Refregiers, Matthieu

Link to this page

Authority KeyName Variants
orcid::0000-0002-3281-2308
  • Refregiers, Matthieu (4)
  • Refregiers, M. (1)
Projects

Author's Bibliography

DUV fluorescence bioimaging study of the interaction of partially reduced graphene oxide and liver cancer cells

Dojčilović, Radovan; Pajović, Jelena D.; Božanić, Dušan K.; Jović, Nataša G.; Pavlović, Vera P.; Pavlović, Vladimir B.; Lenhardt Acković, Lea; Zeković, Ivana Lj.; Dramićanin, Miroslav; Kaščakova, Slavka; Refregiers, Matthieu; Rašić, Goran; Vlahović, Branislav; Đoković, Vladimir

(2018)

TY  - JOUR
AU  - Dojčilović, Radovan
AU  - Pajović, Jelena D.
AU  - Božanić, Dušan K.
AU  - Jović, Nataša G.
AU  - Pavlović, Vera P.
AU  - Pavlović, Vladimir B.
AU  - Lenhardt Acković, Lea
AU  - Zeković, Ivana Lj.
AU  - Dramićanin, Miroslav
AU  - Kaščakova, Slavka
AU  - Refregiers, Matthieu
AU  - Rašić, Goran
AU  - Vlahović, Branislav
AU  - Đoković, Vladimir
PY  - 2018
UR  - http://stacks.iop.org/2053-1583/5/i=4/a=045019?key=crossref.f455f07bdfb3469c8077963ff0f38f95
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7909
AB  - The interaction of partially reduced graphene oxide (prGO) and Huh7.5.1 liver cancer cells was investigated by means of DUV fluorescence bioimaging. The prGO sample was obtained by the reduction (to a certain extent) of the initially prepared graphene oxide (GO) nanosheets with hydrazine. The fluorescence of the GO nanosheets increases with time of the reduction due to a change in ratio of the sp2 and sp3 carbon sites and the prGO sample was extracted from the dispersion after 6 min, when the intensity of the fluorescence reached its maximum. The reduction process was left to proceed further to saturation until highly reduced graphene oxide (denoted here as rGO) was obtained. GO, prGO and rGO samples were investigated by structural (scanning electron microscopy (SEM), scanning transmission electron microscopy coupled with energy dispersive spectrometry (STEM-EDS)) and spectroscopic (UV-vis, photoluminescence (PL), Raman) methods. After that, Huh7.5.1 cells were incubated with GO, prGO and rGO nanosheets and used in bioimaging studies, which were performed on DISCO beamline of synchrotron SOLEIL. It was found that the prGO significantly enhanced the fluorescence of the cells and increased the intensity of the signal by ~2.5 times. Time-lapse fluorescence microscopy experiments showed that fluorescence dynamics strongly depends on the type of nanosheets used. The obtained prGO nanostructure can be easily conjugated with aromatic ring containing drugs, which opens a possibility for its applications in fluorescence microscopy monitored drug delivery. © 2018 IOP Publishing Ltd.
T2  - 2D Materials
T1  - DUV fluorescence bioimaging study of the interaction of partially reduced graphene oxide and liver cancer cells
VL  - 5
IS  - 4
SP  - 045019
DO  - 10.1088/2053-1583/aad72b
ER  - 
@article{
author = "Dojčilović, Radovan and Pajović, Jelena D. and Božanić, Dušan K. and Jović, Nataša G. and Pavlović, Vera P. and Pavlović, Vladimir B. and Lenhardt Acković, Lea and Zeković, Ivana Lj. and Dramićanin, Miroslav and Kaščakova, Slavka and Refregiers, Matthieu and Rašić, Goran and Vlahović, Branislav and Đoković, Vladimir",
