Zagorac, Dejan

Link to this page

Authority KeyName Variants
orcid::0000-0002-3102-852X
  • Zagorac, Dejan (74)
Projects
Synthesis, processing and characterization of nanostructured materials for application in the field of energy, mechanical engineering, environmental protection and biomedicine Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča)
Ministry of Education, Science and Technological Development of the Republic of Serbia Investigation of intermetallics and semiconductors and possible application in renewable energy sources
Ministry of Education, Science, and Technological Development of the Republic of Serbia [Grant No. 1702201] Ministry of Education, Science and Technological Development of the Republic of Serbia [172201]
Projekt DEAL Chinese Academy of Sciences [2021VEA0003]
German-Serbian bilateral project DAAD PPP Serbien 2020 [57512952] German-Serbian bilateral project DAAD PPP Serbien [Project no. 57512952]
H2020call:INFRAIA-2016-1 [Grant No. 730897] Horizon 2020 [Grant No. 823717—ESTEEM3]
HPC-Europa 3 Transnational Access Programme [HPC173IKA7] Micromechanical criteria of damage and fracture
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200135 (University of Belgrade, Faculty of Technology and Metallurgy) Marie Sklodowska-Curie [No. 798651]
Ministry of Education, Science and Technological Development of Serbia Ministry of Education, Science and Technological Development of Serbia [1702001]
Ministry of Education, Science and Technological Development of Serbia [Grant Number: 1702201] Ministry of Education, Science and Tech- nological Development of Serbia [No. 1702201]
Ministry of Education, Science, and Technological Development of Serbia [No. 1702201] Ministry of Education, Science, and Technological Development of Serbia [project number 1702201]
Ministry of Education, Science and Technological Development of the Republic of Serbia [Grants no. 1702201 and 1702313] Ministry of Education, Science, and Technological Development of the Republic of Serbia under project years 2020/2021
Ministry of Education, Science & Technological Development, Serbia [1702001] Royal Society of Chemistry
Russian Science Foundation [No. 18-73-10150] Slovak Research and Development Agency [APVV-SK-SRB-0022 and APVV-17-0328]
Slovak Research and Development Agency [APVV-SK-SRB-0022, APVV-17-0328]

Author's Bibliography

Program and Book of Abstracts of the 2nd International Conference on Innovative Materials in Extreme Conditions (IMEC2024)

Matović, Branko; Cvijović-Alagić, Ivana; Maksimović, Vesna; Zagorac, Dejan

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13138
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
T1  - Program and Book of Abstracts of the 2nd International Conference on Innovative Materials in Extreme Conditions (IMEC2024)
SP  - 82
ER  - 
@conference{
editor = "Matović, Branko, Cvijović-Alagić, Ivana, Maksimović, Vesna, Zagorac, Dejan",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
title = "Program and Book of Abstracts of the 2nd International Conference on Innovative Materials in Extreme Conditions (IMEC2024)",
pages = "82"
}
Matović, B., Cvijović-Alagić, I., Maksimović, V.,& Zagorac, D.. (2024). Program and Book of Abstracts of the 2nd International Conference on Innovative Materials in Extreme Conditions (IMEC2024). 
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 82.
Matović B, Cvijović-Alagić I, Maksimović V, Zagorac D. Program and Book of Abstracts of the 2nd International Conference on Innovative Materials in Extreme Conditions (IMEC2024). 2024;:82..
Matović, Branko, Cvijović-Alagić, Ivana, Maksimović, Vesna, Zagorac, Dejan, "Program and Book of Abstracts of the 2nd International Conference on Innovative Materials in Extreme Conditions (IMEC2024)" (2024):82.

Hafnium Carbide: Prediction of Crystalline Structures and Investigation of Mechanical Properties

Zagorac, Jelena; Schön, Johann Christian; Matović, Branko; Butulija, Svetlana; Zagorac, Dejan

(2024)

TY  - JOUR
AU  - Zagorac, Jelena
AU  - Schön, Johann Christian
AU  - Matović, Branko
AU  - Butulija, Svetlana
AU  - Zagorac, Dejan
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13134
AB  - Hafnium carbide (HfC) is a refractory compound known for its exceptional mechanical, thermal, and electrical properties. This compound has gained significant attention in materials science and engineering due to its high melting point, extreme hardness, and excellent thermal stability. This study presents crystal structure prediction via energy landscape explorations of pristine hafnium carbide supplemented by data mining. Apart from the well-known equilibrium rock salt phase, we predict eight new polymorphs of HfC. The predicted HfC phases appear in the energy landscape with known structure types such as the WC type, NiAs type, 5-5 type, sphalerite (ZnS) type, TlI type, and CsCl type; in addition, we predict two new structure types denoted as ortho_HfC and HfC_polytype, respectively. Moreover, we have investigated the structural characteristics and mechanical properties of hafnium carbide at the DFT level of computation, which opens diverse applications in various technological domains.
T2  - Crystals
T1  - Hafnium Carbide: Prediction of Crystalline Structures and Investigation of Mechanical Properties
VL  - 14
IS  - 4
SP  - 340
DO  - 10.3390/cryst14040340
ER  - 
@article{
author = "Zagorac, Jelena and Schön, Johann Christian and Matović, Branko and Butulija, Svetlana and Zagorac, Dejan",
year = "2024",
abstract = "Hafnium carbide (HfC) is a refractory compound known for its exceptional mechanical, thermal, and electrical properties. This compound has gained significant attention in materials science and engineering due to its high melting point, extreme hardness, and excellent thermal stability. This study presents crystal structure prediction via energy landscape explorations of pristine hafnium carbide supplemented by data mining. Apart from the well-known equilibrium rock salt phase, we predict eight new polymorphs of HfC. The predicted HfC phases appear in the energy landscape with known structure types such as the WC type, NiAs type, 5-5 type, sphalerite (ZnS) type, TlI type, and CsCl type; in addition, we predict two new structure types denoted as ortho_HfC and HfC_polytype, respectively. Moreover, we have investigated the structural characteristics and mechanical properties of hafnium carbide at the DFT level of computation, which opens diverse applications in various technological domains.",
journal = "Crystals",
title = "Hafnium Carbide: Prediction of Crystalline Structures and Investigation of Mechanical Properties",
volume = "14",
number = "4",
pages = "340",
doi = "10.3390/cryst14040340"
}
Zagorac, J., Schön, J. C., Matović, B., Butulija, S.,& Zagorac, D.. (2024). Hafnium Carbide: Prediction of Crystalline Structures and Investigation of Mechanical Properties. in Crystals, 14(4), 340.
https://doi.org/10.3390/cryst14040340
Zagorac J, Schön JC, Matović B, Butulija S, Zagorac D. Hafnium Carbide: Prediction of Crystalline Structures and Investigation of Mechanical Properties. in Crystals. 2024;14(4):340.
doi:10.3390/cryst14040340 .
Zagorac, Jelena, Schön, Johann Christian, Matović, Branko, Butulija, Svetlana, Zagorac, Dejan, "Hafnium Carbide: Prediction of Crystalline Structures and Investigation of Mechanical Properties" in Crystals, 14, no. 4 (2024):340,
https://doi.org/10.3390/cryst14040340 . .

Structural properties of full-scope AlN/BN compounds investigated using ab initio calculations

Zagorac, Jelena; Fonović, Matej; Đukić, Miloš B.; Butulija, Svetlana; Prikhna, Tatiana; Zagorac, Dejan

(2024)

TY  - CONF
AU  - Zagorac, Jelena
AU  - Fonović, Matej
AU  - Đukić, Miloš B.
AU  - Butulija, Svetlana
AU  - Prikhna, Tatiana
AU  - Zagorac, Dejan
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12918
AB  - In the last few decades, aluminum nitride (AlN) and boron nitride (BN) have become a point of interest to many researchers and scholars from different disciplines around the world. Due to its attractive properties, AlN has been successfully used in various applications, starting from advanced ceramics materials, additive for grain size control in micro-alloyed steels, through optoelectronics and microelectronics, and finally to semiconductors. On the other hand, BN has broad applications in various fields, such as 2D material, lubricant material, superhard and semiconductor material as well as many others. This study focuses on the mixed AlN/BN compounds, in particular, boron-rich AlN and aluminum-rich BN systems, thus having the entire range of AlN/BN compositions. The special focus was on structural properties investigated using the hybrid B3LYP method. Important structural properties were investigated to offer novel technological and industrial applications of mixed AlN/BN materials.
C3  - Procedia Structural Integrity
T1  - Structural properties of full-scope AlN/BN compounds investigated using ab initio calculations
VL  - 54
SP  - 453
EP  - 459
DO  - 10.1016/j.prostr.2024.01.106
ER  - 
@conference{
author = "Zagorac, Jelena and Fonović, Matej and Đukić, Miloš B. and Butulija, Svetlana and Prikhna, Tatiana and Zagorac, Dejan",
year = "2024",
abstract = "In the last few decades, aluminum nitride (AlN) and boron nitride (BN) have become a point of interest to many researchers and scholars from different disciplines around the world. Due to its attractive properties, AlN has been successfully used in various applications, starting from advanced ceramics materials, additive for grain size control in micro-alloyed steels, through optoelectronics and microelectronics, and finally to semiconductors. On the other hand, BN has broad applications in various fields, such as 2D material, lubricant material, superhard and semiconductor material as well as many others. This study focuses on the mixed AlN/BN compounds, in particular, boron-rich AlN and aluminum-rich BN systems, thus having the entire range of AlN/BN compositions. The special focus was on structural properties investigated using the hybrid B3LYP method. Important structural properties were investigated to offer novel technological and industrial applications of mixed AlN/BN materials.",
journal = "Procedia Structural Integrity",
title = "Structural properties of full-scope AlN/BN compounds investigated using ab initio calculations",
volume = "54",
pages = "453-459",
doi = "10.1016/j.prostr.2024.01.106"
}
Zagorac, J., Fonović, M., Đukić, M. B., Butulija, S., Prikhna, T.,& Zagorac, D.. (2024). Structural properties of full-scope AlN/BN compounds investigated using ab initio calculations. in Procedia Structural Integrity, 54, 453-459.
https://doi.org/10.1016/j.prostr.2024.01.106
Zagorac J, Fonović M, Đukić MB, Butulija S, Prikhna T, Zagorac D. Structural properties of full-scope AlN/BN compounds investigated using ab initio calculations. in Procedia Structural Integrity. 2024;54:453-459.
doi:10.1016/j.prostr.2024.01.106 .
Zagorac, Jelena, Fonović, Matej, Đukić, Miloš B., Butulija, Svetlana, Prikhna, Tatiana, Zagorac, Dejan, "Structural properties of full-scope AlN/BN compounds investigated using ab initio calculations" in Procedia Structural Integrity, 54 (2024):453-459,
https://doi.org/10.1016/j.prostr.2024.01.106 . .

Band-Gap Engineering and Unusual Behavior of Electronic Properties during Anion Substitution of Sulfur in LaFSe

Zagorac, Dejan; Buyer, Constantin; Zagorac, Jelena; Škundrić, Tamara; Schön, Christian J.; Schleid, Thomas

(2024)

TY  - JOUR
AU  - Zagorac, Dejan
AU  - Buyer, Constantin
AU  - Zagorac, Jelena
AU  - Škundrić, Tamara
AU  - Schön, Christian J.
AU  - Schleid, Thomas
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12879
AB  - LaFSe and LaFS materials have shown great potential for various optoelectronic applications, such as photovoltaics, light-emitting diodes, and photodetectors. Mixed LaFSe/LaFS compounds have been synthesized through high-temperature experiments. The introduction of sulfur into LaFSe causes distortion in the crystal lattice, leading to changes in the unit cell. A new algorithm is presented that keeps the symmetries of the mixed LaFSe/LaFS phases, and it is combined with ab initio structure optimization in order to efficiently generate and compute models for solid solution-type compounds. There is good agreement between experimental and theoretical data, and additional predicted structures under extreme conditions in various lanthanoid fluoride selenides/sulfides have been introduced. The substitution of selenium for sulfur within the LaFSe lattice can result in some unusual electronic properties, including changes in the size of the band gap, the character of the gap, and the electronic structure of the material.
T2  - Crystal Growth & Design
T1  - Band-Gap Engineering and Unusual Behavior of Electronic Properties during Anion Substitution of Sulfur in LaFSe
VL  - 24
IS  - 4
SP  - 1648
EP  - 1657
DO  - 10.1021/acs.cgd.3c01291
ER  - 
@article{
author = "Zagorac, Dejan and Buyer, Constantin and Zagorac, Jelena and Škundrić, Tamara and Schön, Christian J. and Schleid, Thomas",
year = "2024",
abstract = "LaFSe and LaFS materials have shown great potential for various optoelectronic applications, such as photovoltaics, light-emitting diodes, and photodetectors. Mixed LaFSe/LaFS compounds have been synthesized through high-temperature experiments. The introduction of sulfur into LaFSe causes distortion in the crystal lattice, leading to changes in the unit cell. A new algorithm is presented that keeps the symmetries of the mixed LaFSe/LaFS phases, and it is combined with ab initio structure optimization in order to efficiently generate and compute models for solid solution-type compounds. There is good agreement between experimental and theoretical data, and additional predicted structures under extreme conditions in various lanthanoid fluoride selenides/sulfides have been introduced. The substitution of selenium for sulfur within the LaFSe lattice can result in some unusual electronic properties, including changes in the size of the band gap, the character of the gap, and the electronic structure of the material.",
journal = "Crystal Growth & Design",
title = "Band-Gap Engineering and Unusual Behavior of Electronic Properties during Anion Substitution of Sulfur in LaFSe",
volume = "24",
number = "4",
pages = "1648-1657",
doi = "10.1021/acs.cgd.3c01291"
}
Zagorac, D., Buyer, C., Zagorac, J., Škundrić, T., Schön, C. J.,& Schleid, T.. (2024). Band-Gap Engineering and Unusual Behavior of Electronic Properties during Anion Substitution of Sulfur in LaFSe. in Crystal Growth & Design, 24(4), 1648-1657.
https://doi.org/10.1021/acs.cgd.3c01291
Zagorac D, Buyer C, Zagorac J, Škundrić T, Schön CJ, Schleid T. Band-Gap Engineering and Unusual Behavior of Electronic Properties during Anion Substitution of Sulfur in LaFSe. in Crystal Growth & Design. 2024;24(4):1648-1657.
doi:10.1021/acs.cgd.3c01291 .
Zagorac, Dejan, Buyer, Constantin, Zagorac, Jelena, Škundrić, Tamara, Schön, Christian J., Schleid, Thomas, "Band-Gap Engineering and Unusual Behavior of Electronic Properties during Anion Substitution of Sulfur in LaFSe" in Crystal Growth & Design, 24, no. 4 (2024):1648-1657,
https://doi.org/10.1021/acs.cgd.3c01291 . .
4

Data-driven discovery and DFT modeling of Fe4H on the atomistic level

Zagorac, Dejan; Zagorac, Jelena; Đukić, Miloš B.; Bal, Burak; Schön, Christian J.

