Velebit, Jelena

Link to this page

Authority KeyName Variants
84a1e699-4f07-46d8-81aa-174cfb570591
  • Velebit, Jelena (5)
Projects

Author's Bibliography

Insulin Regulation of Proliferation Involves Activation of AKT and ERK 1/2 Signaling Pathways in Vascular Smooth Muscle Cells

Isenović, Esma R.; Fretaud, M.; Korićanac, Goran; Sudar, Emina; Velebit, Jelena; Dobutovic, B.; Marche, Pierre

(2009)

TY  - JOUR
AU  - Isenović, Esma R.
AU  - Fretaud, M.
AU  - Korićanac, Goran
AU  - Sudar, Emina
AU  - Velebit, Jelena
AU  - Dobutovic, B.
AU  - Marche, Pierre
PY  - 2009
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/3718
AB  - This investigation used primary cultured rat vascular smooth muscle cells (VSMCs) to examine the effect of insulin (INS) on proliferation of VSMCs. In this study, we investigated the role of protein kinase B (Akt) and p42/44 mitogen-activated protein kinase (ERK 1/2) signaling pathways in mediating the mitogenic action of INS in VSMCs. Incubation of rat VSMCs with INS (100 nM) for 10 min resulted man increase of Akt phosphorylation by 6-fold (p LT 0.001) and ERK 1/2 phosphorylation by 3-fold (p LT 0.001). Pretreatment for 15 min with 10 mu M of PI3K/Akt inhibitor LY294002 or with 20 mu M PD98059, inhibitor of ERK 1/2, significantly reduced INS-stimulated Akt and ERK 1/2 phosphorylation by 76 and 75%, respectively. Prolonged treatment of VSMCs with INS for 24 h did not have an effect on either Akt or ERK 1/2 phosphorylation. Incubation of rat VSMCs with INS resulted in an increase of VSMCs proliferation by 87% (p LT 0.001.) The effect of INS on VSMCs proliferation was significantly reduced by 68% by pretreatment with LY294002 (p GT 0.01) and by 71% (p GT 0.01) by pretreatment with PD98059. These results indicate that INS acts through Akt and ERK 1/2 signaling pathways to Up-regulate proliferation of VSMCs.
T2  - Experimental and Clinical Endocrinology and Diabetes
T1  - Insulin Regulation of Proliferation Involves Activation of AKT and ERK 1/2 Signaling Pathways in Vascular Smooth Muscle Cells
VL  - 117
IS  - 5
SP  - 214
EP  - 219
DO  - 10.1055/s-0028-1085470
ER  - 
@article{
author = "Isenović, Esma R. and Fretaud, M. and Korićanac, Goran and Sudar, Emina and Velebit, Jelena and Dobutovic, B. and Marche, Pierre",
year = "2009",
abstract = "This investigation used primary cultured rat vascular smooth muscle cells (VSMCs) to examine the effect of insulin (INS) on proliferation of VSMCs. In this study, we investigated the role of protein kinase B (Akt) and p42/44 mitogen-activated protein kinase (ERK 1/2) signaling pathways in mediating the mitogenic action of INS in VSMCs. Incubation of rat VSMCs with INS (100 nM) for 10 min resulted man increase of Akt phosphorylation by 6-fold (p LT 0.001) and ERK 1/2 phosphorylation by 3-fold (p LT 0.001). Pretreatment for 15 min with 10 mu M of PI3K/Akt inhibitor LY294002 or with 20 mu M PD98059, inhibitor of ERK 1/2, significantly reduced INS-stimulated Akt and ERK 1/2 phosphorylation by 76 and 75%, respectively. Prolonged treatment of VSMCs with INS for 24 h did not have an effect on either Akt or ERK 1/2 phosphorylation. Incubation of rat VSMCs with INS resulted in an increase of VSMCs proliferation by 87% (p LT 0.001.) The effect of INS on VSMCs proliferation was significantly reduced by 68% by pretreatment with LY294002 (p GT 0.01) and by 71% (p GT 0.01) by pretreatment with PD98059. These results indicate that INS acts through Akt and ERK 1/2 signaling pathways to Up-regulate proliferation of VSMCs.",
journal = "Experimental and Clinical Endocrinology and Diabetes",
title = "Insulin Regulation of Proliferation Involves Activation of AKT and ERK 1/2 Signaling Pathways in Vascular Smooth Muscle Cells",
volume = "117",
number = "5",
pages = "214-219",
doi = "10.1055/s-0028-1085470"
}
Isenović, E. R., Fretaud, M., Korićanac, G., Sudar, E., Velebit, J., Dobutovic, B.,& Marche, P.. (2009). Insulin Regulation of Proliferation Involves Activation of AKT and ERK 1/2 Signaling Pathways in Vascular Smooth Muscle Cells. in Experimental and Clinical Endocrinology and Diabetes, 117(5), 214-219.
https://doi.org/10.1055/s-0028-1085470
Isenović ER, Fretaud M, Korićanac G, Sudar E, Velebit J, Dobutovic B, Marche P. Insulin Regulation of Proliferation Involves Activation of AKT and ERK 1/2 Signaling Pathways in Vascular Smooth Muscle Cells. in Experimental and Clinical Endocrinology and Diabetes. 2009;117(5):214-219.
doi:10.1055/s-0028-1085470 .
Isenović, Esma R., Fretaud, M., Korićanac, Goran, Sudar, Emina, Velebit, Jelena, Dobutovic, B., Marche, Pierre, "Insulin Regulation of Proliferation Involves Activation of AKT and ERK 1/2 Signaling Pathways in Vascular Smooth Muscle Cells" in Experimental and Clinical Endocrinology and Diabetes, 117, no. 5 (2009):214-219,
https://doi.org/10.1055/s-0028-1085470 . .
17
13
14