year = "2018",
abstract = "The interaction of partially reduced graphene oxide (prGO) and Huh7.5.1 liver cancer cells was investigated by means of DUV fluorescence bioimaging. The prGO sample was obtained by the reduction (to a certain extent) of the initially prepared graphene oxide (GO) nanosheets with hydrazine. The fluorescence of the GO nanosheets increases with time of the reduction due to a change in ratio of the sp2 and sp3 carbon sites and the prGO sample was extracted from the dispersion after 6 min, when the intensity of the fluorescence reached its maximum. The reduction process was left to proceed further to saturation until highly reduced graphene oxide (denoted here as rGO) was obtained. GO, prGO and rGO samples were investigated by structural (scanning electron microscopy (SEM), scanning transmission electron microscopy coupled with energy dispersive spectrometry (STEM-EDS)) and spectroscopic (UV-vis, photoluminescence (PL), Raman) methods. After that, Huh7.5.1 cells were incubated with GO, prGO and rGO nanosheets and used in bioimaging studies, which were performed on DISCO beamline of synchrotron SOLEIL. It was found that the prGO significantly enhanced the fluorescence of the cells and increased the intensity of the signal by ~2.5 times. Time-lapse fluorescence microscopy experiments showed that fluorescence dynamics strongly depends on the type of nanosheets used. The obtained prGO nanostructure can be easily conjugated with aromatic ring containing drugs, which opens a possibility for its applications in fluorescence microscopy monitored drug delivery. © 2018 IOP Publishing Ltd.",
journal = "2D Materials",
title = "DUV fluorescence bioimaging study of the interaction of partially reduced graphene oxide and liver cancer cells",
volume = "5",
number = "4",
pages = "045019",
doi = "10.1088/2053-1583/aad72b"
}
Dojčilović, R., Pajović, J. D., Božanić, D. K., Jović, N. G., Pavlović, V. P., Pavlović, V. B., Lenhardt Acković, L., Zeković, I. Lj., Dramićanin, M., Kaščakova, S., Refregiers, M., Rašić, G., Vlahović, B.,& Đoković, V.. (2018). DUV fluorescence bioimaging study of the interaction of partially reduced graphene oxide and liver cancer cells. in 2D Materials, 5(4), 045019.
https://doi.org/10.1088/2053-1583/aad72b
Dojčilović R, Pajović JD, Božanić DK, Jović NG, Pavlović VP, Pavlović VB, Lenhardt Acković L, Zeković IL, Dramićanin M, Kaščakova S, Refregiers M, Rašić G, Vlahović B, Đoković V. DUV fluorescence bioimaging study of the interaction of partially reduced graphene oxide and liver cancer cells. in 2D Materials. 2018;5(4):045019.
doi:10.1088/2053-1583/aad72b .
Dojčilović, Radovan, Pajović, Jelena D., Božanić, Dušan K., Jović, Nataša G., Pavlović, Vera P., Pavlović, Vladimir B., Lenhardt Acković, Lea, Zeković, Ivana Lj., Dramićanin, Miroslav, Kaščakova, Slavka, Refregiers, Matthieu, Rašić, Goran, Vlahović, Branislav, Đoković, Vladimir, "DUV fluorescence bioimaging study of the interaction of partially reduced graphene oxide and liver cancer cells" in 2D Materials, 5, no. 4 (2018):045019,
https://doi.org/10.1088/2053-1583/aad72b . .
5
3
2