(2024)

TY  - CONF
AU  - Zagorac, Dejan
AU  - Zagorac, Jelena
AU  - Đukić, Miloš B.
AU  - Bal, Burak
AU  - Schön, Christian J.
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12933
AB  - Since their discovery, iron and hydrogen have been two of the most interesting elements in scientific research, with a variety of known and postulated compounds and applications. Of special interest in materials engineering is the stability of such materials, where hydrogen embrittlement has gained particular importance in recent years. Here, we present the results for the Fe-H system. In the past, most of the work on iron hydrides has been focused on hydrogen-rich compounds since they have a variety of interesting properties at extreme conditions (e.g. superconductivity). However, we present the first atomistic study of an iron-rich Fe4H compound which has been predicted using a combination of data mining and quantum mechanical calculations. Novel structures have been discovered in the Fe4H chemical system for possible experimental synthesis at the atomistic level.
C3  - Procedia Structural Integrity
T1  - Data-driven discovery and DFT modeling of Fe4H on the atomistic level
VL  - 54
SP  - 446
EP  - 452
DO  - 10.1016/j.prostr.2024.01.105
ER  - 
@conference{
author = "Zagorac, Dejan and Zagorac, Jelena and Đukić, Miloš B. and Bal, Burak and Schön, Christian J.",
year = "2024",
abstract = "Since their discovery, iron and hydrogen have been two of the most interesting elements in scientific research, with a variety of known and postulated compounds and applications. Of special interest in materials engineering is the stability of such materials, where hydrogen embrittlement has gained particular importance in recent years. Here, we present the results for the Fe-H system. In the past, most of the work on iron hydrides has been focused on hydrogen-rich compounds since they have a variety of interesting properties at extreme conditions (e.g. superconductivity). However, we present the first atomistic study of an iron-rich Fe4H compound which has been predicted using a combination of data mining and quantum mechanical calculations. Novel structures have been discovered in the Fe4H chemical system for possible experimental synthesis at the atomistic level.",
journal = "Procedia Structural Integrity",
title = "Data-driven discovery and DFT modeling of Fe4H on the atomistic level",
volume = "54",
pages = "446-452",
doi = "10.1016/j.prostr.2024.01.105"
}
Zagorac, D., Zagorac, J., Đukić, M. B., Bal, B.,& Schön, C. J.. (2024). Data-driven discovery and DFT modeling of Fe4H on the atomistic level. in Procedia Structural Integrity, 54, 446-452.
https://doi.org/10.1016/j.prostr.2024.01.105
Zagorac D, Zagorac J, Đukić MB, Bal B, Schön CJ. Data-driven discovery and DFT modeling of Fe4H on the atomistic level. in Procedia Structural Integrity. 2024;54:446-452.
doi:10.1016/j.prostr.2024.01.105 .
Zagorac, Dejan, Zagorac, Jelena, Đukić, Miloš B., Bal, Burak, Schön, Christian J., "Data-driven discovery and DFT modeling of Fe4H on the atomistic level" in Procedia Structural Integrity, 54 (2024):446-452,
https://doi.org/10.1016/j.prostr.2024.01.105 . .

Energy Landscape of Relaxation and Interaction of an Amino Acid, Glutamine (L), on Pristine and Au/Ag/Cu-Doped TiO2 Surfaces

Jovanović, Dušica; Schön, Johann Christian; Zagorac, Dejan; Zarubica, Aleksandra; Matović, Branko; Zagorac, Jelena

(2023)

TY  - JOUR
AU  - Jovanović, Dušica
AU  - Schön, Johann Christian
AU  - Zagorac, Dejan
AU  - Zarubica, Aleksandra
AU  - Matović, Branko
AU  - Zagorac, Jelena
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11724
AB  - Studying the interaction of inorganic systems with organic ones is a highly important avenue for finding new drugs and treatment methods. Tumor cells show an increased demand for amino acids due to their rapid proliferation; thus, targeting their metabolism is becoming a potential oncological therapeutic strategy. One of the inorganic materials that show antitumor properties is titanium dioxide, while its doping was found to enhance interactions with biological systems. Thus, in this study, we investigated the energy landscape of glutamine (L), an amino acid, on pristine and doped TiO2 surfaces. We first locally optimized 2D-slab structures of pristine and Au/Ag/Cu-doped anatase (001 and 101 surfaces) and similarly optimized a single molecule of glutamine in vacuum. Next, we placed the pre-optimized glutamine molecule in various orientations and on a variety of locations onto the relaxed substrate surfaces (in vacuum) and performed ab initio relaxations of the molecule on the substrate slabs. We employed the DFT method with a GGA-PBE functional implemented in the Quantum Espresso code. Comparisons of the optimized conformations and electronic structures of the amino acid in vacuum and on the surfaces yield useful insights into various biological processes.
T2  - Nanomaterials
T1  - Energy Landscape of Relaxation and Interaction of an Amino Acid, Glutamine (L), on Pristine and Au/Ag/Cu-Doped TiO2 Surfaces
VL  - 13
IS  - 19
SP  - 2688
DO  - 10.3390/nano13192688
ER  - 
@article{
author = "Jovanović, Dušica and Schön, Johann Christian and Zagorac, Dejan and Zarubica, Aleksandra and Matović, Branko and Zagorac, Jelena",
year = "2023",
abstract = "Studying the interaction of inorganic systems with organic ones is a highly important avenue for finding new drugs and treatment methods. Tumor cells show an increased demand for amino acids due to their rapid proliferation; thus, targeting their metabolism is becoming a potential oncological therapeutic strategy. One of the inorganic materials that show antitumor properties is titanium dioxide, while its doping was found to enhance interactions with biological systems. Thus, in this study, we investigated the energy landscape of glutamine (L), an amino acid, on pristine and doped TiO2 surfaces. We first locally optimized 2D-slab structures of pristine and Au/Ag/Cu-doped anatase (001 and 101 surfaces) and similarly optimized a single molecule of glutamine in vacuum. Next, we placed the pre-optimized glutamine molecule in various orientations and on a variety of locations onto the relaxed substrate surfaces (in vacuum) and performed ab initio relaxations of the molecule on the substrate slabs. We employed the DFT method with a GGA-PBE functional implemented in the Quantum Espresso code. Comparisons of the optimized conformations and electronic structures of the amino acid in vacuum and on the surfaces yield useful insights into various biological processes.",
journal = "Nanomaterials",
title = "Energy Landscape of Relaxation and Interaction of an Amino Acid, Glutamine (L), on Pristine and Au/Ag/Cu-Doped TiO2 Surfaces",
volume = "13",
number = "19",
pages = "2688",
doi = "10.3390/nano13192688"
}
Jovanović, D., Schön, J. C., Zagorac, D., Zarubica, A., Matović, B.,& Zagorac, J.. (2023). Energy Landscape of Relaxation and Interaction of an Amino Acid, Glutamine (L), on Pristine and Au/Ag/Cu-Doped TiO2 Surfaces. in Nanomaterials, 13(19), 2688.
https://doi.org/10.3390/nano13192688
Jovanović D, Schön JC, Zagorac D, Zarubica A, Matović B, Zagorac J. Energy Landscape of Relaxation and Interaction of an Amino Acid, Glutamine (L), on Pristine and Au/Ag/Cu-Doped TiO2 Surfaces. in Nanomaterials. 2023;13(19):2688.
doi:10.3390/nano13192688 .
Jovanović, Dušica, Schön, Johann Christian, Zagorac, Dejan, Zarubica, Aleksandra, Matović, Branko, Zagorac, Jelena, "Energy Landscape of Relaxation and Interaction of an Amino Acid, Glutamine (L), on Pristine and Au/Ag/Cu-Doped TiO2 Surfaces" in Nanomaterials, 13, no. 19 (2023):2688,
https://doi.org/10.3390/nano13192688 . .

Data-Mining Ab Initio Study of Gypsum and CaCO3 Modifications at Standard and Extreme Conditions

Škundrić, Tamara; Matović, Branko; Zarubica, Aleksandra; Chudoba, Dorota; Zagorac, Dejan

(2023)

TY  - JOUR
AU  - Škundrić, Tamara
AU  - Matović, Branko
AU  - Zarubica, Aleksandra
AU  - Chudoba, Dorota
AU  - Zagorac, Dejan
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11733
AB  - Calcium carbonate and gypsum are very common and widespread minerals widely used in many fields. However, in order to investigate their behavior under extreme conditions of pressure and temperature, a data-mining ab initio approach has been performed. To analyze structural stability and explore different CaCO3 and gypsum phases in these extreme conditions, the most interesting modifications have been submitted to the DFT calculations. Local optimizations have been performed using the CRYSTAL17 solid-state-quantum-chemical program. Total energies of different gypsum phases are presented and it seems that among the calcite phases, the Calcite I (CaCO3 I) phase has the lowest calculated total energy using the three different functionals in agreement with experimental data. Each of the modified phases of these minerals has been discussed and presented in this study. Due to the very wide industrial and technological application of these natural minerals, further investigation could be of great importance, especially their performances in extreme environments.
T2  - Journal of Innovative Materials in Extreme Conditions
T1  - Data-Mining Ab Initio Study of Gypsum and CaCO3 Modifications at Standard and Extreme Conditions
VL  - 4
IS  - 1
SP  - 38
EP  - 51
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11733
ER  - 
@article{
author = "Škundrić, Tamara and Matović, Branko and Zarubica, Aleksandra and Chudoba, Dorota and Zagorac, Dejan",
year = "2023",
abstract = "Calcium carbonate and gypsum are very common and widespread minerals widely used in many fields. However, in order to investigate their behavior under extreme conditions of pressure and temperature, a data-mining ab initio approach has been performed. To analyze structural stability and explore different CaCO3 and gypsum phases in these extreme conditions, the most interesting modifications have been submitted to the DFT calculations. Local optimizations have been performed using the CRYSTAL17 solid-state-quantum-chemical program. Total energies of different gypsum phases are presented and it seems that among the calcite phases, the Calcite I (CaCO3 I) phase has the lowest calculated total energy using the three different functionals in agreement with experimental data. Each of the modified phases of these minerals has been discussed and presented in this study. Due to the very wide industrial and technological application of these natural minerals, further investigation could be of great importance, especially their performances in extreme environments.",
journal = "Journal of Innovative Materials in Extreme Conditions",
title = "Data-Mining Ab Initio Study of Gypsum and CaCO3 Modifications at Standard and Extreme Conditions",
volume = "4",
number = "1",
pages = "38-51",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11733"
}
Škundrić, T., Matović, B., Zarubica, A., Chudoba, D.,& Zagorac, D.. (2023). Data-Mining Ab Initio Study of Gypsum and CaCO3 Modifications at Standard and Extreme Conditions. in Journal of Innovative Materials in Extreme Conditions, 4(1), 38-51.
https://hdl.handle.net/21.15107/rcub_vinar_11733
Škundrić T, Matović B, Zarubica A, Chudoba D, Zagorac D. Data-Mining Ab Initio Study of Gypsum and CaCO3 Modifications at Standard and Extreme Conditions. in Journal of Innovative Materials in Extreme Conditions. 2023;4(1):38-51.
https://hdl.handle.net/21.15107/rcub_vinar_11733 .
Škundrić, Tamara, Matović, Branko, Zarubica, Aleksandra, Chudoba, Dorota, Zagorac, Dejan, "Data-Mining Ab Initio Study of Gypsum and CaCO3 Modifications at Standard and Extreme Conditions" in Journal of Innovative Materials in Extreme Conditions, 4, no. 1 (2023):38-51,
https://hdl.handle.net/21.15107/rcub_vinar_11733 .

