Čolović, Radmilo

Link to this page

Authority KeyName Variants
706dbf02-187b-4299-857e-2cd389fc864a
  • Čolović, Radmilo (7)
Projects

Author's Bibliography

Experimental and computational study of the two-fluid nozzle spreading characteristics

Pezo, Milada L.; Pezo, Lato; Dragojlović, Danka; Čolović, Radmilo; Čolović, Dušica; Vidosavljević, Strahinja; Hadnađev, Miroslav; Đuragić, Olivera

(2021)

TY  - JOUR
AU  - Pezo, Milada L.
AU  - Pezo, Lato
AU  - Dragojlović, Danka
AU  - Čolović, Radmilo
AU  - Čolović, Dušica
AU  - Vidosavljević, Strahinja
AU  - Hadnađev, Miroslav
AU  - Đuragić, Olivera
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8921
AB  - Spray nozzles are widely used in processing industry for spreading evenly large amount of fluids. The expansion of fluid depends on the nozzle type, the parameters of the nozzle and the characteristics of the working fluids. The experiments were performed for five fluid types used in food/pharma/animal feed application (glycerol, soybean oil, molasses, hydroxypropyl methylcellulose, tara gum), three diameters of the nozzle (1 mm, 3 mm, 5 mm) and three fluid temperatures (40 °C, 50 °C and 60 °C). An experimentally validated numerical model was developed, based on laminar two-phase flow, investigating different liquids, assuming the ideal gas flow, applying the finite volume method and volume of the fluid model with interface tracking. The effects of liquid parameters, nozzle diameter and liquid temperature on the characteristics of the jet were also analysed by artificial neural network model. The nozzle diameter strongly influenced the spreading characteristics of the jet, while the temperature affected the liquid viscosity. The increase of the temperature also led to the augment of the spreading angle of the fluid passing from the nozzle and also the enhancement of the spaying liquid expansion. © 2020 Institution of Chemical Engineers
T2  - Chemical Engineering Research and Design
T1  - Experimental and computational study of the two-fluid nozzle spreading characteristics
VL  - 166
SP  - 18
EP  - 28
DO  - 10.1016/j.cherd.2020.11.027
ER  - 
@article{
author = "Pezo, Milada L. and Pezo, Lato and Dragojlović, Danka and Čolović, Radmilo and Čolović, Dušica and Vidosavljević, Strahinja and Hadnađev, Miroslav and Đuragić, Olivera",
year = "2021",
abstract = "Spray nozzles are widely used in processing industry for spreading evenly large amount of fluids. The expansion of fluid depends on the nozzle type, the parameters of the nozzle and the characteristics of the working fluids. The experiments were performed for five fluid types used in food/pharma/animal feed application (glycerol, soybean oil, molasses, hydroxypropyl methylcellulose, tara gum), three diameters of the nozzle (1 mm, 3 mm, 5 mm) and three fluid temperatures (40 °C, 50 °C and 60 °C). An experimentally validated numerical model was developed, based on laminar two-phase flow, investigating different liquids, assuming the ideal gas flow, applying the finite volume method and volume of the fluid model with interface tracking. The effects of liquid parameters, nozzle diameter and liquid temperature on the characteristics of the jet were also analysed by artificial neural network model. The nozzle diameter strongly influenced the spreading characteristics of the jet, while the temperature affected the liquid viscosity. The increase of the temperature also led to the augment of the spreading angle of the fluid passing from the nozzle and also the enhancement of the spaying liquid expansion. © 2020 Institution of Chemical Engineers",
journal = "Chemical Engineering Research and Design",
title = "Experimental and computational study of the two-fluid nozzle spreading characteristics",
volume = "166",
pages = "18-28",
doi = "10.1016/j.cherd.2020.11.027"
}
Pezo, M. L., Pezo, L., Dragojlović, D., Čolović, R., Čolović, D., Vidosavljević, S., Hadnađev, M.,& Đuragić, O.. (2021). Experimental and computational study of the two-fluid nozzle spreading characteristics. in Chemical Engineering Research and Design, 166, 18-28.
https://doi.org/10.1016/j.cherd.2020.11.027
Pezo ML, Pezo L, Dragojlović D, Čolović R, Čolović D, Vidosavljević S, Hadnađev M, Đuragić O. Experimental and computational study of the two-fluid nozzle spreading characteristics. in Chemical Engineering Research and Design. 2021;166:18-28.
doi:10.1016/j.cherd.2020.11.027 .
Pezo, Milada L., Pezo, Lato, Dragojlović, Danka, Čolović, Radmilo, Čolović, Dušica, Vidosavljević, Strahinja, Hadnađev, Miroslav, Đuragić, Olivera, "Experimental and computational study of the two-fluid nozzle spreading characteristics" in Chemical Engineering Research and Design, 166 (2021):18-28,
https://doi.org/10.1016/j.cherd.2020.11.027 . .
5
4