Interaction of amino acid-functionalized silver nanoparticles and Candida albicans polymorphs: A deep-UV fluorescence imaging study

Dojčilović, Radovan; Pajović, Jelena D.; Božanić, Dušan K.; Bogdanović, Una; Vodnik, Vesna; Dimitrijević-Branković, Suzana I.; Miljković, Miona G.; Kaščakova, Slavka; Refregiers, Matthieu; Đoković, Vladimir

(2017)

TY  - JOUR
AU  - Dojčilović, Radovan
AU  - Pajović, Jelena D.
AU  - Božanić, Dušan K.
AU  - Bogdanović, Una
AU  - Vodnik, Vesna
AU  - Dimitrijević-Branković, Suzana I.
AU  - Miljković, Miona G.
AU  - Kaščakova, Slavka
AU  - Refregiers, Matthieu
AU  - Đoković, Vladimir
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1608
AB  - The interaction of the tryptophan functionalized Ag nanoparticles and live Candida albicans cells was studied by synchrotron excitation deep-ultraviolet (DUV) fluorescence imaging at the DISCO beamline of Synchrotron SOLEIL. DUV imaging showed that incubation of the fungus with functionalized nanoparticles results in significant increase in the fluorescence signal. The analysis of the images revealed that the interaction of the nanoparticles with (pseudo)hyphae polymorphs of the diploid fungus was less pronounced than in the case of yeast cells or budding spores. The changes in the intensity of the fluorescence signals of the cells after incubation were followed in [327-353 nm] and [370-410 nm] spectral ranges that correspond to the fluorescence of tryptophan in non-polar and polar environment, respectively. As a consequence of the environmental sensitivity of the silver-tryptophan fluorescent nanoprobe, we were able to determine the possible accumulation sites of the nanoparticles. The analysis of the intensity decay kinetics showed that the photobleaching effects were more pronounced in the case of the functionalized nanoparticle treated cells. The results of time-integrated emission in the mentioned spectral ranges suggested that the nanoparticles penetrate the cells, but that the majority of the nanoparticles attach to the cells surfaces. (C) 2017 Elsevier B.V. All rights reserved.
T2  - Colloids and Surfaces. B: Biointerfaces
T1  - Interaction of amino acid-functionalized silver nanoparticles and Candida albicans polymorphs: A deep-UV fluorescence imaging study
VL  - 155
SP  - 341
EP  - 348
DO  - 10.1016/j.colsurfb.2017.04.044
ER  - 
@article{
author = "Dojčilović, Radovan and Pajović, Jelena D. and Božanić, Dušan K. and Bogdanović, Una and Vodnik, Vesna and Dimitrijević-Branković, Suzana I. and Miljković, Miona G. and Kaščakova, Slavka and Refregiers, Matthieu and Đoković, Vladimir",
year = "2017",
