light with a low correlated color temperature (CCT = 4813 K) and a good color rendering index (Ra= 82.36).
T2  - Journal of Materials Chemistry C
T1  - Structural modulation induced intensity enhancement of full color spectra: A case of Ba3ZnTa2-xNbxO9:Eu3+phosphors
VL  - 8
IS  - 20
SP  - 6715
EP  - 6723
DO  - 10.1039/D0TC01201G
ER  - 
@article{
author = "Li, Xiaohui and Zhou, Lei and Hong, Junyu and He, Shiman and Jing, Xiping and Dramićanin, Miroslav and Shi, Jianxin and Wu, Mingmei",
year = "2020",
abstract = "Modulation of structural order-disorder transition and structural oxygen defects can provide fundamental insights in the optimization of luminescence performances of phosphors. In this study, the luminescence of Ba3ZnTa2O9(BZT) was systematically elucidated, including the emission arising from the charge transfer (Nb5+/Ta5+ O2-) and anti-site oxygen defect emission due to the B-site disordering (defect type: [2ZnNb3-+ 3Vo2+]), as corroborated by the electronic structural calculations and detailed experiments. We present a two-step design for the optimization of luminescence properties of Ba3ZnTa2O9phosphor. In the first step, the B-site equivalent doping (Ta5+substituted by Nb5+) was used to modulate the B-site atomic arrangement, which induced the formation of the cubic phase with B-site full disordering. In the second step, the A-site nonequivalent doping (Ba2+substituted by Eu3+) was used to decrease the oxygen defect concentration. After the two-step optimization, the photoluminescence excitation spectrum of Ba3-yEuyZnNb2O9(y= 0.1) shows a broad band excitation (300-400 nm), which is a good match with the near-UV LED chip emission. Even more importantly, the emission spectrum covers the entire visible spectral region and exhibits a remarkably enhanced emission intensity (a 40 times enhancement when compared to that of the intrinsic BZT). The fabricated LED device comprising an n-UV chip (= 370 nm) and a single-component Ba3-yEuyZnNb2O9(y= 0.1) phosphor coating emits a warm white light with a low correlated color temperature (CCT = 4813 K) and a good color rendering index (Ra= 82.36).",
journal = "Journal of Materials Chemistry C",
title = "Structural modulation induced intensity enhancement of full color spectra: A case of Ba3ZnTa2-xNbxO9:Eu3+phosphors",
volume = "8",
number = "20",
pages = "6715-6723",
doi = "10.1039/D0TC01201G"
}
Li, X., Zhou, L., Hong, J., He, S., Jing, X., Dramićanin, M., Shi, J.,& Wu, M.. (2020). Structural modulation induced intensity enhancement of full color spectra: A case of Ba3ZnTa2-xNbxO9:Eu3+phosphors. in Journal of Materials Chemistry C, 8(20), 6715-6723.
https://doi.org/10.1039/D0TC01201G
Li X, Zhou L, Hong J, He S, Jing X, Dramićanin M, Shi J, Wu M. Structural modulation induced intensity enhancement of full color spectra: A case of Ba3ZnTa2-xNbxO9:Eu3+phosphors. in Journal of Materials Chemistry C. 2020;8(20):6715-6723.
doi:10.1039/D0TC01201G .
Li, Xiaohui, Zhou, Lei, Hong, Junyu, He, Shiman, Jing, Xiping, Dramićanin, Miroslav, Shi, Jianxin, Wu, Mingmei, "Structural modulation induced intensity enhancement of full color spectra: A case of Ba3ZnTa2-xNbxO9:Eu3+phosphors" in Journal of Materials Chemistry C, 8, no. 20 (2020):6715-6723,
https://doi.org/10.1039/D0TC01201G . .
12
10
11

Efficient Luminescence Enhancement of Mg 2 TiO 4 :Mn 4+ Red Phosphor by Incorporating Plasmonic Ag@SiO 2 Nanoparticles

Dolgov, Leonid; Hong, Junyu; Zhou, Lei; Li, Xiaohui; Li, Junhao; Đorđević, Vesna R.; Dramićanin, Miroslav; Shi, Jianxin; Wu, Mingmei

(2019)