Rosiglitazone modulates insulin-induced plasma membrane area changes in single 3T3-L1 adipocytes

Velebit, Jelena; Kovacic, Petra Brina; Prebil, Mateja; Chowdhury, Helena H.; Grilc, Sonja; Kreft, Marko; Jensen, Jorgen; Isenović, Esma R.; Zorec, Robert

(2008)

TY  - JOUR
AU  - Velebit, Jelena
AU  - Kovacic, Petra Brina
AU  - Prebil, Mateja
AU  - Chowdhury, Helena H.
AU  - Grilc, Sonja
AU  - Kreft, Marko
AU  - Jensen, Jorgen
AU  - Isenović, Esma R.
AU  - Zorec, Robert
PY  - 2008
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/3537
AB  - In this study we hypothesized that rosiglitazone, an antidiabetic high-affinity agonist for the peroxisome proliferator-activated receptor gamma, affects the plasma membrane (PM) turnover in single 3T3-L1 adipocytes. To study the PM turnover, the patch-clamp electrophysiological method was used to measure changes in membrane capacitance (C-m), a parameter linearly related to the PM area. Microscopy results show that the presence of rosiglitazone in the differentiating medium significantly increased the differentiation of 3T3-L1 adipocytes in cell culture, based on oil red O-stained area (11.4 +/- 1.2%) vs. controls (3.1 +/- 0.5%). Moreover, rosiglitazone treatment significantly reduced the size of single 3T3-L1 adipocytes; their average radius of 21.1 +/- 1.1 mu m in controls was reduced to 17.5 +/- 0.5 mu m in rosiglitazone-treated cells. Consistent with this, insulin application increased the rate of C-m increase to 2.34 +/- 0.10%/min, which was significantly different from controls (0.12 +/- 0.08%/min). However, pretreatment of cells with rosiglitazone prior to the treatment with insulin resulted in an attenuated rate of C (m) increase. These data support the involvement of insulin in the modulation of membrane area and show that treatment by rosiglitazone reduced the insulin-mediated membrane area increase in 3T3-L1 adipocytes.
T2  - Journal of Membrane Biology
T1  - Rosiglitazone modulates insulin-induced plasma membrane area changes in single 3T3-L1 adipocytes
VL  - 223
IS  - 3
SP  - 141
EP  - 149
DO  - 10.1007/s00232-008-9120-x
ER  - 
@article{
author = "Velebit, Jelena and Kovacic, Petra Brina and Prebil, Mateja and Chowdhury, Helena H. and Grilc, Sonja and Kreft, Marko and Jensen, Jorgen and Isenović, Esma R. and Zorec, Robert",
year = "2008",
abstract = "In this study we hypothesized that rosiglitazone, an antidiabetic high-affinity agonist for the peroxisome proliferator-activated receptor gamma, affects the plasma membrane (PM) turnover in single 3T3-L1 adipocytes. To study the PM turnover, the patch-clamp electrophysiological method was used to measure changes in membrane capacitance (C-m), a parameter linearly related to the PM area. Microscopy results show that the presence of rosiglitazone in the differentiating medium significantly increased the differentiation of 3T3-L1 adipocytes in cell culture, based on oil red O-stained area (11.4 +/- 1.2%) vs. controls (3.1 +/- 0.5%). Moreover, rosiglitazone treatment significantly reduced the size of single 3T3-L1 adipocytes; their average radius of 21.1 +/- 1.1 mu m in controls was reduced to 17.5 +/- 0.5 mu m in rosiglitazone-treated cells. Consistent with this, insulin application increased the rate of C-m increase to 2.34 +/- 0.10%/min, which was significantly different from controls (0.12 +/- 0.08%/min). However, pretreatment of cells with rosiglitazone prior to the treatment with insulin resulted in an attenuated rate of C (m) increase. These data support the involvement of insulin in the modulation of membrane area and show that treatment by rosiglitazone reduced the insulin-mediated membrane area increase in 3T3-L1 adipocytes.",
journal = "Journal of Membrane Biology",
title = "Rosiglitazone modulates insulin-induced plasma membrane area changes in single 3T3-L1 adipocytes",
volume = "223",
number = "3",
pages = "141-149",
doi = "10.1007/s00232-008-9120-x"
}
Velebit, J., Kovacic, P. B., Prebil, M., Chowdhury, H. H., Grilc, S., Kreft, M., Jensen, J., Isenović, E. R.,& Zorec, R.. (2008). Rosiglitazone modulates insulin-induced plasma membrane area changes in single 3T3-L1 adipocytes. in Journal of Membrane Biology, 223(3), 141-149.
https://doi.org/10.1007/s00232-008-9120-x
Velebit J, Kovacic PB, Prebil M, Chowdhury HH, Grilc S, Kreft M, Jensen J, Isenović ER, Zorec R. Rosiglitazone modulates insulin-induced plasma membrane area changes in single 3T3-L1 adipocytes. in Journal of Membrane Biology. 2008;223(3):141-149.
doi:10.1007/s00232-008-9120-x .
Velebit, Jelena, Kovacic, Petra Brina, Prebil, Mateja, Chowdhury, Helena H., Grilc, Sonja, Kreft, Marko, Jensen, Jorgen, Isenović, Esma R., Zorec, Robert, "Rosiglitazone modulates insulin-induced plasma membrane area changes in single 3T3-L1 adipocytes" in Journal of Membrane Biology, 223, no. 3 (2008):141-149,
https://doi.org/10.1007/s00232-008-9120-x . .
3
2
2