abstract = "The interaction of the tryptophan functionalized Ag nanoparticles and live Candida albicans cells was studied by synchrotron excitation deep-ultraviolet (DUV) fluorescence imaging at the DISCO beamline of Synchrotron SOLEIL. DUV imaging showed that incubation of the fungus with functionalized nanoparticles results in significant increase in the fluorescence signal. The analysis of the images revealed that the interaction of the nanoparticles with (pseudo)hyphae polymorphs of the diploid fungus was less pronounced than in the case of yeast cells or budding spores. The changes in the intensity of the fluorescence signals of the cells after incubation were followed in [327-353 nm] and [370-410 nm] spectral ranges that correspond to the fluorescence of tryptophan in non-polar and polar environment, respectively. As a consequence of the environmental sensitivity of the silver-tryptophan fluorescent nanoprobe, we were able to determine the possible accumulation sites of the nanoparticles. The analysis of the intensity decay kinetics showed that the photobleaching effects were more pronounced in the case of the functionalized nanoparticle treated cells. The results of time-integrated emission in the mentioned spectral ranges suggested that the nanoparticles penetrate the cells, but that the majority of the nanoparticles attach to the cells surfaces. (C) 2017 Elsevier B.V. All rights reserved.",
journal = "Colloids and Surfaces. B: Biointerfaces",
title = "Interaction of amino acid-functionalized silver nanoparticles and Candida albicans polymorphs: A deep-UV fluorescence imaging study",
volume = "155",
pages = "341-348",
doi = "10.1016/j.colsurfb.2017.04.044"
}
Dojčilović, R., Pajović, J. D., Božanić, D. K., Bogdanović, U., Vodnik, V., Dimitrijević-Branković, S. I., Miljković, M. G., Kaščakova, S., Refregiers, M.,& Đoković, V.. (2017). Interaction of amino acid-functionalized silver nanoparticles and Candida albicans polymorphs: A deep-UV fluorescence imaging study. in Colloids and Surfaces. B: Biointerfaces, 155, 341-348.
https://doi.org/10.1016/j.colsurfb.2017.04.044
Dojčilović R, Pajović JD, Božanić DK, Bogdanović U, Vodnik V, Dimitrijević-Branković SI, Miljković MG, Kaščakova S, Refregiers M, Đoković V. Interaction of amino acid-functionalized silver nanoparticles and Candida albicans polymorphs: A deep-UV fluorescence imaging study. in Colloids and Surfaces. B: Biointerfaces. 2017;155:341-348.
doi:10.1016/j.colsurfb.2017.04.044 .
Dojčilović, Radovan, Pajović, Jelena D., Božanić, Dušan K., Bogdanović, Una, Vodnik, Vesna, Dimitrijević-Branković, Suzana I., Miljković, Miona G., Kaščakova, Slavka, Refregiers, Matthieu, Đoković, Vladimir, "Interaction of amino acid-functionalized silver nanoparticles and Candida albicans polymorphs: A deep-UV fluorescence imaging study" in Colloids and Surfaces. B: Biointerfaces, 155 (2017):341-348,
https://doi.org/10.1016/j.colsurfb.2017.04.044 . .
5
11
5
9