Multicomponent solid solution with pyrochlore structure

Matović, Branko; Maletaškić, Jelena; Maksimović, Vesna; Dimitrijević, Stevan P.; Todorović, Bratislav; Pejić, Milan; Zagorac, Dejan; Zagorac, Jelena B.; Zeng, Yu-Ping; Cvijović-Alagić, Ivana

(2023)

TY  - JOUR
AU  - Matović, Branko
AU  - Maletaškić, Jelena
AU  - Maksimović, Vesna
AU  - Dimitrijević, Stevan P.
AU  - Todorović, Bratislav
AU  - Pejić, Milan
AU  - Zagorac, Dejan
AU  - Zagorac, Jelena B.
AU  - Zeng, Yu-Ping
AU  - Cvijović-Alagić, Ivana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10697
AB  - Multicomponent oxide with pyrochlore structure (A2B2O7), containing 7 different A-site cations and 3 B-site cations in equiatomic amounts, was synthesized. Powders with nominal composition (La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 were fabricated through a reaction of metal nitrates (A-site) and metal chlorides (B-site) with sodium hydroxide during the solid state displacement reaction. Room temperature synthesis initially resulted in the obtainment of amorphous powders, which crystallized after subsequent calcination to form single crystalline compounds. Crystalline high-entropy ceramic powders formation took place at temperatures as low as 750 °C. During calcination, defective fluorite (F-A2B2O7) and crystal pyrochlore (Py-A2B2O7) structures coexist. A large number of cations induce the obtainment of stable high-entropy pyrochlores. Results showed that sintering at 1650 °C lead to pure crystalline single-phase pyrochlore formation. High-density ceramic, free of additives, was obtained after powders were compacted and subjected to pressureless sintering at 1650 °C. Multicomponent pyrochlore structure was investigated using the theoretical and experimental multi-methodological approach.
T2  - Boletin de la Sociedad Espanola de Ceramica y Vidrio
T1  - Multicomponent solid solution with pyrochlore structure
T1  - Solución sólida multicomponente con estructura de pirocloro
VL  - 62
IS  - 6
SP  - 515
EP  - 526
DO  - 10.1016/j.bsecv.2023.01.005
ER  - 
@article{
author = "Matović, Branko and Maletaškić, Jelena and Maksimović, Vesna and Dimitrijević, Stevan P. and Todorović, Bratislav and Pejić, Milan and Zagorac, Dejan and Zagorac, Jelena B. and Zeng, Yu-Ping and Cvijović-Alagić, Ivana",
year = "2023",
abstract = "Multicomponent oxide with pyrochlore structure (A2B2O7), containing 7 different A-site cations and 3 B-site cations in equiatomic amounts, was synthesized. Powders with nominal composition (La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 were fabricated through a reaction of metal nitrates (A-site) and metal chlorides (B-site) with sodium hydroxide during the solid state displacement reaction. Room temperature synthesis initially resulted in the obtainment of amorphous powders, which crystallized after subsequent calcination to form single crystalline compounds. Crystalline high-entropy ceramic powders formation took place at temperatures as low as 750 °C. During calcination, defective fluorite (F-A2B2O7) and crystal pyrochlore (Py-A2B2O7) structures coexist. A large number of cations induce the obtainment of stable high-entropy pyrochlores. Results showed that sintering at 1650 °C lead to pure crystalline single-phase pyrochlore formation. High-density ceramic, free of additives, was obtained after powders were compacted and subjected to pressureless sintering at 1650 °C. Multicomponent pyrochlore structure was investigated using the theoretical and experimental multi-methodological approach.",
journal = "Boletin de la Sociedad Espanola de Ceramica y Vidrio",
title = "Multicomponent solid solution with pyrochlore structure, Solución sólida multicomponente con estructura de pirocloro",
volume = "62",
number = "6",
pages = "515-526",
doi = "10.1016/j.bsecv.2023.01.005"
}
Matović, B., Maletaškić, J., Maksimović, V., Dimitrijević, S. P., Todorović, B., Pejić, M., Zagorac, D., Zagorac, J. B., Zeng, Y.,& Cvijović-Alagić, I.. (2023). Multicomponent solid solution with pyrochlore structure. in Boletin de la Sociedad Espanola de Ceramica y Vidrio, 62(6), 515-526.
https://doi.org/10.1016/j.bsecv.2023.01.005
Matović B, Maletaškić J, Maksimović V, Dimitrijević SP, Todorović B, Pejić M, Zagorac D, Zagorac JB, Zeng Y, Cvijović-Alagić I. Multicomponent solid solution with pyrochlore structure. in Boletin de la Sociedad Espanola de Ceramica y Vidrio. 2023;62(6):515-526.
doi:10.1016/j.bsecv.2023.01.005 .
Matović, Branko, Maletaškić, Jelena, Maksimović, Vesna, Dimitrijević, Stevan P., Todorović, Bratislav, Pejić, Milan, Zagorac, Dejan, Zagorac, Jelena B., Zeng, Yu-Ping, Cvijović-Alagić, Ivana, "Multicomponent solid solution with pyrochlore structure" in Boletin de la Sociedad Espanola de Ceramica y Vidrio, 62, no. 6 (2023):515-526,
https://doi.org/10.1016/j.bsecv.2023.01.005 . .
1

Fabrication and characterization of high entropy pyrochlore ceramics

Matović, Branko; Zagorac, Dejan; Cvijović-Alagić, Ivana; Zagorac, Jelena B.; Butulija, Svetlana; Erčić, Jelena; Hanzel, Ondrej; Sedlák, Richard; Lisnichuk, Maksym; Tatarko, Peter

(2023)

TY  - JOUR
AU  - Matović, Branko
AU  - Zagorac, Dejan
AU  - Cvijović-Alagić, Ivana
AU  - Zagorac, Jelena B.
AU  - Butulija, Svetlana
AU  - Erčić, Jelena
AU  - Hanzel, Ondrej
AU  - Sedlák, Richard
AU  - Lisnichuk, Maksym
AU  - Tatarko, Peter
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10083
AB  - High-entropy rare-earth (RE) zirconates with pyrochlore structure were successfully fabricated by pressureless and spark plasma sintering. RE2Zr2O7 compound with nominal composition (La0.2Y0.2Gd0.2Nd0.2Sm0.2)Zr2O7 was prepared by simple glycine nitrate procedure (GNP). GNP process yielded powders with low crystallinity and after subsequent calcination, well crystalline ceramics were formed. During calcination defective fluorite (F-RE2Zr2O7) and crystal pyrochlore (Py-RE2Zr2O7) structures coexist. Formation of pure crystalline pyrochlore occurs after sintering at 1450°C. High-density ceramics, free of any additives, were obtained after powders compaction and pressureless (PS), as well as field assisted sintering technique (FAST) at 1450°C. Theoretical investigations of the high-entropy RE2Zr2O7 pyrochlore systems were performed. Unit cell parameter of the obtained Py-RE2Zr2O7 is 10.5892(2)Å and 10.5999(2)Å for PS and FAST sintering, respectively, which is in good agreement with the results of Density Functional Theory (DFT) calculations. The thermal diffusivity of sintered samples at room temperature was ∼0.7mm2/s for both sintering methods.ResumenSe fabricaron con éxito, mediante sinterización por plasma sin presión y por chispa, los circonatos de tierras raras (RE) de alta entropía con estructura de pirocloro. El compuesto RE2Zr2O7 con composición nominal (La0,2Y0,2Gd0,2Nd0,2Sm0,2)Zr2O7 se preparó mediante un procedimiento simple de nitrato de glicina (GNP). El proceso GNP produjo polvos con baja cristalinidad y después de la posterior calcinación, se formaron cerámicas bien cristalinas. Durante la calcinación coexisten estructuras defectuosas de fluorita (F-RE2Zr2O7) y pirocloro cristalino (Py-RE2Zr2O7). La formación de pirocloro cristalino puro se produce después de la sinterización a 1.450°C. Después de la compactación de polvos y sin presión (PS), así como por la técnica de sinterización asistida en campo (FAST) a 1.450 oC, se obtuvieron cerámicas de alta densidad, libres de aditivos. Se realizaron investigaciones teóricas de los sistemas de pirocloro RE2Zr2O7 de alta entropía. El parámetro de celda unitaria del Py-RE2Zr2O7 obtenido es 105.892(2) Å y 105.999(2) Å para la sinterización PS y FAST, respectivamente, lo que está de acuerdo con los resultados de los cálculos de la teoría funcional de la densidad (DFT). La difusividad térmica de las muestras sinterizadas a temperatura ambiente fue de ∼ 0,7 mm2/s para ambos métodos de sinterización.
T2  - Boletín de la Sociedad Española de Cerámica y Vidrio
T1  - Fabrication and characterization of high entropy pyrochlore ceramics
T1  - Fabricación y caracterización de cerámicas de pirocloro de alta entropía
VL  - 62
IS  - 1
SP  - 66
EP  - 76
DO  - 10.1016/j.bsecv.2021.11.002
ER  - 
@article{
author = "Matović, Branko and Zagorac, Dejan and Cvijović-Alagić, Ivana and Zagorac, Jelena B. and Butulija, Svetlana and Erčić, Jelena and Hanzel, Ondrej and Sedlák, Richard and Lisnichuk, Maksym and Tatarko, Peter",
year = "2023",
abstract = "High-entropy rare-earth (RE) zirconates with pyrochlore structure were successfully fabricated by pressureless and spark plasma sintering. RE2Zr2O7 compound with nominal composition (La0.2Y0.2Gd0.2Nd0.2Sm0.2)Zr2O7 was prepared by simple glycine nitrate procedure (GNP). GNP process yielded powders with low crystallinity and after subsequent calcination, well crystalline ceramics were formed. During calcination defective fluorite (F-RE2Zr2O7) and crystal pyrochlore (Py-RE2Zr2O7) structures coexist. Formation of pure crystalline pyrochlore occurs after sintering at 1450°C. High-density ceramics, free of any additives, were obtained after powders compaction and pressureless (PS), as well as field assisted sintering technique (FAST) at 1450°C. Theoretical investigations of the high-entropy RE2Zr2O7 pyrochlore systems were performed. Unit cell parameter of the obtained Py-RE2Zr2O7 is 10.5892(2)Å and 10.5999(2)Å for PS and FAST sintering, respectively, which is in good agreement with the results of Density Functional Theory (DFT) calculations. The thermal diffusivity of sintered samples at room temperature was ∼0.7mm2/s for both sintering methods.ResumenSe fabricaron con éxito, mediante sinterización por plasma sin presión y por chispa, los circonatos de tierras raras (RE) de alta entropía con estructura de pirocloro. El compuesto RE2Zr2O7 con composición nominal (La0,2Y0,2Gd0,2Nd0,2Sm0,2)Zr2O7 se preparó mediante un procedimiento simple de nitrato de glicina (GNP). El proceso GNP produjo polvos con baja cristalinidad y después de la posterior calcinación, se formaron cerámicas bien cristalinas. Durante la calcinación coexisten estructuras defectuosas de fluorita (F-RE2Zr2O7) y pirocloro cristalino (Py-RE2Zr2O7). La formación de pirocloro cristalino puro se produce después de la sinterización a 1.450°C. Después de la compactación de polvos y sin presión (PS), así como por la técnica de sinterización asistida en campo (FAST) a 1.450 oC, se obtuvieron cerámicas de alta densidad, libres de aditivos. Se realizaron investigaciones teóricas de los sistemas de pirocloro RE2Zr2O7 de alta entropía. El parámetro de celda unitaria del Py-RE2Zr2O7 obtenido es 105.892(2) Å y 105.999(2) Å para la sinterización PS y FAST, respectivamente, lo que está de acuerdo con los resultados de los cálculos de la teoría funcional de la densidad (DFT). La difusividad térmica de las muestras sinterizadas a temperatura ambiente fue de ∼ 0,7 mm2/s para ambos métodos de sinterización.",
journal = "Boletín de la Sociedad Española de Cerámica y Vidrio",
title = "Fabrication and characterization of high entropy pyrochlore ceramics, Fabricación y caracterización de cerámicas de pirocloro de alta entropía",
volume = "62",
number = "1",
pages = "66-76",
doi = "10.1016/j.bsecv.2021.11.002"
}
Matović, B., Zagorac, D., Cvijović-Alagić, I., Zagorac, J. B., Butulija, S., Erčić, J., Hanzel, O., Sedlák, R., Lisnichuk, M.,& Tatarko, P.. (2023). Fabrication and characterization of high entropy pyrochlore ceramics. in Boletín de la Sociedad Española de Cerámica y Vidrio, 62(1), 66-76.
https://doi.org/10.1016/j.bsecv.2021.11.002
Matović B, Zagorac D, Cvijović-Alagić I, Zagorac JB, Butulija S, Erčić J, Hanzel O, Sedlák R, Lisnichuk M, Tatarko P. Fabrication and characterization of high entropy pyrochlore ceramics. in Boletín de la Sociedad Española de Cerámica y Vidrio. 2023;62(1):66-76.
doi:10.1016/j.bsecv.2021.11.002 .
Matović, Branko, Zagorac, Dejan, Cvijović-Alagić, Ivana, Zagorac, Jelena B., Butulija, Svetlana, Erčić, Jelena, Hanzel, Ondrej, Sedlák, Richard, Lisnichuk, Maksym, Tatarko, Peter, "Fabrication and characterization of high entropy pyrochlore ceramics" in Boletín de la Sociedad Española de Cerámica y Vidrio, 62, no. 1 (2023):66-76,
https://doi.org/10.1016/j.bsecv.2021.11.002 . .
11
6

Novel boron-rich aluminum nitride advanced ceramic materials

Zagorac, Dejan; Zagorac, Jelena B.; Fonović, Matej; Prikhna, Tatiana; Matović, Branko

(2023)