Mathematical model, numerical simulation and optimization of rotating valve feeder in animal feed production

Pezo, Lato; Banjac, Vojislav; Pezo, Milada L.; Jovanović, Aca P.; Đuragić, Olivera; Čolović, Dušica; Čolović, Radmilo

(2021)

TY  - JOUR
AU  - Pezo, Lato
AU  - Banjac, Vojislav
AU  - Pezo, Milada L.
AU  - Jovanović, Aca P.
AU  - Đuragić, Olivera
AU  - Čolović, Dušica
AU  - Čolović, Radmilo
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9726
AB  - The processes of transportation of bulk materials from silos and hoppers are significant in various industrial applications because of their influences on material characteristics and working parameters of the production process. In this paper, a rotating valve feeder, with eight vanes was investigated for transport action of bulk materials, such as wheat, maize and rice, which were ground, using the sieve sizes of 1, 3 and 5 mm. The rotating valve feeders under investigation have proven to be useful in transportation processes despite their construction simplicity. All investigations were done experimentally and numerically, using coupled Discrete Element Method (DEM) and Computational Fluid Dynamics calculation (CFD). The influences of different types of bulk materials and its particle size, on the performances of the rotating valve feeder during material transport were explored. The artificial neural network was developed (in the form of a multi-layer perceptron model) in order to optimize the granular flow of the bulk material, showing the high prediction capability of bulk density, dosing time and granular material flow, with the coefficient of determination equal to 0.999 during the training period. The decreasing of the sieve opening diameter caused the decrease in bulk density of the ground material, but statistically significant only for rice, as seen from the experiments and the results of the neural network model. The 5 mm sieve ensured the material with the highest flowability, significantly increasing the granular flow and decreasing the dosing time. The granular particles were modelled as the spheres in the DEM/CFD simulation, with a small-sized triangular surfaces. The DEM/CFD prediction of the mass transport for rice, wheat and maize was quite adequate, obtaining the coefficient of determination being 0.997; 0.998 and 0.849, respectively.
T2  - Animal Feed Science and Technology
T1  - Mathematical model, numerical simulation and optimization of rotating valve feeder in animal feed production
VL  - 272
SP  - 114741
DO  - 10.1016/j.anifeedsci.2020.114741
ER  - 
@article{
author = "Pezo, Lato and Banjac, Vojislav and Pezo, Milada L. and Jovanović, Aca P. and Đuragić, Olivera and Čolović, Dušica and Čolović, Radmilo",
year = "2021",
abstract = "The processes of transportation of bulk materials from silos and hoppers are significant in various industrial applications because of their influences on material characteristics and working parameters of the production process. In this paper, a rotating valve feeder, with eight vanes was investigated for transport action of bulk materials, such as wheat, maize and rice, which were ground, using the sieve sizes of 1, 3 and 5 mm. The rotating valve feeders under investigation have proven to be useful in transportation processes despite their construction simplicity. All investigations were done experimentally and numerically, using coupled Discrete Element Method (DEM) and Computational Fluid Dynamics calculation (CFD). The influences of different types of bulk materials and its particle size, on the performances of the rotating valve feeder during material transport were explored. The artificial neural network was developed (in the form of a multi-layer perceptron model) in order to optimize the granular flow of the bulk material, showing the high prediction capability of bulk density, dosing time and granular material flow, with the coefficient of determination equal to 0.999 during the training period. The decreasing of the sieve opening diameter caused the decrease in bulk density of the ground material, but statistically significant only for rice, as seen from the experiments and the results of the neural network model. The 5 mm sieve ensured the material with the highest flowability, significantly increasing the granular flow and decreasing the dosing time. The granular particles were modelled as the spheres in the DEM/CFD simulation, with a small-sized triangular surfaces. The DEM/CFD prediction of the mass transport for rice, wheat and maize was quite adequate, obtaining the coefficient of determination being 0.997; 0.998 and 0.849, respectively.",
journal = "Animal Feed Science and Technology",
title = "Mathematical model, numerical simulation and optimization of rotating valve feeder in animal feed production",
volume = "272",
pages = "114741",
doi = "10.1016/j.anifeedsci.2020.114741"
}
Pezo, L., Banjac, V., Pezo, M. L., Jovanović, A. P., Đuragić, O., Čolović, D.,& Čolović, R.. (2021). Mathematical model, numerical simulation and optimization of rotating valve feeder in animal feed production. in Animal Feed Science and Technology, 272, 114741.
https://doi.org/10.1016/j.anifeedsci.2020.114741
Pezo L, Banjac V, Pezo ML, Jovanović AP, Đuragić O, Čolović D, Čolović R. Mathematical model, numerical simulation and optimization of rotating valve feeder in animal feed production. in Animal Feed Science and Technology. 2021;272:114741.
doi:10.1016/j.anifeedsci.2020.114741 .
Pezo, Lato, Banjac, Vojislav, Pezo, Milada L., Jovanović, Aca P., Đuragić, Olivera, Čolović, Dušica, Čolović, Radmilo, "Mathematical model, numerical simulation and optimization of rotating valve feeder in animal feed production" in Animal Feed Science and Technology, 272 (2021):114741,
https://doi.org/10.1016/j.anifeedsci.2020.114741 . .
5
2
3