A fluorescent nanoprobe for single bacterium tracking: functionalization of silver nanoparticles with tryptophan to probe the nanoparticle accumulation with single cell resolution

Dojčilović, Radovan; Pajović, Jelena D.; Božanić, Dušan K.; Vodnik, Vesna; Dimitrijević-Branković, Suzana I.; Milosavljević, Aleksandar R.; Kascakova, S.; Refregiers, M.; Đoković, Vladimir

(2016)

TY  - JOUR
AU  - Dojčilović, Radovan
AU  - Pajović, Jelena D.
AU  - Božanić, Dušan K.
AU  - Vodnik, Vesna
AU  - Dimitrijević-Branković, Suzana I.
AU  - Milosavljević, Aleksandar R.
AU  - Kascakova, S.
AU  - Refregiers, M.
AU  - Đoković, Vladimir
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/971
AB  - The investigation of the interaction of silver nanoparticles and live bacteria cells is of particular importance for understanding and controlling their bactericidal properties. In this study, the process of internalization of silver nanoparticles in Escherichia coli cells was followed by means of synchrotron excitation deep ultraviolet (DUV) fluorescence imaging. Antimicrobial nanostructures that can absorb and emit light in the UV region were prepared by functionalization of silver nanoparticles with tryptophan amino acid and used as environmentally sensitive fluorescent probes. The nanostructures were characterized by morphological (TEM) and spectroscopic methods (UV-vis, FTIR, XPS, and photoluminescence). The TEM images and the analyses of the UV-vis spectra suggested that the addition of tryptophan led to the formation of hybrid nanostructures with pronounced eccentricity and larger sizes with respect to that of the initial silver nanoparticles. The DUV imaging showed that it was possible to distinguish the fluorescent signal pertaining to silver-tryptophan nanostructures from the autofluorescence of the bacteria. The spatial resolution of the fluorescence images was 154 nm which was sufficient to perform analyses of the accumulation of the nanostructures within a single bacterium. The DUV imaging results imply that the tryptophan-functionalized silver nanoparticles interact with cell membranes via insertion of the amino acid into the phospholipid bilayer and enter the cells.
T2  - Analyst
T1  - A fluorescent nanoprobe for single bacterium tracking: functionalization of silver nanoparticles with tryptophan to probe the nanoparticle accumulation with single cell resolution
VL  - 141
IS  - 6
SP  - 1988
EP  - 1996
DO  - 10.1039/c5an02358k
ER  - 
@article{
author = "Dojčilović, Radovan and Pajović, Jelena D. and Božanić, Dušan K. and Vodnik, Vesna and Dimitrijević-Branković, Suzana I. and Milosavljević, Aleksandar R. and Kascakova, S. and Refregiers, M. and Đoković, Vladimir",
year = "2016",
abstract = "The investigation of the interaction of silver nanoparticles and live bacteria cells is of particular importance for understanding and controlling their bactericidal properties. In this study, the process of internalization of silver nanoparticles in Escherichia coli cells was followed by means of synchrotron excitation deep ultraviolet (DUV) fluorescence imaging. Antimicrobial nanostructures that can absorb and emit light in the UV region were prepared by functionalization of silver nanoparticles with tryptophan amino acid and used as environmentally sensitive fluorescent probes. The nanostructures were characterized by morphological (TEM) and spectroscopic methods (UV-vis, FTIR, XPS, and photoluminescence). The TEM images and the analyses of the UV-vis spectra suggested that the addition of tryptophan led to the formation of hybrid nanostructures with pronounced eccentricity and larger sizes with respect to that of the initial silver nanoparticles. The DUV imaging showed that it was possible to distinguish the fluorescent signal pertaining to silver-tryptophan nanostructures from the autofluorescence of the bacteria. The spatial resolution of the fluorescence images was 154 nm which was sufficient to perform analyses of the accumulation of the nanostructures within a single bacterium. The DUV imaging results imply that the tryptophan-functionalized silver nanoparticles interact with cell membranes via insertion of the amino acid into the phospholipid bilayer and enter the cells.",
journal = "Analyst",
title = "A fluorescent nanoprobe for single bacterium tracking: functionalization of silver nanoparticles with tryptophan to probe the nanoparticle accumulation with single cell resolution",
volume = "141",
number = "6",
pages = "1988-1996",
doi = "10.1039/c5an02358k"
}
Dojčilović, R., Pajović, J. D., Božanić, D. K., Vodnik, V., Dimitrijević-Branković, S. I., Milosavljević, A. R., Kascakova, S., Refregiers, M.,& Đoković, V.. (2016). A fluorescent nanoprobe for single bacterium tracking: functionalization of silver nanoparticles with tryptophan to probe the nanoparticle accumulation with single cell resolution. in Analyst, 141(6), 1988-1996.
https://doi.org/10.1039/c5an02358k
Dojčilović R, Pajović JD, Božanić DK, Vodnik V, Dimitrijević-Branković SI, Milosavljević AR, Kascakova S, Refregiers M, Đoković V. A fluorescent nanoprobe for single bacterium tracking: functionalization of silver nanoparticles with tryptophan to probe the nanoparticle accumulation with single cell resolution. in Analyst. 2016;141(6):1988-1996.
doi:10.1039/c5an02358k .
Dojčilović, Radovan, Pajović, Jelena D., Božanić, Dušan K., Vodnik, Vesna, Dimitrijević-Branković, Suzana I., Milosavljević, Aleksandar R., Kascakova, S., Refregiers, M., Đoković, Vladimir, "A fluorescent nanoprobe for single bacterium tracking: functionalization of silver nanoparticles with tryptophan to probe the nanoparticle accumulation with single cell resolution" in Analyst, 141, no. 6 (2016):1988-1996,
https://doi.org/10.1039/c5an02358k . .
13
9
13