TY  - JOUR
AU  - Zagorac, Dejan
AU  - Zagorac, Jelena B.
AU  - Fonović, Matej
AU  - Prikhna, Tatiana
AU  - Matović, Branko
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10399
AB  - Aluminum nitride (AlN) and boron nitride (BN) are well-known ceramic materials with numerous valuable properties, whereas recently there is a growing field of research on the AlN/BN advanced ceramic materials. Here, we present a study on boron-rich AlN, structural and electronic properties, and structure–property relationship. Several AlxB1−xN solid solutions (x = 1, .875, .75, and .625) have been investigated, and structure optimization has been performed for four different structure types: h-BN, wurtzite, sphalerite, and rock salt. First-principles calculations were performed using hybrid B3LYP functional. New modifications and compounds have been predicted as a function of boron concentration in AlN, and especially, interesting phase transitions were found at extreme pressure conditions. Electronic properties and band structures were computed, and the possibility for bandgap tuning has been discovered. The present study, and especially the structure–property relationship, gives new possibilities for bandgap engineering in boron-rich AlN electroceramic materials.
T2  - International Journal of Applied Ceramic Technology
T1  - Novel boron-rich aluminum nitride advanced ceramic materials
VL  - 20
IS  - 1
SP  - 174
EP  - 189
DO  - 10.1111/ijac.14152
ER  - 
@article{
author = "Zagorac, Dejan and Zagorac, Jelena B. and Fonović, Matej and Prikhna, Tatiana and Matović, Branko",
year = "2023",
abstract = "Aluminum nitride (AlN) and boron nitride (BN) are well-known ceramic materials with numerous valuable properties, whereas recently there is a growing field of research on the AlN/BN advanced ceramic materials. Here, we present a study on boron-rich AlN, structural and electronic properties, and structure–property relationship. Several AlxB1−xN solid solutions (x = 1, .875, .75, and .625) have been investigated, and structure optimization has been performed for four different structure types: h-BN, wurtzite, sphalerite, and rock salt. First-principles calculations were performed using hybrid B3LYP functional. New modifications and compounds have been predicted as a function of boron concentration in AlN, and especially, interesting phase transitions were found at extreme pressure conditions. Electronic properties and band structures were computed, and the possibility for bandgap tuning has been discovered. The present study, and especially the structure–property relationship, gives new possibilities for bandgap engineering in boron-rich AlN electroceramic materials.",
journal = "International Journal of Applied Ceramic Technology",
title = "Novel boron-rich aluminum nitride advanced ceramic materials",
volume = "20",
number = "1",
pages = "174-189",
doi = "10.1111/ijac.14152"
}
Zagorac, D., Zagorac, J. B., Fonović, M., Prikhna, T.,& Matović, B.. (2023). Novel boron-rich aluminum nitride advanced ceramic materials. in International Journal of Applied Ceramic Technology, 20(1), 174-189.
https://doi.org/10.1111/ijac.14152
Zagorac D, Zagorac JB, Fonović M, Prikhna T, Matović B. Novel boron-rich aluminum nitride advanced ceramic materials. in International Journal of Applied Ceramic Technology. 2023;20(1):174-189.
doi:10.1111/ijac.14152 .
Zagorac, Dejan, Zagorac, Jelena B., Fonović, Matej, Prikhna, Tatiana, Matović, Branko, "Novel boron-rich aluminum nitride advanced ceramic materials" in International Journal of Applied Ceramic Technology, 20, no. 1 (2023):174-189,
https://doi.org/10.1111/ijac.14152 . .
3

Synthesis, Characterization, and Electronic Properties of ZnO/ZnS Core/Shell Nanostructures Investigated Using a Multidisciplinary Approach

Zagorac, Jelena B.; Zagorac, Dejan; Šrot, Vesna; Ranđelović, Marjan; Pejić, Milan; van Aken, Peter A.; Matović, Branko; Schön, Christian J.

(2023)

TY  - JOUR
AU  - Zagorac, Jelena B.
AU  - Zagorac, Dejan
AU  - Šrot, Vesna
AU  - Ranđelović, Marjan
AU  - Pejić, Milan
AU  - van Aken, Peter A.
AU  - Matović, Branko
AU  - Schön, Christian J.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10592
AB  - ZnO/ZnS core/shell nanostructures, which are studied for diverse possible applications, ranging from semiconductors, photovoltaics, and light-emitting diodes (LED), to solar cells, infrared detectors, and thermoelectrics, were synthesized and characterized by XRD, HR-(S)TEM, and analytical TEM (EDX and EELS). Moreover, band-gap measurements of the ZnO/ZnS core/shell nanostructures have been performed using UV/Vis DRS. The experimental results were combined with theoretical modeling of ZnO/ZnS (hetero)structures and band structure calculations for ZnO/ZnS systems, yielding more insights into the properties of the nanoparticles. The ab initio calculations were performed using hybrid PBE0 and HSE06 functionals. The synthesized and characterized ZnO/ZnS core/shell materials show a unique three-phase composition, where the ZnO phase is dominant in the core region and, interestingly, the auxiliary ZnS compound occurs in two phases as wurtzite and sphalerite in the shell region. Moreover, theoretical ab initio calculations show advanced semiconducting properties and possible band-gap tuning in such ZnO/ZnS structures.
T2  - Materials
T1  - Synthesis, Characterization, and Electronic Properties of ZnO/ZnS Core/Shell Nanostructures Investigated Using a Multidisciplinary Approach
VL  - 16
IS  - 1
SP  - 326
DO  - 10.3390/ma16010326
ER  - 
@article{
author = "Zagorac, Jelena B. and Zagorac, Dejan and Šrot, Vesna and Ranđelović, Marjan and Pejić, Milan and van Aken, Peter A. and Matović, Branko and Schön, Christian J.",
year = "2023",
abstract = "ZnO/ZnS core/shell nanostructures, which are studied for diverse possible applications, ranging from semiconductors, photovoltaics, and light-emitting diodes (LED), to solar cells, infrared detectors, and thermoelectrics, were synthesized and characterized by XRD, HR-(S)TEM, and analytical TEM (EDX and EELS). Moreover, band-gap measurements of the ZnO/ZnS core/shell nanostructures have been performed using UV/Vis DRS. The experimental results were combined with theoretical modeling of ZnO/ZnS (hetero)structures and band structure calculations for ZnO/ZnS systems, yielding more insights into the properties of the nanoparticles. The ab initio calculations were performed using hybrid PBE0 and HSE06 functionals. The synthesized and characterized ZnO/ZnS core/shell materials show a unique three-phase composition, where the ZnO phase is dominant in the core region and, interestingly, the auxiliary ZnS compound occurs in two phases as wurtzite and sphalerite in the shell region. Moreover, theoretical ab initio calculations show advanced semiconducting properties and possible band-gap tuning in such ZnO/ZnS structures.",
journal = "Materials",
title = "Synthesis, Characterization, and Electronic Properties of ZnO/ZnS Core/Shell Nanostructures Investigated Using a Multidisciplinary Approach",
volume = "16",
number = "1",
pages = "326",
doi = "10.3390/ma16010326"
}
Zagorac, J. B., Zagorac, D., Šrot, V., Ranđelović, M., Pejić, M., van Aken, P. A., Matović, B.,& Schön, C. J.. (2023). Synthesis, Characterization, and Electronic Properties of ZnO/ZnS Core/Shell Nanostructures Investigated Using a Multidisciplinary Approach. in Materials, 16(1), 326.
https://doi.org/10.3390/ma16010326
Zagorac JB, Zagorac D, Šrot V, Ranđelović M, Pejić M, van Aken PA, Matović B, Schön CJ. Synthesis, Characterization, and Electronic Properties of ZnO/ZnS Core/Shell Nanostructures Investigated Using a Multidisciplinary Approach. in Materials. 2023;16(1):326.
doi:10.3390/ma16010326 .
Zagorac, Jelena B., Zagorac, Dejan, Šrot, Vesna, Ranđelović, Marjan, Pejić, Milan, van Aken, Peter A., Matović, Branko, Schön, Christian J., "Synthesis, Characterization, and Electronic Properties of ZnO/ZnS Core/Shell Nanostructures Investigated Using a Multidisciplinary Approach" in Materials, 16, no. 1 (2023):326,
https://doi.org/10.3390/ma16010326 . .
2

Computational Discovery of New Feasible Crystal Structures in Ce3O3N

Zagorac, Jelena B.; Schön, Johann Christian; Matović, Branko; Pejić, Milan; Prekajski-Đorđević, Marija D.; Zagorac, Dejan

(2023)

TY  - JOUR
AU  - Zagorac, Jelena B.
AU  - Schön, Johann Christian
AU  - Matović, Branko
AU  - Pejić, Milan
AU  - Prekajski-Đorđević, Marija D.
AU  - Zagorac, Dejan
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11073
AB  - Oxynitrides of cerium are expected to have many useful properties but have not been synthesized so far. We identified possible modifications of a not-yet-synthesized Ce3O3N compound, combining global search (GS) and data mining (DM) methods. Employing empirical potentials, structure candidates were obtained via global optimization on the energy landscape of Ce3O3N for different pressure values. Furthermore, additional feasible structure candidates were found using data mining of the ICSD database. The most promising structure candidates obtained were locally optimized at the ab initio level, and their E(V) curves were computed. The structure lowest in total energy, Ce3O3N-DM1, was found via local optimization starting from a data mining candidate and should be thermodynamically metastable up to high pressures.
T2  - Crystals
T1  - Computational Discovery of New Feasible Crystal Structures in Ce3O3N
VL  - 13
IS  - 5
SP  - 774
DO  - 10.3390/cryst13050774
ER  - 
@article{
author = "Zagorac, Jelena B. and Schön, Johann Christian and Matović, Branko and Pejić, Milan and Prekajski-Đorđević, Marija D. and Zagorac, Dejan",
year = "2023",
abstract = "Oxynitrides of cerium are expected to have many useful properties but have not been synthesized so far. We identified possible modifications of a not-yet-synthesized Ce3O3N compound, combining global search (GS) and data mining (DM) methods. Employing empirical potentials, structure candidates were obtained via global optimization on the energy landscape of Ce3O3N for different pressure values. Furthermore, additional feasible structure candidates were found using data mining of the ICSD database. The most promising structure candidates obtained were locally optimized at the ab initio level, and their E(V) curves were computed. The structure lowest in total energy, Ce3O3N-DM1, was found via local optimization starting from a data mining candidate and should be thermodynamically metastable up to high pressures.",
journal = "Crystals",
title = "Computational Discovery of New Feasible Crystal Structures in Ce3O3N",
volume = "13",
number = "5",
pages = "774",
doi = "10.3390/cryst13050774"
}
Zagorac, J. B., Schön, J. C., Matović, B., Pejić, M., Prekajski-Đorđević, M. D.,& Zagorac, D.. (2023). Computational Discovery of New Feasible Crystal Structures in Ce3O3N. in Crystals, 13(5), 774.
https://doi.org/10.3390/cryst13050774
Zagorac JB, Schön JC, Matović B, Pejić M, Prekajski-Đorđević MD, Zagorac D. Computational Discovery of New Feasible Crystal Structures in Ce3O3N. in Crystals. 2023;13(5):774.
doi:10.3390/cryst13050774 .
Zagorac, Jelena B., Schön, Johann Christian, Matović, Branko, Pejić, Milan, Prekajski-Đorđević, Marija D., Zagorac, Dejan, "Computational Discovery of New Feasible Crystal Structures in Ce3O3N" in Crystals, 13, no. 5 (2023):774,
https://doi.org/10.3390/cryst13050774 . .
1
1

Enhancement of weak ferromagnetism, exotic structure prediction and diverse electronic properties in holmium substituted multiferroic bismuth ferrite

Čebela, Maria; Zagorac, Dejan; Popov, Igor; Torić, Filip; Klaser, Teodoro; Skoko, Željko; Pajić, Damir

(2023)

TY  - JOUR
AU  - Čebela, Maria
AU  - Zagorac, Dejan
AU  - Popov, Igor
AU  - Torić, Filip
AU  - Klaser, Teodoro
AU  - Skoko, Željko
AU  - Pajić, Damir
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11446
AB  - Bismuth ferrite (BFO, BiFeO3), exhibiting both ferromagnetic and ferroelectric properties at room temperature, is one of the most researched multiferroic materials with a growing number of technological applications. In the present study, using a combined theoretical–experimental approach, we have investigated the influence of Ho-doping on the structural, electronic and magnetic properties of BFO. Synthesis and structural XRD characterization of Bi1−xHoxFeO3 (x = 0.02, 0.05, and 0.10) nanopowders have been completed. After structure prediction of Ho-doped BiFeO3 using bond valence calculations (BVC), six most favorable candidates were found: α-, β-, γ-, R-, T1, and T2. Furthermore, all structure candidates have been examined for different magnetic ordering using DFT calculations. The magnetic behavior of the synthesized materials was investigated using a SQUID magnetometer equipped with an oven. The plethora of magnetic and electronic properties of the Ho-doped BFO that our theoretical research predicted can open up rich possibilities for further investigation and eventual applications.
T2  - Physical Chemistry Chemical Physics : PCCP
T1  - Enhancement of weak ferromagnetism, exotic structure prediction and diverse electronic properties in holmium substituted multiferroic bismuth ferrite
VL  - 25
IS  - 33
SP  - 22345
EP  - 22358
DO  - 10.1039/D3CP03259K
ER  - 
@article{
author = "Čebela, Maria and Zagorac, Dejan and Popov, Igor and Torić, Filip and Klaser, Teodoro and Skoko, Željko and Pajić, Damir",
year = "2023",
abstract = "Bismuth ferrite (BFO, BiFeO3), exhibiting both ferromagnetic and ferroelectric properties at room temperature, is one of the most researched multiferroic materials with a growing number of technological applications. In the present study, using a combined theoretical–experimental approach, we have investigated the influence of Ho-doping on the structural, electronic and magnetic properties of BFO. Synthesis and structural XRD characterization of Bi1−xHoxFeO3 (x = 0.02, 0.05, and 0.10) nanopowders have been completed. After structure prediction of Ho-doped BiFeO3 using bond valence calculations (BVC), six most favorable candidates were found: α-, β-, γ-, R-, T1, and T2. Furthermore, all structure candidates have been examined for different magnetic ordering using DFT calculations. The magnetic behavior of the synthesized materials was investigated using a SQUID magnetometer equipped with an oven. The plethora of magnetic and electronic properties of the Ho-doped BFO that our theoretical research predicted can open up rich possibilities for further investigation and eventual applications.",
journal = "Physical Chemistry Chemical Physics : PCCP",
title = "Enhancement of weak ferromagnetism, exotic structure prediction and diverse electronic properties in holmium substituted multiferroic bismuth ferrite",
volume = "25",
number = "33",
pages = "22345-22358",
doi = "10.1039/D3CP03259K"
}
Čebela, M., Zagorac, D., Popov, I., Torić, F., Klaser, T., Skoko, Ž.,& Pajić, D.. (2023). Enhancement of weak ferromagnetism, exotic structure prediction and diverse electronic properties in holmium substituted multiferroic bismuth ferrite. in Physical Chemistry Chemical Physics : PCCP, 25(33), 22345-22358.
https://doi.org/10.1039/D3CP03259K
Čebela M, Zagorac D, Popov I, Torić F, Klaser T, Skoko Ž, Pajić D. Enhancement of weak ferromagnetism, exotic structure prediction and diverse electronic properties in holmium substituted multiferroic bismuth ferrite. in Physical Chemistry Chemical Physics : PCCP. 2023;25(33):22345-22358.
doi:10.1039/D3CP03259K .
Čebela, Maria, Zagorac, Dejan, Popov, Igor, Torić, Filip, Klaser, Teodoro, Skoko, Željko, Pajić, Damir, "Enhancement of weak ferromagnetism, exotic structure prediction and diverse electronic properties in holmium substituted multiferroic bismuth ferrite" in Physical Chemistry Chemical Physics : PCCP, 25, no. 33 (2023):22345-22358,
https://doi.org/10.1039/D3CP03259K . .
1
1

Fundamental insight into the formation of the zinc oxide crystal structure

Fischer, Dieter; Zagorac, Dejan; Schön, Christian J.