Application of soybean oil and glycerol in animal feed production, ANN model

Dragojlović, Danka; Pezo, Lato; Čolović, Dušica; Vidosavljević, Strahinja; Pezo, Milada L.; Čolović, Radmilo; Kokić, Bojana; Đuragić, Olivera

(2019)

TY  - JOUR
AU  - Dragojlović, Danka
AU  - Pezo, Lato
AU  - Čolović, Dušica
AU  - Vidosavljević, Strahinja
AU  - Pezo, Milada L.
AU  - Čolović, Radmilo
AU  - Kokić, Bojana
AU  - Đuragić, Olivera
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8821
AB  - In the past few decades the diet preparation in feed production has evolved towards more complicated technological operations, which include different liquid addition. A wide scale of different liquids is used in contemporary animal feed production, from oils and glycerol to more expensive products in a liquid form, such as enzymes, flavourings, amino acids, vitamins and others. In the presented study the liquid addition in feed production was observed, with a specific goal to investigate the spraying systems in order to better understand the effects of fluids, such as soybean oil and glycerol, on feed production. The dispersion angles of spraying nozzle for glycerol and soybean oil were determined as an indicator of the uniform application of liquids during feed production. Dispersion of the material was accomplished using the two-fluid nozzle. The performance of Artificial Neural Network (ANN) was compared with experimental data in order to develop rapid and accurate method for prediction of dispersion angle. The ANN model showed high prediction accuracy (r2 = 0.945).
T2  - Acta Periodica Technologica
T1  - Application of soybean oil and glycerol in animal feed production, ANN model
IS  - 50
SP  - 51
EP  - 58
DO  - 10.2298/APT1950051D
ER  - 
@article{
author = "Dragojlović, Danka and Pezo, Lato and Čolović, Dušica and Vidosavljević, Strahinja and Pezo, Milada L. and Čolović, Radmilo and Kokić, Bojana and Đuragić, Olivera",
year = "2019",
abstract = "In the past few decades the diet preparation in feed production has evolved towards more complicated technological operations, which include different liquid addition. A wide scale of different liquids is used in contemporary animal feed production, from oils and glycerol to more expensive products in a liquid form, such as enzymes, flavourings, amino acids, vitamins and others. In the presented study the liquid addition in feed production was observed, with a specific goal to investigate the spraying systems in order to better understand the effects of fluids, such as soybean oil and glycerol, on feed production. The dispersion angles of spraying nozzle for glycerol and soybean oil were determined as an indicator of the uniform application of liquids during feed production. Dispersion of the material was accomplished using the two-fluid nozzle. The performance of Artificial Neural Network (ANN) was compared with experimental data in order to develop rapid and accurate method for prediction of dispersion angle. The ANN model showed high prediction accuracy (r2 = 0.945).",
journal = "Acta Periodica Technologica",
title = "Application of soybean oil and glycerol in animal feed production, ANN model",
number = "50",
pages = "51-58",
doi = "10.2298/APT1950051D"
}
Dragojlović, D., Pezo, L., Čolović, D., Vidosavljević, S., Pezo, M. L., Čolović, R., Kokić, B.,& Đuragić, O.. (2019). Application of soybean oil and glycerol in animal feed production, ANN model. in Acta Periodica Technologica(50), 51-58.
https://doi.org/10.2298/APT1950051D
Dragojlović D, Pezo L, Čolović D, Vidosavljević S, Pezo ML, Čolović R, Kokić B, Đuragić O. Application of soybean oil and glycerol in animal feed production, ANN model. in Acta Periodica Technologica. 2019;(50):51-58.
doi:10.2298/APT1950051D .
Dragojlović, Danka, Pezo, Lato, Čolović, Dušica, Vidosavljević, Strahinja, Pezo, Milada L., Čolović, Radmilo, Kokić, Bojana, Đuragić, Olivera, "Application of soybean oil and glycerol in animal feed production, ANN model" in Acta Periodica Technologica, no. 50 (2019):51-58,
https://doi.org/10.2298/APT1950051D . .
3
3