Deep UV fluorescence imaging study of Candida albicans cells treated with gold-riboflavin hydrocolloids

Pajović, Jelena D.; Dojčilović, Radovan; Božanić, Dušan K.; Vodnik, Vesna; Dimitrijević-Branković, Suzana I.; Kaščakova, Slavka; Refregiers, Matthieu; Markelić, Milica; Đoković, Vladimir

(2016)

TY  - JOUR
AU  - Pajović, Jelena D.
AU  - Dojčilović, Radovan
AU  - Božanić, Dušan K.
AU  - Vodnik, Vesna
AU  - Dimitrijević-Branković, Suzana I.
AU  - Kaščakova, Slavka
AU  - Refregiers, Matthieu
AU  - Markelić, Milica
AU  - Đoković, Vladimir
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1107
AB  - Fluorescent nanostructures were prepared by functionalization of gold nanoparticles with riboflavin molecules and used as probes for synchrotron radiation deep ultraviolet (SR-DUV) fluorescence imaging of gluteraldehyde-fixed Candida albicans cells. The nanoparticles were characterized by transmission electron microscopy (TEM) and optical spectroscopy techniques. The TEM analysis showed that the nanostructures were 6 nm in diameter, while the results of the fluorescence spectroscopies confirmed the photoluminescence of the nanoparticles. The SR-DUV imaging showed that it was possible to distinguish the fluorescence of the nanoparticles from the autofluorescence of the cells, as well as that the local maxima of the signal pertaining to the fluorescence of goldriboflavin nanostructures were mostly positioned on the surfaces of the C. albicans cells of spherical morphology.
T2  - Optical and Quantum Electronics
T1  - Deep UV fluorescence imaging study of Candida albicans cells treated with gold-riboflavin hydrocolloids
VL  - 48
IS  - 6
DO  - 10.1007/s11082-016-0578-y
ER  - 
@article{
author = "Pajović, Jelena D. and Dojčilović, Radovan and Božanić, Dušan K. and Vodnik, Vesna and Dimitrijević-Branković, Suzana I. and Kaščakova, Slavka and Refregiers, Matthieu and Markelić, Milica and Đoković, Vladimir",
year = "2016",
abstract = "Fluorescent nanostructures were prepared by functionalization of gold nanoparticles with riboflavin molecules and used as probes for synchrotron radiation deep ultraviolet (SR-DUV) fluorescence imaging of gluteraldehyde-fixed Candida albicans cells. The nanoparticles were characterized by transmission electron microscopy (TEM) and optical spectroscopy techniques. The TEM analysis showed that the nanostructures were 6 nm in diameter, while the results of the fluorescence spectroscopies confirmed the photoluminescence of the nanoparticles. The SR-DUV imaging showed that it was possible to distinguish the fluorescence of the nanoparticles from the autofluorescence of the cells, as well as that the local maxima of the signal pertaining to the fluorescence of goldriboflavin nanostructures were mostly positioned on the surfaces of the C. albicans cells of spherical morphology.",
journal = "Optical and Quantum Electronics",
title = "Deep UV fluorescence imaging study of Candida albicans cells treated with gold-riboflavin hydrocolloids",
volume = "48",
number = "6",
doi = "10.1007/s11082-016-0578-y"
}
Pajović, J. D., Dojčilović, R., Božanić, D. K., Vodnik, V., Dimitrijević-Branković, S. I., Kaščakova, S., Refregiers, M., Markelić, M.,& Đoković, V.. (2016). Deep UV fluorescence imaging study of Candida albicans cells treated with gold-riboflavin hydrocolloids. in Optical and Quantum Electronics, 48(6).
https://doi.org/10.1007/s11082-016-0578-y
Pajović JD, Dojčilović R, Božanić DK, Vodnik V, Dimitrijević-Branković SI, Kaščakova S, Refregiers M, Markelić M, Đoković V. Deep UV fluorescence imaging study of Candida albicans cells treated with gold-riboflavin hydrocolloids. in Optical and Quantum Electronics. 2016;48(6).
doi:10.1007/s11082-016-0578-y .
Pajović, Jelena D., Dojčilović, Radovan, Božanić, Dušan K., Vodnik, Vesna, Dimitrijević-Branković, Suzana I., Kaščakova, Slavka, Refregiers, Matthieu, Markelić, Milica, Đoković, Vladimir, "Deep UV fluorescence imaging study of Candida albicans cells treated with gold-riboflavin hydrocolloids" in Optical and Quantum Electronics, 48, no. 6 (2016),
https://doi.org/10.1007/s11082-016-0578-y . .
2
1
2

Tryptophan-functionalized gold nanoparticles for deep UV imaging of microbial cells

Pajović, Jelena D.; Dojčilović, Radovan; Božanić, Dušan K.; Kaščakova, Slavka; Refregiers, Matthieu; Dimitrijević-Branković, Suzana I.; Vodnik, Vesna; Milosavljević, Aleksandar R.; Piscopiello, Emanuela; Luyt, Adriaan S.; Đoković, Vladimir

(Elsevier, 2015)