Regulation of glucose metabolism by insulin in cardiomyocytes

Sudar, Emina; Velebit, Jelena; Gluvić, Zoran; Lazić, Emilija; Isenović, Esma R.

(2007)

TY  - JOUR
AU  - Sudar, Emina
AU  - Velebit, Jelena
AU  - Gluvić, Zoran
AU  - Lazić, Emilija
AU  - Isenović, Esma R.
PY  - 2007
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10331
AB  - Cardiac function is improved during ischemia by stimulating glucose metabolism and subsequent decreasing of fatty acid (FA) oxidation. The impairment of heart glucose metabolism may contribute to the heart dysfunction and cardiomyopathy. Glucose transport is one of the first steps in insulin-stimulated glucose uptake. Glucose entry into cells is a process that requires the involvement of a carrier protein in order to facilitate the movement of glucose across the plasma membrane. In cardiomyocytes (CMY), insulin-stimulated glucose disposal is mediated via translocation of glucose transporters (GLUTs): GLUT4 and GLUT1. The major mechanism by which insulin regulates GLUT4 translocation and stimulation of glycogen synthesis in CMY is through activation of the protein kinase B (PKB) via phosphoinositol 3 kinase (PI3-K). In addition, insulin stimulates GLUT4 translocation and increases glucose uptake in CMY via PI3-K independent pathway by Cbl proto-oncoprotein phosphorylation. Combined activity of both pathways is required for GLUT4 translocation in CMY. Insulin independent pathways, like AMP-activated protein kinase (AMPK) pathway, also contributes to increased glucose uptake in CMY and PKB, and AMPK activity are inversely correlated during myocardial ischemia, although the influence of insulin on AMPK cardiac signaling would contradict previous observations. It has been reported that via PKB, insulin has an ability to inactivate AMPK. Inhibition of AMPK by insulin may be a contributory mechanism to the observation that cardiac FA oxidation is inhibited by insulin. Understanding how these two kinases interact at the molecular level in response to insulin may provide insights into how insulin is cardioprotective against ischemia.
AB  - Funkciju srca, tokom stanja ishemije, moguće je poboljšati stimulacijom metabolizma glukoze i usled toga nastalim smanjenjem oksidacije masnih kiselina (MK). Poremećaji u metabolizmu glukoze uzrokuju poremećaje u radu srca i dovode do kardiomiopatije. Transport glukoze u ćelije jedan je od prvih koraka u insulinom stimulisanom preuzimanju glukoze u ćelije srca-kardiomiocite (CMY). Insulinom stimulisan ulazak glukoze u ćelije odvija se uz pomoć proteina nosača koji olakšavaju transport glukoze kroz ćelijsku membranu i oni su identifikovani kao glukozni transporteri (GLUT). U CMY lokalizovani su GLUT1 i GLUT4. Insulinom stimulisano preuzimanje glukoze i sinteza glikogena u CMY, uglavnom se odvijaju signalnim putem, koji uključuje aktivaciju protein kinaze B (PKB) preko fosfoinozitol 3 kinaze (PI3K). Takođe, insulin stimuliše translokaciju GLUT4 u CMY signalnim putem pomoću fosforilacije Cbl proto-onkoproteina. Aktivnost oba signalna puta neophodna je za translokaciju GLUT4 u CMY. Insulin nezavisni put, takodje je uključen u transport glukoze u CMY. On se ostvaruje preko aktivacije AMP-om aktivirane protein kinaze (AMPK), koju inaktiviše insulinom aktivirana PKB, što dovodi do inhibicije oksidacije MK u CMY. Aktivnosti enzima PKB i AMPK su u inverznoj relaciji tokom ishemije srca. Rasvetljavanje molekularnog mehanizma interakcije AMPK i PKB pod delovanjem insulina u CMY doprineće objašnjenju protektivne uloge insulina u procesima ishemije srca.
T2  - Acta Facultatis Medicae Naissensis
T1  - Regulation of glucose metabolism by insulin in cardiomyocytes
T1  - Regulacija metabolizma glukoze insulinom u kardiomiocitima
VL  - 24
IS  - 1
SP  - 41
EP  - 44
UR  - https://hdl.handle.net/21.15107/rcub_vinar_10331
ER  - 
@article{
author = "Sudar, Emina and Velebit, Jelena and Gluvić, Zoran and Lazić, Emilija and Isenović, Esma R.",
year = "2007",