The joint mixing action of the static pre-mixer and the rotating drum mixer – Discrete element method approach

Pezo, Lato; Pezo, Milada L.; Jovanović, Aca; Čolović, Radmilo; Vukmirović, Đuro; Banjac, Vojislav; Đuragić, Olivera

(2018)

TY  - JOUR
AU  - Pezo, Lato
AU  - Pezo, Milada L.
AU  - Jovanović, Aca
AU  - Čolović, Radmilo
AU  - Vukmirović, Đuro
AU  - Banjac, Vojislav
AU  - Đuragić, Olivera
PY  - 2018
UR  - http://linkinghub.elsevier.com/retrieve/pii/S092188311830147X
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7673
AB  - In this study, the mixing performance of coupled mixing action of the Komax static mixer (which is used as a pre-mixer) and rotating drum (applied as the final mixer) was explored in the maize meal mixing operation. The main objective of this paper was to predict the behaviour of the previously grinded maize particles, during the mixing process in static mixer and drum mixer, and to explore the possibilities to shorten the mixing time in the main mixer (in order to reduce the energy consumption). Three different experiments were performed: in the first experiment, possibilities of static mixer were explored, second experiment showed the mixing performance of rotating drum, and the combination of these two mixing devices was investigated in the third experiment. Homogeneity of the obtained mixtures was determined experimentally, by the “Microtracers” method. The Discrete Element Method was used for modelling of granular flow in the pre-mixing and final mixing applications, and to predict the inter-particle mixing quality within a static mixer and the rotating drum mixer. The results of the numerical simulation are compared with appropriate experimental results. The possible industrial application of this model could be the optimization of parameters of mixing systems taking into account the quality and the duration of the mixing process.
T2  - Advanced Powder Technology
T1  - The joint mixing action of the static pre-mixer and the rotating drum mixer – Discrete element method approach
VL  - 29
IS  - 7
SP  - 1734
EP  - 1741
DO  - 10.1016/j.apt.2018.04.008
ER  - 
@article{
author = "Pezo, Lato and Pezo, Milada L. and Jovanović, Aca and Čolović, Radmilo and Vukmirović, Đuro and Banjac, Vojislav and Đuragić, Olivera",
year = "2018",
abstract = "In this study, the mixing performance of coupled mixing action of the Komax static mixer (which is used as a pre-mixer) and rotating drum (applied as the final mixer) was explored in the maize meal mixing operation. The main objective of this paper was to predict the behaviour of the previously grinded maize particles, during the mixing process in static mixer and drum mixer, and to explore the possibilities to shorten the mixing time in the main mixer (in order to reduce the energy consumption). Three different experiments were performed: in the first experiment, possibilities of static mixer were explored, second experiment showed the mixing performance of rotating drum, and the combination of these two mixing devices was investigated in the third experiment. Homogeneity of the obtained mixtures was determined experimentally, by the “Microtracers” method. The Discrete Element Method was used for modelling of granular flow in the pre-mixing and final mixing applications, and to predict the inter-particle mixing quality within a static mixer and the rotating drum mixer. The results of the numerical simulation are compared with appropriate experimental results. The possible industrial application of this model could be the optimization of parameters of mixing systems taking into account the quality and the duration of the mixing process.",
journal = "Advanced Powder Technology",
title = "The joint mixing action of the static pre-mixer and the rotating drum mixer – Discrete element method approach",
volume = "29",
number = "7",
pages = "1734-1741",
doi = "10.1016/j.apt.2018.04.008"
}
Pezo, L., Pezo, M. L., Jovanović, A., Čolović, R., Vukmirović, Đ., Banjac, V.,& Đuragić, O.. (2018). The joint mixing action of the static pre-mixer and the rotating drum mixer – Discrete element method approach. in Advanced Powder Technology, 29(7), 1734-1741.
https://doi.org/10.1016/j.apt.2018.04.008
Pezo L, Pezo ML, Jovanović A, Čolović R, Vukmirović Đ, Banjac V, Đuragić O. The joint mixing action of the static pre-mixer and the rotating drum mixer – Discrete element method approach. in Advanced Powder Technology. 2018;29(7):1734-1741.
doi:10.1016/j.apt.2018.04.008 .
Pezo, Lato, Pezo, Milada L., Jovanović, Aca, Čolović, Radmilo, Vukmirović, Đuro, Banjac, Vojislav, Đuragić, Olivera, "The joint mixing action of the static pre-mixer and the rotating drum mixer – Discrete element method approach" in Advanced Powder Technology, 29, no. 7 (2018):1734-1741,
https://doi.org/10.1016/j.apt.2018.04.008 . .
9
5
9