TY  - JOUR
AU  - Pajović, Jelena D.
AU  - Dojčilović, Radovan
AU  - Božanić, Dušan K.
AU  - Kaščakova, Slavka
AU  - Refregiers, Matthieu
AU  - Dimitrijević-Branković, Suzana I.
AU  - Vodnik, Vesna
AU  - Milosavljević, Aleksandar R.
AU  - Piscopiello, Emanuela
AU  - Luyt, Adriaan S.
AU  - Đoković, Vladimir
PY  - 2015
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/875
AB  - Biocompatible fluorescent nanostructures were prepared by a functionalization of gold nanoparticles with the amino acid tryptophan. The gold-tryptophan bioconjugates were investigated by TEM and HRTEM and various spectroscopy methods (XPS, FTIR, UV-vis and photoluminescence). It was found that the gold nanoparticles, initially 8 nm in diameter, aggregate in the presence of the amino acid. From the XPS and FTIR spectroscopy results, it was concluded that the tryptophan gold interactions mainly take place via indole and carboxyl groups. Although the indole group is involved in the interaction with the gold surfaces, the tryptophan-gold hybrids showed strong fluorescence due to the presence of multilayers of tryptophan. Deep ultra violet (DUV) imaging performed at the SOLEIL synchrotron showed that It is possible to detect these hybrid nanostructures within Escherichia coli cells. (c) 2015 Elsevier B.V. All rights reserved.
PB  - Elsevier
T2  - Colloids and Surfaces. B: Biointerfaces
T1  - Tryptophan-functionalized gold nanoparticles for deep UV imaging of microbial cells
VL  - 135
SP  - 742
EP  - 750
DO  - 10.1016/j.colsurfb.2015.08.050
ER  - 
@article{
author = "Pajović, Jelena D. and Dojčilović, Radovan and Božanić, Dušan K. and Kaščakova, Slavka and Refregiers, Matthieu and Dimitrijević-Branković, Suzana I. and Vodnik, Vesna and Milosavljević, Aleksandar R. and Piscopiello, Emanuela and Luyt, Adriaan S. and Đoković, Vladimir",
year = "2015",
abstract = "Biocompatible fluorescent nanostructures were prepared by a functionalization of gold nanoparticles with the amino acid tryptophan. The gold-tryptophan bioconjugates were investigated by TEM and HRTEM and various spectroscopy methods (XPS, FTIR, UV-vis and photoluminescence). It was found that the gold nanoparticles, initially 8 nm in diameter, aggregate in the presence of the amino acid. From the XPS and FTIR spectroscopy results, it was concluded that the tryptophan gold interactions mainly take place via indole and carboxyl groups. Although the indole group is involved in the interaction with the gold surfaces, the tryptophan-gold hybrids showed strong fluorescence due to the presence of multilayers of tryptophan. Deep ultra violet (DUV) imaging performed at the SOLEIL synchrotron showed that It is possible to detect these hybrid nanostructures within Escherichia coli cells. (c) 2015 Elsevier B.V. All rights reserved.",
publisher = "Elsevier",
journal = "Colloids and Surfaces. B: Biointerfaces",
title = "Tryptophan-functionalized gold nanoparticles for deep UV imaging of microbial cells",
volume = "135",
pages = "742-750",
doi = "10.1016/j.colsurfb.2015.08.050"
}
Pajović, J. D., Dojčilović, R., Božanić, D. K., Kaščakova, S., Refregiers, M., Dimitrijević-Branković, S. I., Vodnik, V., Milosavljević, A. R., Piscopiello, E., Luyt, A. S.,& Đoković, V.. (2015). Tryptophan-functionalized gold nanoparticles for deep UV imaging of microbial cells. in Colloids and Surfaces. B: Biointerfaces
Elsevier., 135, 742-750.
https://doi.org/10.1016/j.colsurfb.2015.08.050
Pajović JD, Dojčilović R, Božanić DK, Kaščakova S, Refregiers M, Dimitrijević-Branković SI, Vodnik V, Milosavljević AR, Piscopiello E, Luyt AS, Đoković V. Tryptophan-functionalized gold nanoparticles for deep UV imaging of microbial cells. in Colloids and Surfaces. B: Biointerfaces. 2015;135:742-750.
doi:10.1016/j.colsurfb.2015.08.050 .
Pajović, Jelena D., Dojčilović, Radovan, Božanić, Dušan K., Kaščakova, Slavka, Refregiers, Matthieu, Dimitrijević-Branković, Suzana I., Vodnik, Vesna, Milosavljević, Aleksandar R., Piscopiello, Emanuela, Luyt, Adriaan S., Đoković, Vladimir, "Tryptophan-functionalized gold nanoparticles for deep UV imaging of microbial cells" in Colloids and Surfaces. B: Biointerfaces, 135 (2015):742-750,
https://doi.org/10.1016/j.colsurfb.2015.08.050 . .
36
26
37