Gašparič, Lea

Link to this page

Authority KeyName Variants
orcid::0000-0002-5160-0175
  • Gašparič, Lea (1)
Projects

Author's Bibliography

Improving the HER Activity and Stability of Pt Nanoparticles by Titanium Oxynitride Support

Smiljanić, Milutin; Panić, Stefan; Bele, Marjan; Ruiz-Zepeda, Francisco; Pavko, Luka; Gašparič, Lea; Kokalj, Anton; Gaberšček, Miran; Hodnik, Nejc

(2022)

TY  - JOUR
AU  - Smiljanić, Milutin
AU  - Panić, Stefan
AU  - Bele, Marjan
AU  - Ruiz-Zepeda, Francisco
AU  - Pavko, Luka
AU  - Gašparič, Lea
AU  - Kokalj, Anton
AU  - Gaberšček, Miran
AU  - Hodnik, Nejc
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10503
AB  - Water electrolysis powered by renewables is regarded as the feasible route for the production of hydrogen, obtained at the cathode side through electrochemical hydrogen evolution reaction (HER). Herein, we present a rational strategy to improve the overall HER catalytic performance of Pt, which is known as the best monometallic catalyst for this reaction, by supporting it on a conductive titanium oxynitride (TiONx) dispersed over reduced graphene oxide nanoribbons. Characterization of the Pt/TiONx composite revealed the presence of small Pt particles with diameters between 2 and 3 nm, which are well dispersed over the TiONx support. The Pt/TiONx nanocomposite exhibited improved HER activity and stability with respect to the Pt/C benchmark in an acid electrolyte, which was ascribed to the strong metal–support interaction (SMSI) triggered between the TiONx support and grafted Pt nanoparticles. SMSI between TiONx and Pt was evidenced by X-ray photoelectron spectroscopy (XPS) through a shift of the binding energies of the characteristic Pt 4f photoelectron lines with respect to Pt/C. Density functional theory (DFT) calculations confirmed the strong interaction between Pt nanoparticles and the TiONx support. This strong interaction improves the stability of Pt nanoparticles and weakens the binding of chemisorbed H atoms thereon. Both of these effects may result in enhanced HER activity.
T2  - ACS Catalysis
T1  - Improving the HER Activity and Stability of Pt Nanoparticles by Titanium Oxynitride Support
VL  - 12
IS  - 20
SP  - 13021
EP  - 13033
DO  - 10.1021/acscatal.2c03214
ER  - 
@article{
author = "Smiljanić, Milutin and Panić, Stefan and Bele, Marjan and Ruiz-Zepeda, Francisco and Pavko, Luka and Gašparič, Lea and Kokalj, Anton and Gaberšček, Miran and Hodnik, Nejc",
year = "2022",
abstract = "Water electrolysis powered by renewables is regarded as the feasible route for the production of hydrogen, obtained at the cathode side through electrochemical hydrogen evolution reaction (HER). Herein, we present a rational strategy to improve the overall HER catalytic performance of Pt, which is known as the best monometallic catalyst for this reaction, by supporting it on a conductive titanium oxynitride (TiONx) dispersed over reduced graphene oxide nanoribbons. Characterization of the Pt/TiONx composite revealed the presence of small Pt particles with diameters between 2 and 3 nm, which are well dispersed over the TiONx support. The Pt/TiONx nanocomposite exhibited improved HER activity and stability with respect to the Pt/C benchmark in an acid electrolyte, which was ascribed to the strong metal–support interaction (SMSI) triggered between the TiONx support and grafted Pt nanoparticles. SMSI between TiONx and Pt was evidenced by X-ray photoelectron spectroscopy (XPS) through a shift of the binding energies of the characteristic Pt 4f photoelectron lines with respect to Pt/C. Density functional theory (DFT) calculations confirmed the strong interaction between Pt nanoparticles and the TiONx support. This strong interaction improves the stability of Pt nanoparticles and weakens the binding of chemisorbed H atoms thereon. Both of these effects may result in enhanced HER activity.",
journal = "ACS Catalysis",
title = "Improving the HER Activity and Stability of Pt Nanoparticles by Titanium Oxynitride Support",
volume = "12",
number = "20",
pages = "13021-13033",
doi = "10.1021/acscatal.2c03214"
}
Smiljanić, M., Panić, S., Bele, M., Ruiz-Zepeda, F., Pavko, L., Gašparič, L., Kokalj, A., Gaberšček, M.,& Hodnik, N.. (2022). Improving the HER Activity and Stability of Pt Nanoparticles by Titanium Oxynitride Support. in ACS Catalysis, 12(20), 13021-13033.
https://doi.org/10.1021/acscatal.2c03214
Smiljanić M, Panić S, Bele M, Ruiz-Zepeda F, Pavko L, Gašparič L, Kokalj A, Gaberšček M, Hodnik N. Improving the HER Activity and Stability of Pt Nanoparticles by Titanium Oxynitride Support. in ACS Catalysis. 2022;12(20):13021-13033.
doi:10.1021/acscatal.2c03214 .
Smiljanić, Milutin, Panić, Stefan, Bele, Marjan, Ruiz-Zepeda, Francisco, Pavko, Luka, Gašparič, Lea, Kokalj, Anton, Gaberšček, Miran, Hodnik, Nejc, "Improving the HER Activity and Stability of Pt Nanoparticles by Titanium Oxynitride Support" in ACS Catalysis, 12, no. 20 (2022):13021-13033,
https://doi.org/10.1021/acscatal.2c03214 . .
1
37
20