TY  - JOUR
AU  - Dolgov, Leonid
AU  - Hong, Junyu
AU  - Zhou, Lei
AU  - Li, Xiaohui
AU  - Li, Junhao
AU  - Đorđević, Vesna R.
AU  - Dramićanin, Miroslav
AU  - Shi, Jianxin
AU  - Wu, Mingmei
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8349
AB  - One of prospective ways for boosting efficiency of luminescent materials is their combination with noble metal nanoparticles. Collective, so-called plasmon, oscillations of surface electrons in a nanoparticle can resonantly interact with incident or fluorescent light and cause an increase in the light absorption cross section or radiative rate for an adjacent emitter. Plasmonic inorganic phosphors require gentle host crystallization at which added noble nanoparticles will not suffer from aggregation or oxidation. The prospective plasmonic Mg2TiO4:Mn4+ phosphor containing core@shell Ag@SiO2 nanoparticles is prepared here by spare low-temperature annealing of a sol-gel host precursor. It is revealed that Mn4+ luminescence nonmonotonously depends on the size and concentration of 40 and 70 nm silver nanoparticles. It is demonstrated that luminescence of the Mg2TiO4:Mn4+ phosphor can be up to a 1.5 times increase when Mn4+ excitation is supported by localized surface plasmon resonance in Ag@SiO2 nanoparticles. © 2019 American Chemical Society.
T2  - ACS Applied Materials and Interfaces
T1  - Efficient Luminescence Enhancement of Mg 2 TiO 4 :Mn 4+ Red Phosphor by Incorporating Plasmonic Ag@SiO 2 Nanoparticles
VL  - 11
IS  - 23
SP  - 21004
EP  - 21009
DO  - 10.1021/acsami.9b05781
ER  - 
@article{
author = "Dolgov, Leonid and Hong, Junyu and Zhou, Lei and Li, Xiaohui and Li, Junhao and Đorđević, Vesna R. and Dramićanin, Miroslav and Shi, Jianxin and Wu, Mingmei",
year = "2019",
abstract = "One of prospective ways for boosting efficiency of luminescent materials is their combination with noble metal nanoparticles. Collective, so-called plasmon, oscillations of surface electrons in a nanoparticle can resonantly interact with incident or fluorescent light and cause an increase in the light absorption cross section or radiative rate for an adjacent emitter. Plasmonic inorganic phosphors require gentle host crystallization at which added noble nanoparticles will not suffer from aggregation or oxidation. The prospective plasmonic Mg2TiO4:Mn4+ phosphor containing core@shell Ag@SiO2 nanoparticles is prepared here by spare low-temperature annealing of a sol-gel host precursor. It is revealed that Mn4+ luminescence nonmonotonously depends on the size and concentration of 40 and 70 nm silver nanoparticles. It is demonstrated that luminescence of the Mg2TiO4:Mn4+ phosphor can be up to a 1.5 times increase when Mn4+ excitation is supported by localized surface plasmon resonance in Ag@SiO2 nanoparticles. © 2019 American Chemical Society.",
journal = "ACS Applied Materials and Interfaces",
title = "Efficient Luminescence Enhancement of Mg 2 TiO 4 :Mn 4+ Red Phosphor by Incorporating Plasmonic Ag@SiO 2 Nanoparticles",
volume = "11",
number = "23",
pages = "21004-21009",
doi = "10.1021/acsami.9b05781"
}
Dolgov, L., Hong, J., Zhou, L., Li, X., Li, J., Đorđević, V. R., Dramićanin, M., Shi, J.,& Wu, M.. (2019). Efficient Luminescence Enhancement of Mg 2 TiO 4 :Mn 4+ Red Phosphor by Incorporating Plasmonic Ag@SiO 2 Nanoparticles. in ACS Applied Materials and Interfaces, 11(23), 21004-21009.
https://doi.org/10.1021/acsami.9b05781
Dolgov L, Hong J, Zhou L, Li X, Li J, Đorđević VR, Dramićanin M, Shi J, Wu M. Efficient Luminescence Enhancement of Mg 2 TiO 4 :Mn 4+ Red Phosphor by Incorporating Plasmonic Ag@SiO 2 Nanoparticles. in ACS Applied Materials and Interfaces. 2019;11(23):21004-21009.
doi:10.1021/acsami.9b05781 .
Dolgov, Leonid, Hong, Junyu, Zhou, Lei, Li, Xiaohui, Li, Junhao, Đorđević, Vesna R., Dramićanin, Miroslav, Shi, Jianxin, Wu, Mingmei, "Efficient Luminescence Enhancement of Mg 2 TiO 4 :Mn 4+ Red Phosphor by Incorporating Plasmonic Ag@SiO 2 Nanoparticles" in ACS Applied Materials and Interfaces, 11, no. 23 (2019):21004-21009,
https://doi.org/10.1021/acsami.9b05781 . .
1
25
18
27