(2023)

TY  - JOUR
AU  - Fischer, Dieter
AU  - Zagorac, Dejan
AU  - Schön, Christian J.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11548
AB  - Zinc oxide shows unique properties which are evident in a wide range of applications: as a transparent conducting oxide, wide-bandgap semiconductor, and piezoelectric device. The starting point for understanding the origin of these properties are the subtle details of the crystal structure of ZnO, and thus elucidating its formation process is essential. The in-situ characterization of films deposited at various temperatures provides an important contribution in this regard, especially since this study reports on ZnO film deposition below room temperature down to -240 ◦C. Systematic investigations on nanocrystalline ZnO films as function of the deposition temperature reveal structural disorders caused by the irregular occupation of oxygen tetrahedra forming dioxygen species in zinc oxide. Three distinct material ranges are identified in the range of deposition temperatures between -240 and 300 ◦C. The most surprising observations are the segregation of zinc next to ZnO particles for films deposited at room temperature and the disappearance of the Raman bands of the ZnO lattice for those deposited above 100 ◦C. On both ends of the investigated deposition temperature scale transparent colorless films are obtained, which form a random frozen solid at low temperatures as well as a highly disordered film at high temperatures. The deposits at -80 ◦C are yellow in color, indicating the presence of superoxide ions. This wide variety in the properties of ZnO is enabled by the high flexibility of the wurtzite structure, which tolerates huge distance variations. This observation and the results presented open up important insights into the behavior of zinc oxide.
T2  - Thin Solid Films
T1  - Fundamental insight into the formation of the zinc oxide crystal structure
VL  - 782
SP  - 140017
DO  - 10.1016/j.tsf.2023.140017
ER  - 
@article{
author = "Fischer, Dieter and Zagorac, Dejan and Schön, Christian J.",
year = "2023",
abstract = "Zinc oxide shows unique properties which are evident in a wide range of applications: as a transparent conducting oxide, wide-bandgap semiconductor, and piezoelectric device. The starting point for understanding the origin of these properties are the subtle details of the crystal structure of ZnO, and thus elucidating its formation process is essential. The in-situ characterization of films deposited at various temperatures provides an important contribution in this regard, especially since this study reports on ZnO film deposition below room temperature down to -240 ◦C. Systematic investigations on nanocrystalline ZnO films as function of the deposition temperature reveal structural disorders caused by the irregular occupation of oxygen tetrahedra forming dioxygen species in zinc oxide. Three distinct material ranges are identified in the range of deposition temperatures between -240 and 300 ◦C. The most surprising observations are the segregation of zinc next to ZnO particles for films deposited at room temperature and the disappearance of the Raman bands of the ZnO lattice for those deposited above 100 ◦C. On both ends of the investigated deposition temperature scale transparent colorless films are obtained, which form a random frozen solid at low temperatures as well as a highly disordered film at high temperatures. The deposits at -80 ◦C are yellow in color, indicating the presence of superoxide ions. This wide variety in the properties of ZnO is enabled by the high flexibility of the wurtzite structure, which tolerates huge distance variations. This observation and the results presented open up important insights into the behavior of zinc oxide.",
journal = "Thin Solid Films",
title = "Fundamental insight into the formation of the zinc oxide crystal structure",
volume = "782",
pages = "140017",
doi = "10.1016/j.tsf.2023.140017"
}
Fischer, D., Zagorac, D.,& Schön, C. J.. (2023). Fundamental insight into the formation of the zinc oxide crystal structure. in Thin Solid Films, 782, 140017.
https://doi.org/10.1016/j.tsf.2023.140017
Fischer D, Zagorac D, Schön CJ. Fundamental insight into the formation of the zinc oxide crystal structure. in Thin Solid Films. 2023;782:140017.
doi:10.1016/j.tsf.2023.140017 .
Fischer, Dieter, Zagorac, Dejan, Schön, Christian J., "Fundamental insight into the formation of the zinc oxide crystal structure" in Thin Solid Films, 782 (2023):140017,
https://doi.org/10.1016/j.tsf.2023.140017 . .

Modeling and Simulation of Advanced Ceramic Materials

Zagorac, Dejan

(Belgrade : Serbian Ceramic Society, 2023)

TY  - CONF
AU  - Zagorac, Dejan
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11629
AB  - Innovative materials used in high-technology applications are called advanced materials. These materials can be completely new or typical traditional materials (e.g., metals, ceramics)whose properties have been enhanced to become advanced. This talk will cover the theoretical investigation of various advanced ceramic materials in connection to the experimental results. The first part will include the basics of modeling and structure prediction of ceramic materials, such as global optimization, quantum mechanics, and supercell method, as well as current developments in the Inorganic Crystal Structure Database (ICSD), theoretical crystal structure data, and data mining.In the next part, theoretical methods will be applied to the specific ceramic compounds. A plethora of state-of-the-art quantum mechanical methods will be presented, including Density-functional theory (DFT),LDA-PZ and GGA-PBE, or hybrid B3LYP and HSE functionals, and a combination of quantum mechanics with data mining and global optimization, as well as the newly developed Primitive Cell approach for Atom Exchange (PCAE) method applied on ZnO/ZnS polytypic (hetero)structures and unknown Cr2SiN4 compounds. Finally, the theoretical modeling of materials properties has been presented. Since many of the investigated materials show a large number of desirable properties for industrial applications,ab initio calculations of electronic, elastic, and mechanical properties will be presented and compared with experiments when available.
PB  - Belgrade : Serbian Ceramic Society
C3  - Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade
T1  - Modeling and Simulation of Advanced Ceramic Materials
SP  - 24
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11629
ER  - 
@conference{
author = "Zagorac, Dejan",
year = "2023",
abstract = "Innovative materials used in high-technology applications are called advanced materials. These materials can be completely new or typical traditional materials (e.g., metals, ceramics)whose properties have been enhanced to become advanced. This talk will cover the theoretical investigation of various advanced ceramic materials in connection to the experimental results. The first part will include the basics of modeling and structure prediction of ceramic materials, such as global optimization, quantum mechanics, and supercell method, as well as current developments in the Inorganic Crystal Structure Database (ICSD), theoretical crystal structure data, and data mining.In the next part, theoretical methods will be applied to the specific ceramic compounds. A plethora of state-of-the-art quantum mechanical methods will be presented, including Density-functional theory (DFT),LDA-PZ and GGA-PBE, or hybrid B3LYP and HSE functionals, and a combination of quantum mechanics with data mining and global optimization, as well as the newly developed Primitive Cell approach for Atom Exchange (PCAE) method applied on ZnO/ZnS polytypic (hetero)structures and unknown Cr2SiN4 compounds. Finally, the theoretical modeling of materials properties has been presented. Since many of the investigated materials show a large number of desirable properties for industrial applications,ab initio calculations of electronic, elastic, and mechanical properties will be presented and compared with experiments when available.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade",
title = "Modeling and Simulation of Advanced Ceramic Materials",
pages = "24",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11629"
}
Zagorac, D.. (2023). Modeling and Simulation of Advanced Ceramic Materials. in Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade
Belgrade : Serbian Ceramic Society., 24.
https://hdl.handle.net/21.15107/rcub_vinar_11629
Zagorac D. Modeling and Simulation of Advanced Ceramic Materials. in Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade. 2023;:24.
https://hdl.handle.net/21.15107/rcub_vinar_11629 .
Zagorac, Dejan, "Modeling and Simulation of Advanced Ceramic Materials" in Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade (2023):24,
https://hdl.handle.net/21.15107/rcub_vinar_11629 .

Exploring the energy landscape and crystal structures of CrSi2N4

Škundrić, Tamara; Schön, Johann Christian; Zarubica, Aleksandra; Fonović, Matej; Zagorac, Dejan

(2023)

TY  - JOUR
AU  - Škundrić, Tamara
AU  - Schön, Johann Christian
AU  - Zarubica, Aleksandra
AU  - Fonović, Matej
AU  - Zagorac, Dejan
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11728
AB  - The Cr−Si−N system is of great interest for materials with advanced tribological and mechanical properties. So far, experimental data have been reported on Cr−Si−N coating, nanocrystalline phases, and thin films, together with theoretically predicted 1D and 2D hetero-structures, and 3D bulk Cr2SiN4 modifications. This study predicts possible bulk Cr−Si−N phases with the composition CrSi2N4. A multi-methodological approach has been employed to explore the system's energy landscape, where global optimization was combined with data mining and the Primitive Cell for Atom Exchange (PCAE) method. Local optimization of the structure candidates was performed on the DFT level using the GGA-PBE and the LDA-PZ approximation. The ten energetically most favorable structure candidates discovered in the CrSi2N4 chemical system mostly exhibited monoclinic symmetry but with a variety of structural features, from zeolite-like structures to polytypic behavior. Finally, the bulk modulus of these possible modifications was computed for a pressure range of up to 10 GPa.
T2  - Zeitschrift für anorganische und allgemeine Chemie
T1  - Exploring the energy landscape and crystal structures of CrSi2N4
DO  - 10.1002/zaac.202300130
ER  - 
@article{
author = "Škundrić, Tamara and Schön, Johann Christian and Zarubica, Aleksandra and Fonović, Matej and Zagorac, Dejan",
year = "2023",
abstract = "The Cr−Si−N system is of great interest for materials with advanced tribological and mechanical properties. So far, experimental data have been reported on Cr−Si−N coating, nanocrystalline phases, and thin films, together with theoretically predicted 1D and 2D hetero-structures, and 3D bulk Cr2SiN4 modifications. This study predicts possible bulk Cr−Si−N phases with the composition CrSi2N4. A multi-methodological approach has been employed to explore the system's energy landscape, where global optimization was combined with data mining and the Primitive Cell for Atom Exchange (PCAE) method. Local optimization of the structure candidates was performed on the DFT level using the GGA-PBE and the LDA-PZ approximation. The ten energetically most favorable structure candidates discovered in the CrSi2N4 chemical system mostly exhibited monoclinic symmetry but with a variety of structural features, from zeolite-like structures to polytypic behavior. Finally, the bulk modulus of these possible modifications was computed for a pressure range of up to 10 GPa.",
journal = "Zeitschrift für anorganische und allgemeine Chemie",
title = "Exploring the energy landscape and crystal structures of CrSi2N4",
doi = "10.1002/zaac.202300130"
}
Škundrić, T., Schön, J. C., Zarubica, A., Fonović, M.,& Zagorac, D.. (2023). Exploring the energy landscape and crystal structures of CrSi2N4. in Zeitschrift für anorganische und allgemeine Chemie.
https://doi.org/10.1002/zaac.202300130
Škundrić T, Schön JC, Zarubica A, Fonović M, Zagorac D. Exploring the energy landscape and crystal structures of CrSi2N4. in Zeitschrift für anorganische und allgemeine Chemie. 2023;.
doi:10.1002/zaac.202300130 .
Škundrić, Tamara, Schön, Johann Christian, Zarubica, Aleksandra, Fonović, Matej, Zagorac, Dejan, "Exploring the energy landscape and crystal structures of CrSi2N4" in Zeitschrift für anorganische und allgemeine Chemie (2023),
https://doi.org/10.1002/zaac.202300130 . .
1

DFT Study of Crystalline TiO2 Phase Transitions Applicable in Extreme Environments

Jovanović, Dušica; Zagorac, Dejan; Zarubica, Aleksandra; Fonović, Matej; Zagorac, Jelena B.

(2023)

TY  - JOUR
AU  - Jovanović, Dušica
AU  - Zagorac, Dejan
AU  - Zarubica, Aleksandra
AU  - Fonović, Matej
AU  - Zagorac, Jelena B.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11732
AB  - Crystalline TiO2 has many practical applications as a photocatalytic material. The structures and relative energies of eleven different modifications of bulk structures with TiO2 composition were theoretically investigated in this study. Calculations were performed by the DFT method with LDA-PZ functional as implemented in CRYSTAL17 code. Structural parameters, energy- volume curves and electronic band gaps were calculated and analyzed. This study aimed to gain insight into the electronic structure of various modifications of crystalline pristine TiO2 and their phase transitions especially applicable at extreme pressure and temperature conditions. The information obtained in this study may contribute to future research on the structure and various properties (electronic, mechanical…) of such systems, as well as their potential application in various scientific fields and advanced technology.
T2  - Journal of Innovative Materials in Extreme Conditions
T1  - DFT Study of Crystalline TiO2 Phase Transitions Applicable in Extreme Environments
VL  - 4
IS  - 1
SP  - 30
EP  - 37
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11732
ER  - 
@article{
author = "Jovanović, Dušica and Zagorac, Dejan and Zarubica, Aleksandra and Fonović, Matej and Zagorac, Jelena B.",
year = "2023",
abstract = "Crystalline TiO2 has many practical applications as a photocatalytic material. The structures and relative energies of eleven different modifications of bulk structures with TiO2 composition were theoretically investigated in this study. Calculations were performed by the DFT method with LDA-PZ functional as implemented in CRYSTAL17 code. Structural parameters, energy- volume curves and electronic band gaps were calculated and analyzed. This study aimed to gain insight into the electronic structure of various modifications of crystalline pristine TiO2 and their phase transitions especially applicable at extreme pressure and temperature conditions. The information obtained in this study may contribute to future research on the structure and various properties (electronic, mechanical…) of such systems, as well as their potential application in various scientific fields and advanced technology.",
journal = "Journal of Innovative Materials in Extreme Conditions",
title = "DFT Study of Crystalline TiO2 Phase Transitions Applicable in Extreme Environments",
volume = "4",
number = "1",
pages = "30-37",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11732"
}
Jovanović, D., Zagorac, D., Zarubica, A., Fonović, M.,& Zagorac, J. B.. (2023). DFT Study of Crystalline TiO2 Phase Transitions Applicable in Extreme Environments. in Journal of Innovative Materials in Extreme Conditions, 4(1), 30-37.
https://hdl.handle.net/21.15107/rcub_vinar_11732
Jovanović D, Zagorac D, Zarubica A, Fonović M, Zagorac JB. DFT Study of Crystalline TiO2 Phase Transitions Applicable in Extreme Environments. in Journal of Innovative Materials in Extreme Conditions. 2023;4(1):30-37.
https://hdl.handle.net/21.15107/rcub_vinar_11732 .
Jovanović, Dušica, Zagorac, Dejan, Zarubica, Aleksandra, Fonović, Matej, Zagorac, Jelena B., "DFT Study of Crystalline TiO2 Phase Transitions Applicable in Extreme Environments" in Journal of Innovative Materials in Extreme Conditions, 4, no. 1 (2023):30-37,
https://hdl.handle.net/21.15107/rcub_vinar_11732 .