abstract = "Cardiac function is improved during ischemia by stimulating glucose metabolism and subsequent decreasing of fatty acid (FA) oxidation. The impairment of heart glucose metabolism may contribute to the heart dysfunction and cardiomyopathy. Glucose transport is one of the first steps in insulin-stimulated glucose uptake. Glucose entry into cells is a process that requires the involvement of a carrier protein in order to facilitate the movement of glucose across the plasma membrane. In cardiomyocytes (CMY), insulin-stimulated glucose disposal is mediated via translocation of glucose transporters (GLUTs): GLUT4 and GLUT1. The major mechanism by which insulin regulates GLUT4 translocation and stimulation of glycogen synthesis in CMY is through activation of the protein kinase B (PKB) via phosphoinositol 3 kinase (PI3-K). In addition, insulin stimulates GLUT4 translocation and increases glucose uptake in CMY via PI3-K independent pathway by Cbl proto-oncoprotein phosphorylation. Combined activity of both pathways is required for GLUT4 translocation in CMY. Insulin independent pathways, like AMP-activated protein kinase (AMPK) pathway, also contributes to increased glucose uptake in CMY and PKB, and AMPK activity are inversely correlated during myocardial ischemia, although the influence of insulin on AMPK cardiac signaling would contradict previous observations. It has been reported that via PKB, insulin has an ability to inactivate AMPK. Inhibition of AMPK by insulin may be a contributory mechanism to the observation that cardiac FA oxidation is inhibited by insulin. Understanding how these two kinases interact at the molecular level in response to insulin may provide insights into how insulin is cardioprotective against ischemia., Funkciju srca, tokom stanja ishemije, moguće je poboljšati stimulacijom metabolizma glukoze i usled toga nastalim smanjenjem oksidacije masnih kiselina (MK). Poremećaji u metabolizmu glukoze uzrokuju poremećaje u radu srca i dovode do kardiomiopatije. Transport glukoze u ćelije jedan je od prvih koraka u insulinom stimulisanom preuzimanju glukoze u ćelije srca-kardiomiocite (CMY). Insulinom stimulisan ulazak glukoze u ćelije odvija se uz pomoć proteina nosača koji olakšavaju transport glukoze kroz ćelijsku membranu i oni su identifikovani kao glukozni transporteri (GLUT). U CMY lokalizovani su GLUT1 i GLUT4. Insulinom stimulisano preuzimanje glukoze i sinteza glikogena u CMY, uglavnom se odvijaju signalnim putem, koji uključuje aktivaciju protein kinaze B (PKB) preko fosfoinozitol 3 kinaze (PI3K). Takođe, insulin stimuliše translokaciju GLUT4 u CMY signalnim putem pomoću fosforilacije Cbl proto-onkoproteina. Aktivnost oba signalna puta neophodna je za translokaciju GLUT4 u CMY. Insulin nezavisni put, takodje je uključen u transport glukoze u CMY. On se ostvaruje preko aktivacije AMP-om aktivirane protein kinaze (AMPK), koju inaktiviše insulinom aktivirana PKB, što dovodi do inhibicije oksidacije MK u CMY. Aktivnosti enzima PKB i AMPK su u inverznoj relaciji tokom ishemije srca. Rasvetljavanje molekularnog mehanizma interakcije AMPK i PKB pod delovanjem insulina u CMY doprineće objašnjenju protektivne uloge insulina u procesima ishemije srca.",
journal = "Acta Facultatis Medicae Naissensis",
title = "Regulation of glucose metabolism by insulin in cardiomyocytes, Regulacija metabolizma glukoze insulinom u kardiomiocitima",
volume = "24",
number = "1",
pages = "41-44",
url = "https://hdl.handle.net/21.15107/rcub_vinar_10331"
}
Sudar, E., Velebit, J., Gluvić, Z., Lazić, E.,& Isenović, E. R.. (2007). Regulation of glucose metabolism by insulin in cardiomyocytes. in Acta Facultatis Medicae Naissensis, 24(1), 41-44.
https://hdl.handle.net/21.15107/rcub_vinar_10331
Sudar E, Velebit J, Gluvić Z, Lazić E, Isenović ER. Regulation of glucose metabolism by insulin in cardiomyocytes. in Acta Facultatis Medicae Naissensis. 2007;24(1):41-44.
https://hdl.handle.net/21.15107/rcub_vinar_10331 .
Sudar, Emina, Velebit, Jelena, Gluvić, Zoran, Lazić, Emilija, Isenović, Esma R., "Regulation of glucose metabolism by insulin in cardiomyocytes" in Acta Facultatis Medicae Naissensis, 24, no. 1 (2007):41-44,
https://hdl.handle.net/21.15107/rcub_vinar_10331 .