Optimization of the classification process in the zigzag air classifier for obtaining a high protein sunflower meal - Chemometric and CFD approach

Banjac, Vojislav; Pezo, Lato; Pezo, Milada L.; Vukmirović, Đuro; Čolović, Dušica; Fišteš, Aleksandar; Čolović, Radmilo

(2017)

TY  - JOUR
AU  - Banjac, Vojislav
AU  - Pezo, Lato
AU  - Pezo, Milada L.
AU  - Vukmirović, Đuro
AU  - Čolović, Dušica
AU  - Fišteš, Aleksandar
AU  - Čolović, Radmilo
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1492
AB  - In this study, sunflower meal is ground by a hammer mill after which air zigzag gravitational air classifier is used for separating sunflower hulls from the kernels in order to obtain protein rich fractions. Three hammer mill sieves with sieve openings diameter of 3, 2 and 1 mm were used, while three air flows (5, 8.7 and 12.5 m(3)/h) and three feed rates (30%, 60% an 90% of bowl feeder oscillation maximum rate) were varied during air classification process. For describing the effects of the test variables on the observed responses Principal Component Analysis, Standard Score analysis and Response Surface Methodology were used. Beside experimental investigations, CFD model was used for numerical optimization of sunflower meal air classification process. Air classification of hammer milled sunflower meal resulted in coarse fractions enriched in protein content. The decrease in sieve openings diameter of the hammer mill sieve increased protein content in coarse fractions of sunflower meal obtained at same air flow, and at the same time decreased matching fraction yield. Increase in air flow lead to the increase in protein content along the same hammer mill sieve. Standard score analysis showed that optimum values for protein content and ratio of coarse and fine fractions have been obtained by using a sieve with 1 mm opening diameter, air flow of 12.5 m(3)/h and 60% of the maximum feeder rate. Fraction ratio and protein content were mostly affected by the linear term of air flow and the sieve openings diameter of the hammer mill sieve in the Second Order Polynomial model. The main focus of CFD analysis was on the particle simulation and the evaluation of the separation efficiency of the zigzag classifier. (C) 2017 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.
T2  - Advanced Powder Technology
T1  - Optimization of the classification process in the zigzag air classifier for obtaining a high protein sunflower meal - Chemometric and CFD approach
VL  - 28
IS  - 3
SP  - 1069
EP  - 1078
DO  - 10.1016/j.apt.2017.01.013
ER  - 
@article{
author = "Banjac, Vojislav and Pezo, Lato and Pezo, Milada L. and Vukmirović, Đuro and Čolović, Dušica and Fišteš, Aleksandar and Čolović, Radmilo",
year = "2017",