Mechanical and elastic properties of SiB6: Theoretical investigations through ab initio calculations

Škundrić, Tamara; Zagorac, Dejan; Zarubica, Aleksandra; Zagorac, Jelena; Pejić, Milan; Jovanović, Dušica; Tatarko, Petar; Matović, Branko

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2022)

TY  - CONF
AU  - Škundrić, Tamara
AU  - Zagorac, Dejan
AU  - Zarubica, Aleksandra
AU  - Zagorac, Jelena
AU  - Pejić, Milan
AU  - Jovanović, Dušica
AU  - Tatarko, Petar
AU  - Matović, Branko
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12434
AB  - Silicon borides are lightweight ceramics and are regarded as the most elusive refractory compounds. Owing to their remarkable features, represent very appealing industrial materials for research. Although silicon hexaboride is discovered at the beginning of the XX century, there is a surprisingly limited number of studies on the elastic and mechanical properties of SiB6, both in theory and experiment. İn order to investigate the properties of this compound, first we have undertaken calculations using the ab initio minimization data mining approach [1,2] combined with the PCAE method [3], and several promising structure candidates have been found referred to as αSiB6, β-SiB6, and γ-SiB6 modifications. For these most relevant modifications, elastic constants Cij have been calculated using GGA-PBE and LDA-PZ approach and were compared to previous theoretical data. Cubic γ-SiB6 modification has only three independent elastic constants which are in very good agreement with available theoretical data. Using the elastic constants, mechanical stability was investigated and the results suggest instability in the cubic γ-SiB6 structure, which is also in agreement with previous theoretical studies. Elastic constants for the α-SiB6 phase are reported for the first time and indicate the mechanical stability of this phase. The last one, the βSiB6 phase has a lower orthorhombic symmetry and a larger number of independent elastic constants that were calculated using both the LDA and GGA approach and the results agree well with previous studies. According to the calculated results, the β phase is mechanically stable that also concurs with previous studies. Within this study, the bulk modulus B, Shear modulus K, Young’s modulus E, Poisson’s ratio v, and Pugh’s criterion B/K for these modifications have been calculated [4]. According to the calculated Poison’s ratio and Pugh’s criterion (B/K) using both GGA and LDA methods, it can be assumed that the β-SiB6 phase will have a brittle character, while α and γ-phase seem to be ductile. As it was suggested from several earlier studies that SiB6 has excellent potential as high-temperature material, and it has been considered as a material with the ability to operate in extreme environments, further research of this compound is required. Investigation in detail of these newly discovered phases and their properties is of great importance in order to find new possibilities for future industrial and technological applications.
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC 2022 : 1st Intentational conference on innovativ materials in extreme conditions : Program and Book of abstracts
T1  - Mechanical and elastic properties of SiB6: Theoretical investigations through ab initio calculations
SP  - 60
EP  - 60
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12434
ER  - 
@conference{
author = "Škundrić, Tamara and Zagorac, Dejan and Zarubica, Aleksandra and Zagorac, Jelena and Pejić, Milan and Jovanović, Dušica and Tatarko, Petar and Matović, Branko",
year = "2022",
abstract = "Silicon borides are lightweight ceramics and are regarded as the most elusive refractory compounds. Owing to their remarkable features, represent very appealing industrial materials for research. Although silicon hexaboride is discovered at the beginning of the XX century, there is a surprisingly limited number of studies on the elastic and mechanical properties of SiB6, both in theory and experiment. İn order to investigate the properties of this compound, first we have undertaken calculations using the ab initio minimization data mining approach [1,2] combined with the PCAE method [3], and several promising structure candidates have been found referred to as αSiB6, β-SiB6, and γ-SiB6 modifications. For these most relevant modifications, elastic constants Cij have been calculated using GGA-PBE and LDA-PZ approach and were compared to previous theoretical data. Cubic γ-SiB6 modification has only three independent elastic constants which are in very good agreement with available theoretical data. Using the elastic constants, mechanical stability was investigated and the results suggest instability in the cubic γ-SiB6 structure, which is also in agreement with previous theoretical studies. Elastic constants for the α-SiB6 phase are reported for the first time and indicate the mechanical stability of this phase. The last one, the βSiB6 phase has a lower orthorhombic symmetry and a larger number of independent elastic constants that were calculated using both the LDA and GGA approach and the results agree well with previous studies. According to the calculated results, the β phase is mechanically stable that also concurs with previous studies. Within this study, the bulk modulus B, Shear modulus K, Young’s modulus E, Poisson’s ratio v, and Pugh’s criterion B/K for these modifications have been calculated [4]. According to the calculated Poison’s ratio and Pugh’s criterion (B/K) using both GGA and LDA methods, it can be assumed that the β-SiB6 phase will have a brittle character, while α and γ-phase seem to be ductile. As it was suggested from several earlier studies that SiB6 has excellent potential as high-temperature material, and it has been considered as a material with the ability to operate in extreme environments, further research of this compound is required. Investigation in detail of these newly discovered phases and their properties is of great importance in order to find new possibilities for future industrial and technological applications.",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC 2022 : 1st Intentational conference on innovativ materials in extreme conditions : Program and Book of abstracts",
title = "Mechanical and elastic properties of SiB6: Theoretical investigations through ab initio calculations",
pages = "60-60",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12434"
}
Škundrić, T., Zagorac, D., Zarubica, A., Zagorac, J., Pejić, M., Jovanović, D., Tatarko, P.,& Matović, B.. (2022). Mechanical and elastic properties of SiB6: Theoretical investigations through ab initio calculations. in IMEC 2022 : 1st Intentational conference on innovativ materials in extreme conditions : Program and Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 60-60.
https://hdl.handle.net/21.15107/rcub_vinar_12434
Škundrić T, Zagorac D, Zarubica A, Zagorac J, Pejić M, Jovanović D, Tatarko P, Matović B. Mechanical and elastic properties of SiB6: Theoretical investigations through ab initio calculations. in IMEC 2022 : 1st Intentational conference on innovativ materials in extreme conditions : Program and Book of abstracts. 2022;:60-60.
https://hdl.handle.net/21.15107/rcub_vinar_12434 .
Škundrić, Tamara, Zagorac, Dejan, Zarubica, Aleksandra, Zagorac, Jelena, Pejić, Milan, Jovanović, Dušica, Tatarko, Petar, Matović, Branko, "Mechanical and elastic properties of SiB6: Theoretical investigations through ab initio calculations" in IMEC 2022 : 1st Intentational conference on innovativ materials in extreme conditions : Program and Book of abstracts (2022):60-60,
https://hdl.handle.net/21.15107/rcub_vinar_12434 .

Crystal structure prediction of novel Cr2SiN4 compound under extreme conditions

Škundrić, Tamara; Zagorac, Dejan; Schön, Johann Christian; Zagorac, Jelena; Pejić, Milan; Jovanović, Dušica; Matović, Branko

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2022)

TY  - CONF
AU  - Škundrić, Tamara
AU  - Zagorac, Dejan
AU  - Schön, Johann Christian
AU  - Zagorac, Jelena
AU  - Pejić, Milan
AU  - Jovanović, Dušica
AU  - Matović, Branko
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12435
AB  - Various machinery, especially equipment operating in harsh conditions such as marine environment, face severe damage during their usage. Hence, there is an urgent need for protective coatings, so they can work properly for a longer period. While transition metal nitride (TM-N) coatings are conventionally used for protection, CrN coatings are among the most widespread due to their outstanding properties. Nevertheless, because of its high friction coefficient, it is not appropriate for usage in extreme conditions. However, several previous studies have shown that the CrN complex can significantly improve its performance when Si is implemented. As it is suggested, the CrSiN coating is comprised of two phases, where the nanocrystalline CrN is embedded in the Si3N4 amorphous matrix. Within this study, we conducted the first investigation of the bulk Cr2SiN4 [1], since only CrSiN in thin films surveys were reported in previous experimental studies. In order to get insight into the structural stability of the possible phases existing in this system, we have performed global explorations of the energy landscape of the bulk Cr2SiN4 using simulated annealing with an empirical potential [2,3], combined with data mining and the Primitive Cell approach for Atom Exchange (PCAE) method [4]. Ab initio structural refinement confirmed several structure candidates on both the GGA-PBE and the LDA-PZ levels of calculation. The Global Optimization (GO) yielded five candidate structures possible to be observed at extreme conditions of temperature and/or pressure. The first of these structurally promising modifications appear in space group P21/m (no. 11) and is denoted as nf1-Cr2SiN4-type. The following structure candidate is referred to as nf2-Cr2SiN4-type, nf3-Cr2SiN4-type, nf4-Cr2SiN4-type, and the last modification within this group according to the total energy ranking is referred to as nf5-Cr2SiN4-type and crystallizes in space group P-1 (no.2). After performing full structural optimization on the ab initio level using the GGA-PBE functional, data mining-based searches yielded several structure candidates likely to be detected at extreme conditions. The first modification is denoted as Ca2RuO4-type, followed by HgC2O4-like, Ca2IrO4-type, CaB2O4-like, and Mn2SnS4-type, respectively. Finally, the Primitive Cell for Atom Exchange (PCAE) method generated three alternative structure candidates with two of them likely to be found at extreme conditions. Due to the exceptional properties of CrSiN coatings, presented in previous studies, further investigation of this ternary system is of crucial importance to determine the properties of these newly discovered phases as well as possibilities for industrial and technological applications.
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC 2022 : 1st Intentational conference on innovativ materials in extreme conditions : Program and Book of abstracts
T1  - Crystal structure prediction of novel Cr2SiN4 compound under extreme conditions
SP  - 59
EP  - 59
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12435
ER  - 
@conference{
author = "Škundrić, Tamara and Zagorac, Dejan and Schön, Johann Christian and Zagorac, Jelena and Pejić, Milan and Jovanović, Dušica and Matović, Branko",
year = "2022",
abstract = "Various machinery, especially equipment operating in harsh conditions such as marine environment, face severe damage during their usage. Hence, there is an urgent need for protective coatings, so they can work properly for a longer period. While transition metal nitride (TM-N) coatings are conventionally used for protection, CrN coatings are among the most widespread due to their outstanding properties. Nevertheless, because of its high friction coefficient, it is not appropriate for usage in extreme conditions. However, several previous studies have shown that the CrN complex can significantly improve its performance when Si is implemented. As it is suggested, the CrSiN coating is comprised of two phases, where the nanocrystalline CrN is embedded in the Si3N4 amorphous matrix. Within this study, we conducted the first investigation of the bulk Cr2SiN4 [1], since only CrSiN in thin films surveys were reported in previous experimental studies. In order to get insight into the structural stability of the possible phases existing in this system, we have performed global explorations of the energy landscape of the bulk Cr2SiN4 using simulated annealing with an empirical potential [2,3], combined with data mining and the Primitive Cell approach for Atom Exchange (PCAE) method [4]. Ab initio structural refinement confirmed several structure candidates on both the GGA-PBE and the LDA-PZ levels of calculation. The Global Optimization (GO) yielded five candidate structures possible to be observed at extreme conditions of temperature and/or pressure. The first of these structurally promising modifications appear in space group P21/m (no. 11) and is denoted as nf1-Cr2SiN4-type. The following structure candidate is referred to as nf2-Cr2SiN4-type, nf3-Cr2SiN4-type, nf4-Cr2SiN4-type, and the last modification within this group according to the total energy ranking is referred to as nf5-Cr2SiN4-type and crystallizes in space group P-1 (no.2). After performing full structural optimization on the ab initio level using the GGA-PBE functional, data mining-based searches yielded several structure candidates likely to be detected at extreme conditions. The first modification is denoted as Ca2RuO4-type, followed by HgC2O4-like, Ca2IrO4-type, CaB2O4-like, and Mn2SnS4-type, respectively. Finally, the Primitive Cell for Atom Exchange (PCAE) method generated three alternative structure candidates with two of them likely to be found at extreme conditions. Due to the exceptional properties of CrSiN coatings, presented in previous studies, further investigation of this ternary system is of crucial importance to determine the properties of these newly discovered phases as well as possibilities for industrial and technological applications.",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC 2022 : 1st Intentational conference on innovativ materials in extreme conditions : Program and Book of abstracts",
title = "Crystal structure prediction of novel Cr2SiN4 compound under extreme conditions",
pages = "59-59",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12435"
}
Škundrić, T., Zagorac, D., Schön, J. C., Zagorac, J., Pejić, M., Jovanović, D.,& Matović, B.. (2022). Crystal structure prediction of novel Cr2SiN4 compound under extreme conditions. in IMEC 2022 : 1st Intentational conference on innovativ materials in extreme conditions : Program and Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 59-59.
https://hdl.handle.net/21.15107/rcub_vinar_12435
Škundrić T, Zagorac D, Schön JC, Zagorac J, Pejić M, Jovanović D, Matović B. Crystal structure prediction of novel Cr2SiN4 compound under extreme conditions. in IMEC 2022 : 1st Intentational conference on innovativ materials in extreme conditions : Program and Book of abstracts. 2022;:59-59.
https://hdl.handle.net/21.15107/rcub_vinar_12435 .
Škundrić, Tamara, Zagorac, Dejan, Schön, Johann Christian, Zagorac, Jelena, Pejić, Milan, Jovanović, Dušica, Matović, Branko, "Crystal structure prediction of novel Cr2SiN4 compound under extreme conditions" in IMEC 2022 : 1st Intentational conference on innovativ materials in extreme conditions : Program and Book of abstracts (2022):59-59,
https://hdl.handle.net/21.15107/rcub_vinar_12435 .