Regulation of sodium pump by estradiol in vascular smooth muscle cells

Trpković, Andreja; Putniković, Biljana; Sudar, Emina; Velebit, Jelena; Gluvić, Zoran; Ilić, Želmira; Đurić, Jovanka; Isenović, Esma R.

(2007)

TY  - JOUR
AU  - Trpković, Andreja
AU  - Putniković, Biljana
AU  - Sudar, Emina
AU  - Velebit, Jelena
AU  - Gluvić, Zoran
AU  - Ilić, Želmira
AU  - Đurić, Jovanka
AU  - Isenović, Esma R.
PY  - 2007
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10333
AB  - The effects of estradiol involve the activation of multiple signaling cascades, including and p42/44 mitogen-activated protein kinase. In addition, some of the effects of estradiol have been linked to activity of cytosolic phospholipase. The mechanisms of estradiol action on the cardiovascular system can be divided into two broad categories: effects on systemic cardiovascular risk factors, and direct effects on vascular cells. A number of direct vascular effects of estradiol have been reported, including its impact on the regulation of sodium pump activity and vasomotor tone. The sodium pump is a ubiquitous plasma membrane- bound enzyme that plays an essential role in regulatory vasomotion. The association between reduced sodium pump expression and the development and/or pathogenesis of several disease states including hypertension, congestive heart failure, chronic renal failure and diabetes underscores the importance of the sodium pump. We hypothesize that estradiol stimulates the vascular smooth muscle cell sodium pump via a mechanism involving phosphatydil inositol-3 kinase-dependent activation of cytosolic phospholipase and release of arachidonic acid , which activates the p42/44 mitogen-activated protein kinase cascade and further increases cytosolic phospholipase activity. Furthermore, we postulate that in a disease state such as hypertension (as in spontaneously hypertensive rat ), the resulting overproduction of Angiotensin II will interfere with estradiol regulation of the sodium pump.
AB  - Estradiol aktivira multipne kaskadne signalne reakcije u kojima su ukljuceni i enzimi, kinaze, kao sto su fosfatidil inozitol-3 kinaza i p42/44 mitogenom aktivirana kinaza. Takođe, se smatra da su pojedini efekti estradiola posledica aktivnosti citosolne fosfolipaze 2. Uticaj estradiola na kardiovaskularni sistem je dvojak: pored direktnog efekta na vaskularne ćelije, estradiol utiče i na sistemske faktore rizika koji dovode do pojave kardiovaskularne bolesti. Poznati su brojni direktni uticaji estradiola na vaskularni sistem, uključujući i ulogu estradiola u regulaciji aktivnosti natrijumove pumpe i vazomotornog tonusa. Natrijumova pumpa je ubikvitaran enzim lokalizovan u ćelijskoj membrani i ima značajnu ulogu u regulaciji vazomotornog tonusa. Poremecaj u regulaciji aktivnosti (npr. smanjena aktivnost), natrijumove pumpe je posebno izražena u nastanku i/ili patogenezi pojedinih oboljenja kao što su: hipertenzija, kongestivna srčana slabost, hronična bubrežna slabost i šećerna bolest. U nasem radu polazimo od hipoteze da estradiol stimuliše aktivnost/sintezu natrijumove pumpe u vaskularnim glatkim mišićnim ćelijama putem fosfatidil inozitol-3 kinazne-zavisne aktivacije citosolne fosfolipaze 2, nakon cega oslobođena arahidonska kiselina, indukuje aktivaciju p42/44 mitogenom aktiviriranu kinaznu kaskadnu reakciju sto dodatno doprinosi aktivnosti citosolne fosfolipaze 2.Takođe, smatramo da se u oboljenjima kao što je hipertenzija, povećana sinteza angiotenzina II ometa estradiolom regulisanu aktivnost/sintezu natrujumove pumpe.
T2  - Materia medica
T1  - Regulation of sodium pump by estradiol in vascular smooth muscle cells
T1  - Uloga estradiola u regulaciji netrijumove pumpe u vaskularnim glatkim mišićnim ćelijama
VL  - 23
IS  - 3
SP  - 32
EP  - 36
UR  - https://hdl.handle.net/21.15107/rcub_vinar_10333
ER  - 
@article{
author = "Trpković, Andreja and Putniković, Biljana and Sudar, Emina and Velebit, Jelena and Gluvić, Zoran and Ilić, Želmira and Đurić, Jovanka and Isenović, Esma R.",
year = "2007",