abstract = "In this study, sunflower meal is ground by a hammer mill after which air zigzag gravitational air classifier is used for separating sunflower hulls from the kernels in order to obtain protein rich fractions. Three hammer mill sieves with sieve openings diameter of 3, 2 and 1 mm were used, while three air flows (5, 8.7 and 12.5 m(3)/h) and three feed rates (30%, 60% an 90% of bowl feeder oscillation maximum rate) were varied during air classification process. For describing the effects of the test variables on the observed responses Principal Component Analysis, Standard Score analysis and Response Surface Methodology were used. Beside experimental investigations, CFD model was used for numerical optimization of sunflower meal air classification process. Air classification of hammer milled sunflower meal resulted in coarse fractions enriched in protein content. The decrease in sieve openings diameter of the hammer mill sieve increased protein content in coarse fractions of sunflower meal obtained at same air flow, and at the same time decreased matching fraction yield. Increase in air flow lead to the increase in protein content along the same hammer mill sieve. Standard score analysis showed that optimum values for protein content and ratio of coarse and fine fractions have been obtained by using a sieve with 1 mm opening diameter, air flow of 12.5 m(3)/h and 60% of the maximum feeder rate. Fraction ratio and protein content were mostly affected by the linear term of air flow and the sieve openings diameter of the hammer mill sieve in the Second Order Polynomial model. The main focus of CFD analysis was on the particle simulation and the evaluation of the separation efficiency of the zigzag classifier. (C) 2017 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.",
journal = "Advanced Powder Technology",
title = "Optimization of the classification process in the zigzag air classifier for obtaining a high protein sunflower meal - Chemometric and CFD approach",
volume = "28",
number = "3",
pages = "1069-1078",
doi = "10.1016/j.apt.2017.01.013"
}
Banjac, V., Pezo, L., Pezo, M. L., Vukmirović, Đ., Čolović, D., Fišteš, A.,& Čolović, R.. (2017). Optimization of the classification process in the zigzag air classifier for obtaining a high protein sunflower meal - Chemometric and CFD approach. in Advanced Powder Technology, 28(3), 1069-1078.
https://doi.org/10.1016/j.apt.2017.01.013
Banjac V, Pezo L, Pezo ML, Vukmirović Đ, Čolović D, Fišteš A, Čolović R. Optimization of the classification process in the zigzag air classifier for obtaining a high protein sunflower meal - Chemometric and CFD approach. in Advanced Powder Technology. 2017;28(3):1069-1078.
doi:10.1016/j.apt.2017.01.013 .
Banjac, Vojislav, Pezo, Lato, Pezo, Milada L., Vukmirović, Đuro, Čolović, Dušica, Fišteš, Aleksandar, Čolović, Radmilo, "Optimization of the classification process in the zigzag air classifier for obtaining a high protein sunflower meal - Chemometric and CFD approach" in Advanced Powder Technology, 28, no. 3 (2017):1069-1078,
https://doi.org/10.1016/j.apt.2017.01.013 . .
24
10
25

DEM/CFD approach for modeling granular flow in the revolving static mixer

Pezo, Milada L.; Pezo, Lato; Jovanović, Aca; Lončar, Biljana; Čolović, Radmilo

(Elsevier, 2016)