DFT study of structural stability and mechanical properties: High-Entropy Alloys (HEAs) - Ultra-High Temperature Ceramics (UHTC)

Zagorac, Dejan; Cvijović-Alagić, Ivana; Zagorac, Jelena; Butulija, Svetlana; Erčić, Jelena; Hanzel, Ondrej; Sedlak, Richard; Lisnichuk, Maksym; Škundrić, Tamara; Pejić, Milan; Jovanović, Dušica; Tatarko, Peter; Matović, Branko

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2022)

TY  - CONF
AU  - Zagorac, Dejan
AU  - Cvijović-Alagić, Ivana
AU  - Zagorac, Jelena
AU  - Butulija, Svetlana
AU  - Erčić, Jelena
AU  - Hanzel, Ondrej
AU  - Sedlak, Richard
AU  - Lisnichuk, Maksym
AU  - Škundrić, Tamara
AU  - Pejić, Milan
AU  - Jovanović, Dušica
AU  - Tatarko, Peter
AU  - Matović, Branko
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11329
AB  - High-Entropy Alloys (HEAs) have attracted considerable interest due to the combination of useful properties and enhanced applications, and a few HEAs have already been shown to possess exceptional properties under extreme conditions (e.g. Ultra-High Temperature Ceramic (UHTC)). However, predicting the formation, structures, and stability of HEAs is one of the major goals of recent studies, which is expected to bring discovery of new systems with enhanced properties of the material, with special attention on high temperature and mechanical load. Here, we show an example of high-entropy rare-earth (RE) zirconates with a pyrochlore structure that was examined theoretically and experimentally observed. Theoretical methods were applied to investigate the variable composition of the ordered and disordered pyrochlore structures using quantum mechanics, group action theory, PCAE, and supercell methods. The investigated RE2Zr2O7 compound was successfully fabricated by pressureless and spark plasma sintering. with nominal composition (La0.2Y0.2Gd0.2Nd0.2Sm0.2)Zr2O7, prepared by simple glycine nitrate procedure (GNP) and characterized using various experimental methods (XRD, SEM, TEM, Raman, etc.). [1] Pyrochlore structures were generated using the Primitive Cell Approach for Atom Exchange (PCAE) method [2] or the supercell approach using the Crystal17 program package [3], and investigation of disordered systems and solid solutions was conducted using the group action theory [4]. Structural optimization on the ab initio level was performed using the Crystal17 code, based on a Linear Combination of Atomic Orbitals (LCAO). Density functional theory (DFT) calculations were utilized in the present study, using the local density approximation (LDA) with Perdew–Zunger (PZ) correlation functional.
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC 2022 : 1st Intentational conference on innovativ materials in extreme conditions : Program and Book of abstracts
T1  - DFT study of structural stability and mechanical properties: High-Entropy Alloys (HEAs) - Ultra-High Temperature Ceramics (UHTC)
SP  - 43
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11329
ER  - 
@conference{
author = "Zagorac, Dejan and Cvijović-Alagić, Ivana and Zagorac, Jelena and Butulija, Svetlana and Erčić, Jelena and Hanzel, Ondrej and Sedlak, Richard and Lisnichuk, Maksym and Škundrić, Tamara and Pejić, Milan and Jovanović, Dušica and Tatarko, Peter and Matović, Branko",
year = "2022",
abstract = "High-Entropy Alloys (HEAs) have attracted considerable interest due to the combination of useful properties and enhanced applications, and a few HEAs have already been shown to possess exceptional properties under extreme conditions (e.g. Ultra-High Temperature Ceramic (UHTC)). However, predicting the formation, structures, and stability of HEAs is one of the major goals of recent studies, which is expected to bring discovery of new systems with enhanced properties of the material, with special attention on high temperature and mechanical load. Here, we show an example of high-entropy rare-earth (RE) zirconates with a pyrochlore structure that was examined theoretically and experimentally observed. Theoretical methods were applied to investigate the variable composition of the ordered and disordered pyrochlore structures using quantum mechanics, group action theory, PCAE, and supercell methods. The investigated RE2Zr2O7 compound was successfully fabricated by pressureless and spark plasma sintering. with nominal composition (La0.2Y0.2Gd0.2Nd0.2Sm0.2)Zr2O7, prepared by simple glycine nitrate procedure (GNP) and characterized using various experimental methods (XRD, SEM, TEM, Raman, etc.). [1] Pyrochlore structures were generated using the Primitive Cell Approach for Atom Exchange (PCAE) method [2] or the supercell approach using the Crystal17 program package [3], and investigation of disordered systems and solid solutions was conducted using the group action theory [4]. Structural optimization on the ab initio level was performed using the Crystal17 code, based on a Linear Combination of Atomic Orbitals (LCAO). Density functional theory (DFT) calculations were utilized in the present study, using the local density approximation (LDA) with Perdew–Zunger (PZ) correlation functional.",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC 2022 : 1st Intentational conference on innovativ materials in extreme conditions : Program and Book of abstracts",
title = "DFT study of structural stability and mechanical properties: High-Entropy Alloys (HEAs) - Ultra-High Temperature Ceramics (UHTC)",
pages = "43",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11329"
}
Zagorac, D., Cvijović-Alagić, I., Zagorac, J., Butulija, S., Erčić, J., Hanzel, O., Sedlak, R., Lisnichuk, M., Škundrić, T., Pejić, M., Jovanović, D., Tatarko, P.,& Matović, B.. (2022). DFT study of structural stability and mechanical properties: High-Entropy Alloys (HEAs) - Ultra-High Temperature Ceramics (UHTC). in IMEC 2022 : 1st Intentational conference on innovativ materials in extreme conditions : Program and Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 43.
https://hdl.handle.net/21.15107/rcub_vinar_11329
Zagorac D, Cvijović-Alagić I, Zagorac J, Butulija S, Erčić J, Hanzel O, Sedlak R, Lisnichuk M, Škundrić T, Pejić M, Jovanović D, Tatarko P, Matović B. DFT study of structural stability and mechanical properties: High-Entropy Alloys (HEAs) - Ultra-High Temperature Ceramics (UHTC). in IMEC 2022 : 1st Intentational conference on innovativ materials in extreme conditions : Program and Book of abstracts. 2022;:43.
https://hdl.handle.net/21.15107/rcub_vinar_11329 .
Zagorac, Dejan, Cvijović-Alagić, Ivana, Zagorac, Jelena, Butulija, Svetlana, Erčić, Jelena, Hanzel, Ondrej, Sedlak, Richard, Lisnichuk, Maksym, Škundrić, Tamara, Pejić, Milan, Jovanović, Dušica, Tatarko, Peter, Matović, Branko, "DFT study of structural stability and mechanical properties: High-Entropy Alloys (HEAs) - Ultra-High Temperature Ceramics (UHTC)" in IMEC 2022 : 1st Intentational conference on innovativ materials in extreme conditions : Program and Book of abstracts (2022):43,
https://hdl.handle.net/21.15107/rcub_vinar_11329 .

Structural and mechanical properties of highentropy alloys (HEAS) - ultra-high temperature ceramics (UHTC) on DFT level

Cvijović-Alagić, Ivana; Zagorac, Dejan; Zagorac, Jelena; Butulija, Svetlana; Erčić, Jelena; Hanzel, Ondrej; Sedlak, Richard; Lisnichuk, Maksym; Škundrić, Tamara; Pejić, Milan; Jovanović, Dušica; Tatarko, Peter; Matović, Branko

(Belgrade : Institute for Multidisciplinary Research, University of Belgrade, 2022)

TY  - CONF
AU  - Cvijović-Alagić, Ivana
AU  - Zagorac, Dejan
AU  - Zagorac, Jelena
AU  - Butulija, Svetlana
AU  - Erčić, Jelena
AU  - Hanzel, Ondrej
AU  - Sedlak, Richard
AU  - Lisnichuk, Maksym
AU  - Škundrić, Tamara
AU  - Pejić, Milan
AU  - Jovanović, Dušica
AU  - Tatarko, Peter
AU  - Matović, Branko
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11331
PB  - Belgrade : Institute for Multidisciplinary Research, University of Belgrade
C3  - Advanced Ceramics and Application : 6th Conference of The Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia
T1  - Structural and mechanical properties of highentropy alloys (HEAS) - ultra-high temperature ceramics (UHTC) on DFT level
SP  - 80
EP  - 81
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11331
ER  - 
@conference{
author = "Cvijović-Alagić, Ivana and Zagorac, Dejan and Zagorac, Jelena and Butulija, Svetlana and Erčić, Jelena and Hanzel, Ondrej and Sedlak, Richard and Lisnichuk, Maksym and Škundrić, Tamara and Pejić, Milan and Jovanović, Dušica and Tatarko, Peter and Matović, Branko",
year = "2022",
publisher = "Belgrade : Institute for Multidisciplinary Research, University of Belgrade",
journal = "Advanced Ceramics and Application : 6th Conference of The Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia",
title = "Structural and mechanical properties of highentropy alloys (HEAS) - ultra-high temperature ceramics (UHTC) on DFT level",
pages = "80-81",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11331"
}
Cvijović-Alagić, I., Zagorac, D., Zagorac, J., Butulija, S., Erčić, J., Hanzel, O., Sedlak, R., Lisnichuk, M., Škundrić, T., Pejić, M., Jovanović, D., Tatarko, P.,& Matović, B.. (2022). Structural and mechanical properties of highentropy alloys (HEAS) - ultra-high temperature ceramics (UHTC) on DFT level. in Advanced Ceramics and Application : 6th Conference of The Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia
Belgrade : Institute for Multidisciplinary Research, University of Belgrade., 80-81.
https://hdl.handle.net/21.15107/rcub_vinar_11331
Cvijović-Alagić I, Zagorac D, Zagorac J, Butulija S, Erčić J, Hanzel O, Sedlak R, Lisnichuk M, Škundrić T, Pejić M, Jovanović D, Tatarko P, Matović B. Structural and mechanical properties of highentropy alloys (HEAS) - ultra-high temperature ceramics (UHTC) on DFT level. in Advanced Ceramics and Application : 6th Conference of The Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia. 2022;:80-81.
https://hdl.handle.net/21.15107/rcub_vinar_11331 .
Cvijović-Alagić, Ivana, Zagorac, Dejan, Zagorac, Jelena, Butulija, Svetlana, Erčić, Jelena, Hanzel, Ondrej, Sedlak, Richard, Lisnichuk, Maksym, Škundrić, Tamara, Pejić, Milan, Jovanović, Dušica, Tatarko, Peter, Matović, Branko, "Structural and mechanical properties of highentropy alloys (HEAS) - ultra-high temperature ceramics (UHTC) on DFT level" in Advanced Ceramics and Application : 6th Conference of The Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia (2022):80-81,
https://hdl.handle.net/21.15107/rcub_vinar_11331 .

Fabrication and characterization of high entropy pyrochlore ceramics

Matović, Branko; Zagorac, Dejan; Cvijović-Alagić, Ivana; Zagorac, Jelena; Butulija, Svetlana; Erčić, Jelena; Hanzel, Ondrej; Sedlak, Richard; Lisnichuk, Maksym; Tatarko, Peter

(Belgrade : Materials Research Society of Serbia – MRS-Serbia, 2022)