abstract = "The effects of estradiol involve the activation of multiple signaling cascades, including and p42/44 mitogen-activated protein kinase. In addition, some of the effects of estradiol have been linked to activity of cytosolic phospholipase. The mechanisms of estradiol action on the cardiovascular system can be divided into two broad categories: effects on systemic cardiovascular risk factors, and direct effects on vascular cells. A number of direct vascular effects of estradiol have been reported, including its impact on the regulation of sodium pump activity and vasomotor tone. The sodium pump is a ubiquitous plasma membrane- bound enzyme that plays an essential role in regulatory vasomotion. The association between reduced sodium pump expression and the development and/or pathogenesis of several disease states including hypertension, congestive heart failure, chronic renal failure and diabetes underscores the importance of the sodium pump. We hypothesize that estradiol stimulates the vascular smooth muscle cell sodium pump via a mechanism involving phosphatydil inositol-3 kinase-dependent activation of cytosolic phospholipase and release of arachidonic acid , which activates the p42/44 mitogen-activated protein kinase cascade and further increases cytosolic phospholipase activity. Furthermore, we postulate that in a disease state such as hypertension (as in spontaneously hypertensive rat ), the resulting overproduction of Angiotensin II will interfere with estradiol regulation of the sodium pump., Estradiol aktivira multipne kaskadne signalne reakcije u kojima su ukljuceni i enzimi, kinaze, kao sto su fosfatidil inozitol-3 kinaza i p42/44 mitogenom aktivirana kinaza. Takođe, se smatra da su pojedini efekti estradiola posledica aktivnosti citosolne fosfolipaze 2. Uticaj estradiola na kardiovaskularni sistem je dvojak: pored direktnog efekta na vaskularne ćelije, estradiol utiče i na sistemske faktore rizika koji dovode do pojave kardiovaskularne bolesti. Poznati su brojni direktni uticaji estradiola na vaskularni sistem, uključujući i ulogu estradiola u regulaciji aktivnosti natrijumove pumpe i vazomotornog tonusa. Natrijumova pumpa je ubikvitaran enzim lokalizovan u ćelijskoj membrani i ima značajnu ulogu u regulaciji vazomotornog tonusa. Poremecaj u regulaciji aktivnosti (npr. smanjena aktivnost), natrijumove pumpe je posebno izražena u nastanku i/ili patogenezi pojedinih oboljenja kao što su: hipertenzija, kongestivna srčana slabost, hronična bubrežna slabost i šećerna bolest. U nasem radu polazimo od hipoteze da estradiol stimuliše aktivnost/sintezu natrijumove pumpe u vaskularnim glatkim mišićnim ćelijama putem fosfatidil inozitol-3 kinazne-zavisne aktivacije citosolne fosfolipaze 2, nakon cega oslobođena arahidonska kiselina, indukuje aktivaciju p42/44 mitogenom aktiviriranu kinaznu kaskadnu reakciju sto dodatno doprinosi aktivnosti citosolne fosfolipaze 2.Takođe, smatramo da se u oboljenjima kao što je hipertenzija, povećana sinteza angiotenzina II ometa estradiolom regulisanu aktivnost/sintezu natrujumove pumpe.",
journal = "Materia medica",
title = "Regulation of sodium pump by estradiol in vascular smooth muscle cells, Uloga estradiola u regulaciji netrijumove pumpe u vaskularnim glatkim mišićnim ćelijama",
volume = "23",
number = "3",
pages = "32-36",
url = "https://hdl.handle.net/21.15107/rcub_vinar_10333"
}
Trpković, A., Putniković, B., Sudar, E., Velebit, J., Gluvić, Z., Ilić, Ž., Đurić, J.,& Isenović, E. R.. (2007). Regulation of sodium pump by estradiol in vascular smooth muscle cells. in Materia medica, 23(3), 32-36.
https://hdl.handle.net/21.15107/rcub_vinar_10333
Trpković A, Putniković B, Sudar E, Velebit J, Gluvić Z, Ilić Ž, Đurić J, Isenović ER. Regulation of sodium pump by estradiol in vascular smooth muscle cells. in Materia medica. 2007;23(3):32-36.
https://hdl.handle.net/21.15107/rcub_vinar_10333 .
Trpković, Andreja, Putniković, Biljana, Sudar, Emina, Velebit, Jelena, Gluvić, Zoran, Ilić, Želmira, Đurić, Jovanka, Isenović, Esma R., "Regulation of sodium pump by estradiol in vascular smooth muscle cells" in Materia medica, 23, no. 3 (2007):32-36,
https://hdl.handle.net/21.15107/rcub_vinar_10333 .