TY  - JOUR
AU  - Pezo, Milada L.
AU  - Pezo, Lato
AU  - Jovanović, Aca
AU  - Lončar, Biljana
AU  - Čolović, Radmilo
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1090
AB  - DEM/CFD (Discrete Element Method/Computational Fluid Dynamic) approach was used to develop a three dimensional model of fluid flow and mixing process of solid particles within the revolving static mixer, type Komax. Static mixers are widely used in process industry, food industry, pharmaceutical and chemical industry. Mixing process adds significant value to the final product and it can be regarded as a key process. The quality and the price of the product often depend on mixing efficiency. Both design and operation of the mixing unit itself have a strong influence on the quality produced. In this paper, DEM is used for modeling granular flow of zeolite spheres in the revolving Komax static mixer and CFD method was used for modeling fluid flow through the Eulerian multiphase model. Coupling of these two methods provides reliable analysis of particle motion and flow pattern of the working fluid. The objective of this paper is to predict the behavior of particles after several rotations of the revolving static mixer. This type of device is used for premixing action before the main mixing process, for significant reduction of mixing time and energy consumption. This type of premixing action is not investigated in detail in the open literature. The results of the numerical simulation are compared with appropriate experimental results. The special design revolving static mixer, made of transparent Plexiglas was used for this experiment. Mixing quality was examined by RSD (relative standard deviation) criterion. Application of this model provides the optimization of the number of revolutions and geometrical parameters of mixing process taking into account the quality of the mixing process. (c) 2016 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
PB  - Elsevier
T2  - Chemical Engineering Research and Design
T1  - DEM/CFD approach for modeling granular flow in the revolving static mixer
VL  - 109
SP  - 317
EP  - 326
DO  - 10.1016/j.cherd.2016.02.003
ER  - 
@article{
author = "Pezo, Milada L. and Pezo, Lato and Jovanović, Aca and Lončar, Biljana and Čolović, Radmilo",
year = "2016",
abstract = "DEM/CFD (Discrete Element Method/Computational Fluid Dynamic) approach was used to develop a three dimensional model of fluid flow and mixing process of solid particles within the revolving static mixer, type Komax. Static mixers are widely used in process industry, food industry, pharmaceutical and chemical industry. Mixing process adds significant value to the final product and it can be regarded as a key process. The quality and the price of the product often depend on mixing efficiency. Both design and operation of the mixing unit itself have a strong influence on the quality produced. In this paper, DEM is used for modeling granular flow of zeolite spheres in the revolving Komax static mixer and CFD method was used for modeling fluid flow through the Eulerian multiphase model. Coupling of these two methods provides reliable analysis of particle motion and flow pattern of the working fluid. The objective of this paper is to predict the behavior of particles after several rotations of the revolving static mixer. This type of device is used for premixing action before the main mixing process, for significant reduction of mixing time and energy consumption. This type of premixing action is not investigated in detail in the open literature. The results of the numerical simulation are compared with appropriate experimental results. The special design revolving static mixer, made of transparent Plexiglas was used for this experiment. Mixing quality was examined by RSD (relative standard deviation) criterion. Application of this model provides the optimization of the number of revolutions and geometrical parameters of mixing process taking into account the quality of the mixing process. (c) 2016 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.",
publisher = "Elsevier",
journal = "Chemical Engineering Research and Design",
title = "DEM/CFD approach for modeling granular flow in the revolving static mixer",
volume = "109",
pages = "317-326",
doi = "10.1016/j.cherd.2016.02.003"
}
Pezo, M. L., Pezo, L., Jovanović, A., Lončar, B.,& Čolović, R.. (2016). DEM/CFD approach for modeling granular flow in the revolving static mixer. in Chemical Engineering Research and Design
Elsevier., 109, 317-326.
https://doi.org/10.1016/j.cherd.2016.02.003
Pezo ML, Pezo L, Jovanović A, Lončar B, Čolović R. DEM/CFD approach for modeling granular flow in the revolving static mixer. in Chemical Engineering Research and Design. 2016;109:317-326.
doi:10.1016/j.cherd.2016.02.003 .
Pezo, Milada L., Pezo, Lato, Jovanović, Aca, Lončar, Biljana, Čolović, Radmilo, "DEM/CFD approach for modeling granular flow in the revolving static mixer" in Chemical Engineering Research and Design, 109 (2016):317-326,
https://doi.org/10.1016/j.cherd.2016.02.003 . .
13
13
14