TY  - CONF
AU  - Matović, Branko
AU  - Zagorac, Dejan
AU  - Cvijović-Alagić, Ivana
AU  - Zagorac, Jelena
AU  - Butulija, Svetlana
AU  - Erčić, Jelena
AU  - Hanzel, Ondrej
AU  - Sedlak, Richard
AU  - Lisnichuk, Maksym
AU  - Tatarko, Peter
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11332
AB  - High-entropy rare-earth (RE) zirconates with pyrochlore structure were successfully fabricated by pressureless and spark plasma sintering. RE2Zr2O7 compound with nominal composition (La0.2Y0.2Gd0.2Nd0.2Sm0.2)Zr2O7 was prepared by simple glycine nitrate procedure (GNP). GNP process yielded powders with low crystallinity and after subsequent calcination, well crystalline ceramics were formed. During calcination defective fluorite (F-RE2Zr2O7) and crystal pyrochlore (Py-RE2Zr2O7) structures coexist. Formation of pure crystalline pyrochlore occurs after sintering at 1450 C. High-density ceramics, free of any additives, were obtained after powders compaction and pressureless (PS), as well as Field Assisted Sintering Technique (FAST) at 1450 C. Theoretical investigations of the high-entropy RE2Zr2O7 pyrochlore systems were performed. Unit cell parameter of the obtained Py-RE2Zr2O7 is 10.5892(2) Å and 10.5999(2) Å for PS and FAST sintering, respectively, which is in good agreement with the results of Density Functional Theory (DFT) calculations. The thermal diffusivity of sintered samples at room temperature was ~0.7 mm2 /s for both sintering methods.
PB  - Belgrade : Materials Research Society of Serbia – MRS-Serbia
C3  - 23rd annual conference - YUCOMAT 2022 & 12th World Round Table Conference on Sintering - WRTCS 2022 : Program and Book of Abstracts
T1  - Fabrication and characterization of high entropy pyrochlore ceramics
VL  - XLV
SP  - 115
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11332
ER  - 
@conference{
author = "Matović, Branko and Zagorac, Dejan and Cvijović-Alagić, Ivana and Zagorac, Jelena and Butulija, Svetlana and Erčić, Jelena and Hanzel, Ondrej and Sedlak, Richard and Lisnichuk, Maksym and Tatarko, Peter",
year = "2022",
abstract = "High-entropy rare-earth (RE) zirconates with pyrochlore structure were successfully fabricated by pressureless and spark plasma sintering. RE2Zr2O7 compound with nominal composition (La0.2Y0.2Gd0.2Nd0.2Sm0.2)Zr2O7 was prepared by simple glycine nitrate procedure (GNP). GNP process yielded powders with low crystallinity and after subsequent calcination, well crystalline ceramics were formed. During calcination defective fluorite (F-RE2Zr2O7) and crystal pyrochlore (Py-RE2Zr2O7) structures coexist. Formation of pure crystalline pyrochlore occurs after sintering at 1450 C. High-density ceramics, free of any additives, were obtained after powders compaction and pressureless (PS), as well as Field Assisted Sintering Technique (FAST) at 1450 C. Theoretical investigations of the high-entropy RE2Zr2O7 pyrochlore systems were performed. Unit cell parameter of the obtained Py-RE2Zr2O7 is 10.5892(2) Å and 10.5999(2) Å for PS and FAST sintering, respectively, which is in good agreement with the results of Density Functional Theory (DFT) calculations. The thermal diffusivity of sintered samples at room temperature was ~0.7 mm2 /s for both sintering methods.",
publisher = "Belgrade : Materials Research Society of Serbia – MRS-Serbia",
journal = "23rd annual conference - YUCOMAT 2022 & 12th World Round Table Conference on Sintering - WRTCS 2022 : Program and Book of Abstracts",
title = "Fabrication and characterization of high entropy pyrochlore ceramics",
volume = "XLV",
pages = "115",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11332"
}
Matović, B., Zagorac, D., Cvijović-Alagić, I., Zagorac, J., Butulija, S., Erčić, J., Hanzel, O., Sedlak, R., Lisnichuk, M.,& Tatarko, P.. (2022). Fabrication and characterization of high entropy pyrochlore ceramics. in 23rd annual conference - YUCOMAT 2022 & 12th World Round Table Conference on Sintering - WRTCS 2022 : Program and Book of Abstracts
Belgrade : Materials Research Society of Serbia – MRS-Serbia., XLV, 115.
https://hdl.handle.net/21.15107/rcub_vinar_11332
Matović B, Zagorac D, Cvijović-Alagić I, Zagorac J, Butulija S, Erčić J, Hanzel O, Sedlak R, Lisnichuk M, Tatarko P. Fabrication and characterization of high entropy pyrochlore ceramics. in 23rd annual conference - YUCOMAT 2022 & 12th World Round Table Conference on Sintering - WRTCS 2022 : Program and Book of Abstracts. 2022;XLV:115.
https://hdl.handle.net/21.15107/rcub_vinar_11332 .
Matović, Branko, Zagorac, Dejan, Cvijović-Alagić, Ivana, Zagorac, Jelena, Butulija, Svetlana, Erčić, Jelena, Hanzel, Ondrej, Sedlak, Richard, Lisnichuk, Maksym, Tatarko, Peter, "Fabrication and characterization of high entropy pyrochlore ceramics" in 23rd annual conference - YUCOMAT 2022 & 12th World Round Table Conference on Sintering - WRTCS 2022 : Program and Book of Abstracts, XLV (2022):115,
https://hdl.handle.net/21.15107/rcub_vinar_11332 .

The presence of superoxide ions and related dioxygen species in zinc oxide—A structural characterization by in situ Raman spectroscopy

Fischer, Dieter; Zagorac, Dejan; Schön, Christian J.

(2022)

TY  - JOUR
AU  - Fischer, Dieter
AU  - Zagorac, Dejan
AU  - Schön, Christian J.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10419
AB  - Zinc oxide exhibits unique properties that are reflected in a wide variety of applications, particularly in the field of transparent, conductive films. However, less attention has been paid to their color. Here, we present the synthesis of yellow-gray ZnO films at room temperature by femtosecond pulsed laser deposition. In situ Raman investigations of these polycrystalline ZnO films reveal the existence of superoxide ions, O2−, in zinc oxide, which are responsible for the yellow color, and are also detected in ZnO powder and single crystals. In addition, further dioxygen species are identified in the samples, including the O2-molecule. The negative charge excess caused by the dioxygen species creates metallic zinc as a byproduct. Structural analysis reveals an unforced realization of the dioxygen species in the ZnO lattice. Density functional theory (DFT) calculations support the assumed structural displacements as well as the observed, unexpected Raman bands. These results open up completely new insights into the behavior of ZnO.
T2  - Journal of Raman Spectroscopy
T1  - The presence of superoxide ions and related dioxygen species in zinc oxide—A structural characterization by in situ Raman spectroscopy
VL  - n/a
IS  - n/a
DO  - 10.1002/jrs.6441
ER  - 
@article{
author = "Fischer, Dieter and Zagorac, Dejan and Schön, Christian J.",
year = "2022",
abstract = "Zinc oxide exhibits unique properties that are reflected in a wide variety of applications, particularly in the field of transparent, conductive films. However, less attention has been paid to their color. Here, we present the synthesis of yellow-gray ZnO films at room temperature by femtosecond pulsed laser deposition. In situ Raman investigations of these polycrystalline ZnO films reveal the existence of superoxide ions, O2−, in zinc oxide, which are responsible for the yellow color, and are also detected in ZnO powder and single crystals. In addition, further dioxygen species are identified in the samples, including the O2-molecule. The negative charge excess caused by the dioxygen species creates metallic zinc as a byproduct. Structural analysis reveals an unforced realization of the dioxygen species in the ZnO lattice. Density functional theory (DFT) calculations support the assumed structural displacements as well as the observed, unexpected Raman bands. These results open up completely new insights into the behavior of ZnO.",
journal = "Journal of Raman Spectroscopy",
title = "The presence of superoxide ions and related dioxygen species in zinc oxide—A structural characterization by in situ Raman spectroscopy",
volume = "n/a",
number = "n/a",
doi = "10.1002/jrs.6441"
}
Fischer, D., Zagorac, D.,& Schön, C. J.. (2022). The presence of superoxide ions and related dioxygen species in zinc oxide—A structural characterization by in situ Raman spectroscopy. in Journal of Raman Spectroscopy, n/a(n/a).
https://doi.org/10.1002/jrs.6441
Fischer D, Zagorac D, Schön CJ. The presence of superoxide ions and related dioxygen species in zinc oxide—A structural characterization by in situ Raman spectroscopy. in Journal of Raman Spectroscopy. 2022;n/a(n/a).
doi:10.1002/jrs.6441 .
Fischer, Dieter, Zagorac, Dejan, Schön, Christian J., "The presence of superoxide ions and related dioxygen species in zinc oxide—A structural characterization by in situ Raman spectroscopy" in Journal of Raman Spectroscopy, n/a, no. n/a (2022),
https://doi.org/10.1002/jrs.6441 . .
4
4

Computational discovery of new modifications in scandium oxychloride (ScOCl) using a multi-methodological approach

Zagorac, Dejan; Zagorac, Jelena B.; Fonović, Matej; Pejić, Milan; Schön, Johann Christian

(2022)

TY  - JOUR
AU  - Zagorac, Dejan
AU  - Zagorac, Jelena B.
AU  - Fonović, Matej
AU  - Pejić, Milan
AU  - Schön, Johann Christian
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10455
AB  - Scandium oxychloride (ScOCl) has recently become of interest as an advanced material with possible applications in solid oxide fuel cells, photocatalysis, and electronic devices, as are oxyhalides of various transition metals. In the present study, crystal structure prediction has been utilized to fully investigate the energy landscape of ScOCl. A multi-methodological approach has been used consisting of a combination of two search methods, where the final structure optimization has been performed on ab initio level using DFT-LDA and hybrid PBE0 functionals. The experimentally observed α-ScOCl phase has been found as well as several additional structure candidates at high pressures and/or temperatures. A successful synthesis of these novel ScOCl modifications would have the potential for extending the scientific, technological and industrial applications of ScOCl.
T2  - Zeitschrift für anorganische und allgemeine Chemie
T1  - Computational discovery of new modifications in scandium oxychloride (ScOCl) using a multi-methodological approach
VL  - 648
IS  - 23
SP  - e202200198
DO  - 10.1002/zaac.202200198
ER  - 
@article{
author = "Zagorac, Dejan and Zagorac, Jelena B. and Fonović, Matej and Pejić, Milan and Schön, Johann Christian",
year = "2022",
abstract = "Scandium oxychloride (ScOCl) has recently become of interest as an advanced material with possible applications in solid oxide fuel cells, photocatalysis, and electronic devices, as are oxyhalides of various transition metals. In the present study, crystal structure prediction has been utilized to fully investigate the energy landscape of ScOCl. A multi-methodological approach has been used consisting of a combination of two search methods, where the final structure optimization has been performed on ab initio level using DFT-LDA and hybrid PBE0 functionals. The experimentally observed α-ScOCl phase has been found as well as several additional structure candidates at high pressures and/or temperatures. A successful synthesis of these novel ScOCl modifications would have the potential for extending the scientific, technological and industrial applications of ScOCl.",
journal = "Zeitschrift für anorganische und allgemeine Chemie",
title = "Computational discovery of new modifications in scandium oxychloride (ScOCl) using a multi-methodological approach",
volume = "648",
number = "23",
pages = "e202200198",
doi = "10.1002/zaac.202200198"
}
Zagorac, D., Zagorac, J. B., Fonović, M., Pejić, M.,& Schön, J. C.. (2022). Computational discovery of new modifications in scandium oxychloride (ScOCl) using a multi-methodological approach. in Zeitschrift für anorganische und allgemeine Chemie, 648(23), e202200198.
https://doi.org/10.1002/zaac.202200198
Zagorac D, Zagorac JB, Fonović M, Pejić M, Schön JC. Computational discovery of new modifications in scandium oxychloride (ScOCl) using a multi-methodological approach. in Zeitschrift für anorganische und allgemeine Chemie. 2022;648(23):e202200198.
doi:10.1002/zaac.202200198 .
Zagorac, Dejan, Zagorac, Jelena B., Fonović, Matej, Pejić, Milan, Schön, Johann Christian, "Computational discovery of new modifications in scandium oxychloride (ScOCl) using a multi-methodological approach" in Zeitschrift für anorganische und allgemeine Chemie, 648, no. 23 (2022):e202200198,
https://doi.org/10.1002/zaac.202200198 . .
1
4
4

DFT study of the Cr2SiN4 under extreme pressure conditions

Škundrić, Tamara; Zagorac, Dejan; Pejić, Milan; Zagorac, Jelena B.; Matović, Branko

(2022)

TY  - JOUR
AU  - Škundrić, Tamara
AU  - Zagorac, Dejan
AU  - Pejić, Milan
AU  - Zagorac, Jelena B.
AU  - Matović, Branko
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10474
AB  - Recently predicted Cr2SiN4 phases have been further investigated using ab initio methods to explore their behavior under extreme conditions of pressure. Thermodynamic functions for several different modifications have been calculated for the pressure range from 0 to 10 GPa using the GGAPBE functional. Detailed analysis of the mechanical properties under pressure has been performed using the CRYSTAL solid-state quantum-chemical program. The change in volume, energy, and bulk modulus with pressure elevation has been discussed for each of the phases investigated within this study. The highest value of bulk modulus is found in the equilibrium spinel type modification showing the highest capacity of resistance to volume change under pressure. As this material could potentially have a very wide industrial and technological application, these findings could be of great importance as they provide more insight into this novel Cr2SiN4 compound, and especially its behaviour in the extreme environment.
T2  - Journal of Innovative Materials in Extreme Conditions
T1  - DFT study of the Cr2SiN4 under extreme pressure conditions
VL  - 3
IS  - 1
SP  - 9
EP  - 18
UR  - https://hdl.handle.net/21.15107/rcub_vinar_10474
ER  - 
@article{
author = "Škundrić, Tamara and Zagorac, Dejan and Pejić, Milan and Zagorac, Jelena B. and Matović, Branko",
year = "2022",
abstract = "Recently predicted Cr2SiN4 phases have been further investigated using ab initio methods to explore their behavior under extreme conditions of pressure. Thermodynamic functions for several different modifications have been calculated for the pressure range from 0 to 10 GPa using the GGAPBE functional. Detailed analysis of the mechanical properties under pressure has been performed using the CRYSTAL solid-state quantum-chemical program. The change in volume, energy, and bulk modulus with pressure elevation has been discussed for each of the phases investigated within this study. The highest value of bulk modulus is found in the equilibrium spinel type modification showing the highest capacity of resistance to volume change under pressure. As this material could potentially have a very wide industrial and technological application, these findings could be of great importance as they provide more insight into this novel Cr2SiN4 compound, and especially its behaviour in the extreme environment.",
journal = "Journal of Innovative Materials in Extreme Conditions",
title = "DFT study of the Cr2SiN4 under extreme pressure conditions",
volume = "3",
number = "1",
pages = "9-18",
url = "https://hdl.handle.net/21.15107/rcub_vinar_10474"
}
Škundrić, T., Zagorac, D., Pejić, M., Zagorac, J. B.,& Matović, B.. (2022). DFT study of the Cr2SiN4 under extreme pressure conditions. in Journal of Innovative Materials in Extreme Conditions, 3(1), 9-18.
https://hdl.handle.net/21.15107/rcub_vinar_10474
Škundrić T, Zagorac D, Pejić M, Zagorac JB, Matović B. DFT study of the Cr2SiN4 under extreme pressure conditions. in Journal of Innovative Materials in Extreme Conditions. 2022;3(1):9-18.
https://hdl.handle.net/21.15107/rcub_vinar_10474 .
Škundrić, Tamara, Zagorac, Dejan, Pejić, Milan, Zagorac, Jelena B., Matović, Branko, "DFT study of the Cr2SiN4 under extreme pressure conditions" in Journal of Innovative Materials in Extreme Conditions, 3, no. 1 (2022):9-18,
https://hdl.handle.net/21.15107/rcub_vinar_10474 .