Insulin signaling pathway in skeletal muscles

Sudar, Emina; Velebit, Jelena; Isenović, Esma R.

(2006)

TY  - JOUR
AU  - Sudar, Emina
AU  - Velebit, Jelena
AU  - Isenović, Esma R.
PY  - 2006
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10334
AB  - Insulin (INS), the hormone of endocrine pancreas, is one of the most important vertebrate proteins. Increased circulating levels of glucose (Glu) stimulate pancreatic β cells to secrete INS by exocytosis. Insulin receptor (IR) belongs to the group of membrane receptors with tyrosine kinase activity. Skeletal muscles (SM) account for about 85% of total Glu disposal under INS stimulated conditions where it is incorporated and stored as glycogen. Glu entry into cells is a process that requires the involvement of a carrier protein in order to facilitate the movement of Glu across the plasma membrane of a cell and they are identified as glucose transporters (GLUT). In SMs, GLUT1 and GLUT4 are the primary GLUTs expressed. In SMs, INS stimulated Glu disposal is mediated via translocation of GLUT4 from intracellular storage site to the plasma membrane and GLUT1 primary mediates basal, rather than INS mediated Glu uptake. Impairment of the mechanisms responsible for this translocation leads to INS resistance. Peripheral INS resistance is a key factor in the pathogenesis of type 2 Diabetes Mellitus (DMT2) and involves defects in Glu transport system in adipocytes and SM. SM is the principal site of Glu uptake under INS stimulated conditions and INS resistance in SM has been identified as the most important site for INS resistance in DMT2 and may result from a defect at the level of Glu transport, Glu phosphorylation or glycogen synthesis. Glu transport is one of the first steps in INS stimulated Glu uptake in SM and it is a rate limiting factor in the whole Glu metabolism.
AB  - Insulin (INS) je hormon endokrinog pankreasa i jedan je od najznačajnijih proteina kičmenjaka. Povećana koncentracija glukoze (Glu) u krvi stimuliše β ćelije pankreasa i dovodi do sekrecije INS egzocitozom. Receptor za insulin (IR) pripada grupi membranskih receptora koji poseduju tirozin kinaznu aktivnost. Skeletni mišići (SM) preuzimaju oko 85% ukupne Glu pri insulinskoj stimulaciji i Glu se u njih inkorporira i skladišti u vidu glikogena. Glu u ćelije ulazi uz pomoć proteina nosača koji olakšavaju transport Glu kroz ćelijsku membranu i identifikovani su kao glukozni transporteri (GLUT). U ćelijama SM, lokalizovani su GLUT1 i GLUT4. INS stimulisano preuzimanje Glu u mišićnim ćelijama posredovano je translokacijom GLUT4 na površinu ćelijske membrane, dok GLUT1 posreduje u preuzimanju Glu u mišićne ćelije pri bazalnim uslovima. Poremećaji u mehanizmima koji su odgovorni za ovu translokaciju vode insulinskoj rezistenciji. Periferna insulinska resistencija koja uključuje poremećaje transporta Glu u adipocitima i SM, ključni je faktor u patogenezi Diabetesa Mellitusa tipa 2 (DMT2). S obzirom na to da SM preuzimaju najveći deo ukupne Glu, insulinska rezistencija u SM od velikog je značaja za razvoj DMT2 i može se javiti na tri nivoa: na nivou transporta Glu, fosforilacije Glu i na nivou sinteze glikogena. Transport Glu je osnovni korak u preuzimanju Glu u SM pri insulinskoj stimulaciji i ograničavajući je faktor za celokupan metabolizam Glu u organizmu.
T2  - Timočki medicinski glasnik
T1  - Insulin signaling pathway in skeletal muscles
T1  - Signalni put insulina u ćelijama skeletnih mišića
VL  - 31
IS  - 4
SP  - 180
EP  - 185
UR  - https://hdl.handle.net/21.15107/rcub_vinar_10334
ER  - 
@article{
author = "Sudar, Emina and Velebit, Jelena and Isenović, Esma R.",
year = "2006",