Modified screw conveyor-mixers - Discrete element modeling approach

Pezo, Lato; Jovanović, Aca; Pezo, Milada L.; Čolović, Radmilo; Lončar, Biljana

(2015)

TY  - JOUR
AU  - Pezo, Lato
AU  - Jovanović, Aca
AU  - Pezo, Milada L.
AU  - Čolović, Radmilo
AU  - Lončar, Biljana
PY  - 2015
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/755
AB  - Screw conveyors are widely used in the food industry, building construction and mining companies, chemical, agricultural and processing industries, mostly for elevating and/or transporting bulk materials over short to medium distances. Despite their apparent simplicity, the improvement of the transport parameters is a very demanding task and designers usually have to rely on data obtained from empirical investigations. In this paper, fifteen horizontal single-pitch screw conveyors with modified geometry and the different lengths were investigated for premixing action, during the transport of materials. All investigations were performed experimentally and numerically, by using Discrete Element Method (DEM). The influences of screw length, observed geometry variations and different types of screw design, on the performances of the screw conveyor-mixer during material transport were explored. The auxiliary mixing action (used to improve the mixing process) was achieved during the transport of the material. The geometry of the screw conveyor is changed by adding three complementary helices oriented in the same or the opposite direction from screw blades. The particles of the material being transported tumble down from the top of the helix to the next free surface, and that segment of helix was used for additional mixing action. According to experiments and DEM analysis, the particle path length is increased, with the observed modification of screw conveyor, and the improved geometry could be determined for increasing the quality of mixing. (C) 2015 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.
T2  - Advanced Powder Technology
T1  - Modified screw conveyor-mixers - Discrete element modeling approach
VL  - 26
IS  - 5
SP  - 1391
EP  - 1399
DO  - 10.1016/j.apt.2015.07.016
ER  - 
@article{
author = "Pezo, Lato and Jovanović, Aca and Pezo, Milada L. and Čolović, Radmilo and Lončar, Biljana",
year = "2015",
abstract = "Screw conveyors are widely used in the food industry, building construction and mining companies, chemical, agricultural and processing industries, mostly for elevating and/or transporting bulk materials over short to medium distances. Despite their apparent simplicity, the improvement of the transport parameters is a very demanding task and designers usually have to rely on data obtained from empirical investigations. In this paper, fifteen horizontal single-pitch screw conveyors with modified geometry and the different lengths were investigated for premixing action, during the transport of materials. All investigations were performed experimentally and numerically, by using Discrete Element Method (DEM). The influences of screw length, observed geometry variations and different types of screw design, on the performances of the screw conveyor-mixer during material transport were explored. The auxiliary mixing action (used to improve the mixing process) was achieved during the transport of the material. The geometry of the screw conveyor is changed by adding three complementary helices oriented in the same or the opposite direction from screw blades. The particles of the material being transported tumble down from the top of the helix to the next free surface, and that segment of helix was used for additional mixing action. According to experiments and DEM analysis, the particle path length is increased, with the observed modification of screw conveyor, and the improved geometry could be determined for increasing the quality of mixing. (C) 2015 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.",
journal = "Advanced Powder Technology",
title = "Modified screw conveyor-mixers - Discrete element modeling approach",
volume = "26",
number = "5",
pages = "1391-1399",
doi = "10.1016/j.apt.2015.07.016"
}
Pezo, L., Jovanović, A., Pezo, M. L., Čolović, R.,& Lončar, B.. (2015). Modified screw conveyor-mixers - Discrete element modeling approach. in Advanced Powder Technology, 26(5), 1391-1399.
https://doi.org/10.1016/j.apt.2015.07.016
Pezo L, Jovanović A, Pezo ML, Čolović R, Lončar B. Modified screw conveyor-mixers - Discrete element modeling approach. in Advanced Powder Technology. 2015;26(5):1391-1399.
doi:10.1016/j.apt.2015.07.016 .
Pezo, Lato, Jovanović, Aca, Pezo, Milada L., Čolović, Radmilo, Lončar, Biljana, "Modified screw conveyor-mixers - Discrete element modeling approach" in Advanced Powder Technology, 26, no. 5 (2015):1391-1399,
https://doi.org/10.1016/j.apt.2015.07.016 . .
49
28
53