abstract = "Insulin (INS), the hormone of endocrine pancreas, is one of the most important vertebrate proteins. Increased circulating levels of glucose (Glu) stimulate pancreatic β cells to secrete INS by exocytosis. Insulin receptor (IR) belongs to the group of membrane receptors with tyrosine kinase activity. Skeletal muscles (SM) account for about 85% of total Glu disposal under INS stimulated conditions where it is incorporated and stored as glycogen. Glu entry into cells is a process that requires the involvement of a carrier protein in order to facilitate the movement of Glu across the plasma membrane of a cell and they are identified as glucose transporters (GLUT). In SMs, GLUT1 and GLUT4 are the primary GLUTs expressed. In SMs, INS stimulated Glu disposal is mediated via translocation of GLUT4 from intracellular storage site to the plasma membrane and GLUT1 primary mediates basal, rather than INS mediated Glu uptake. Impairment of the mechanisms responsible for this translocation leads to INS resistance. Peripheral INS resistance is a key factor in the pathogenesis of type 2 Diabetes Mellitus (DMT2) and involves defects in Glu transport system in adipocytes and SM. SM is the principal site of Glu uptake under INS stimulated conditions and INS resistance in SM has been identified as the most important site for INS resistance in DMT2 and may result from a defect at the level of Glu transport, Glu phosphorylation or glycogen synthesis. Glu transport is one of the first steps in INS stimulated Glu uptake in SM and it is a rate limiting factor in the whole Glu metabolism., Insulin (INS) je hormon endokrinog pankreasa i jedan je od najznačajnijih proteina kičmenjaka. Povećana koncentracija glukoze (Glu) u krvi stimuliše β ćelije pankreasa i dovodi do sekrecije INS egzocitozom. Receptor za insulin (IR) pripada grupi membranskih receptora koji poseduju tirozin kinaznu aktivnost. Skeletni mišići (SM) preuzimaju oko 85% ukupne Glu pri insulinskoj stimulaciji i Glu se u njih inkorporira i skladišti u vidu glikogena. Glu u ćelije ulazi uz pomoć proteina nosača koji olakšavaju transport Glu kroz ćelijsku membranu i identifikovani su kao glukozni transporteri (GLUT). U ćelijama SM, lokalizovani su GLUT1 i GLUT4. INS stimulisano preuzimanje Glu u mišićnim ćelijama posredovano je translokacijom GLUT4 na površinu ćelijske membrane, dok GLUT1 posreduje u preuzimanju Glu u mišićne ćelije pri bazalnim uslovima. Poremećaji u mehanizmima koji su odgovorni za ovu translokaciju vode insulinskoj rezistenciji. Periferna insulinska resistencija koja uključuje poremećaje transporta Glu u adipocitima i SM, ključni je faktor u patogenezi Diabetesa Mellitusa tipa 2 (DMT2). S obzirom na to da SM preuzimaju najveći deo ukupne Glu, insulinska rezistencija u SM od velikog je značaja za razvoj DMT2 i može se javiti na tri nivoa: na nivou transporta Glu, fosforilacije Glu i na nivou sinteze glikogena. Transport Glu je osnovni korak u preuzimanju Glu u SM pri insulinskoj stimulaciji i ograničavajući je faktor za celokupan metabolizam Glu u organizmu.",
journal = "Timočki medicinski glasnik",
title = "Insulin signaling pathway in skeletal muscles, Signalni put insulina u ćelijama skeletnih mišića",
volume = "31",
number = "4",
pages = "180-185",
url = "https://hdl.handle.net/21.15107/rcub_vinar_10334"
}
Sudar, E., Velebit, J.,& Isenović, E. R.. (2006). Insulin signaling pathway in skeletal muscles. in Timočki medicinski glasnik, 31(4), 180-185.
https://hdl.handle.net/21.15107/rcub_vinar_10334
Sudar E, Velebit J, Isenović ER. Insulin signaling pathway in skeletal muscles. in Timočki medicinski glasnik. 2006;31(4):180-185.
https://hdl.handle.net/21.15107/rcub_vinar_10334 .
Sudar, Emina, Velebit, Jelena, Isenović, Esma R., "Insulin signaling pathway in skeletal muscles" in Timočki medicinski glasnik, 31, no. 4 (2006):180-185,
https://hdl.handle.net/21.15107/rcub_vinar_10334 .