Simović, Bojana

Link to this page

Authority KeyName Variants
orcid::0000-0002-9407-155X
  • Simović, Bojana (8)
Projects
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200135 (University of Belgrade, Faculty of Technology and Metallurgy) Nanostructured multifunctional materials and nanocomposites
Physics of nanostructured oxide materials and strongly correlated systems Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200287 (Innovation Center of the Faculty of Technology and Metallurgy)
Zero- to Three-Dimensional Nanostructures for Application in Electronics and Renewable Energy Sources: Synthesis, Characterization and Processing Bilateral cooperation with Slovenia [451-033095/2014-09/32]
Development of Methods of Monitoring and Removal of Biologically Actives Substances Aimed at Improving the Quality of the Environment Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200012 (Istitute of Material Testing of Serbia - IMS, Belgrade)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200053 (University of Belgrade, Institute for Multidisciplinary Research) SASA [F-134]
SASA project [F-134]

Author's Bibliography

Mechanical performance of denture acrylic resin modified with poly(4‐styrenesulfonic acid‐ co ‐maleic anhydride) sodium salt and strontium titanate

Elhmali, Houda Taher; Stajčić, Ivana; Petrović, Miloš; Janković, Bojan; Simović, Bojana; Stajčić, Aleksandar; Radojević, Vesna

(2024)

TY  - JOUR
AU  - Elhmali, Houda Taher
AU  - Stajčić, Ivana
AU  - Petrović, Miloš
AU  - Janković, Bojan
AU  - Simović, Bojana
AU  - Stajčić, Aleksandar
AU  - Radojević, Vesna
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13288
AB  - Since acrylate-based materials are widely used in dentistry, their drawbacks such as low impact resistance and hardness, require continuous research in the field of materials science in order to avoid sudden fracture caused by chewing or fall. In this study, auto-polymerizing poly(methyl methacrylate) (PMMA), commonly used as denture base material, was reinforced with poly(4-styrenesulfonic acid-co-maleic anhydride) sodium salt (PSSMA) and strontium titanate (STO), with the aim of improving impact behavior and microhardness. Morphological analysis confirmed formation of phase-separated and co-continuous microscopic structures of PSSMA in PMMA, without visible agglomerates of STO nanoparticles, indicating that PSSMA-STO interaction contributed to a better distribution of nanoparticles. Fourier transformed infrared spectroscopy revealed that PSSMA and STO did not interfere in the polymerization of methyl methacrylate. This was further supported by thermal analysis, which also showed that the addition of PSSMA and STO had no significant influence on thermal degradation. On the other side, PSSMA and STO significantly enhanced mechanical performance of PMMA. The modulus of elasticity increased by up to 48.6%, total absorbed impact energy improved by up to 108.4%, and microhardness increased by up to 272.8% when PSSMA was combined with STO for reinforcing denture PMMA. These results demonstrate the significant potential of PSSMA, which could be combined with other ceramic nanoparticles for denture reinforcement in the future. Highlights: This research presents novel dental hybrid composite. Influence of strontium titanate (STO) and poly(4-styrenesulfonic acid-co-maleic anhydride) sodium salt (PSSMA) on poly(methyl methacrylate) (PMMA) was investigated. PSSMA/STO improved modulus of elasticity, microhardness and impact resistance. Sample with 5 wt% PSSMA and 1 wt% STO showed the highest improvement compared to PMMA. Presented hybrid composite could use as denture base material.
T2  - Polymer Composites
T1  - Mechanical performance of denture acrylic resin modified with poly(4‐styrenesulfonic acid‐                                          co                                        ‐maleic anhydride) sodium salt and strontium titanate
DO  - 10.1002/pc.28574
ER  - 
@article{
author = "Elhmali, Houda Taher and Stajčić, Ivana and Petrović, Miloš and Janković, Bojan and Simović, Bojana and Stajčić, Aleksandar and Radojević, Vesna",
year = "2024",
abstract = "Since acrylate-based materials are widely used in dentistry, their drawbacks such as low impact resistance and hardness, require continuous research in the field of materials science in order to avoid sudden fracture caused by chewing or fall. In this study, auto-polymerizing poly(methyl methacrylate) (PMMA), commonly used as denture base material, was reinforced with poly(4-styrenesulfonic acid-co-maleic anhydride) sodium salt (PSSMA) and strontium titanate (STO), with the aim of improving impact behavior and microhardness. Morphological analysis confirmed formation of phase-separated and co-continuous microscopic structures of PSSMA in PMMA, without visible agglomerates of STO nanoparticles, indicating that PSSMA-STO interaction contributed to a better distribution of nanoparticles. Fourier transformed infrared spectroscopy revealed that PSSMA and STO did not interfere in the polymerization of methyl methacrylate. This was further supported by thermal analysis, which also showed that the addition of PSSMA and STO had no significant influence on thermal degradation. On the other side, PSSMA and STO significantly enhanced mechanical performance of PMMA. The modulus of elasticity increased by up to 48.6%, total absorbed impact energy improved by up to 108.4%, and microhardness increased by up to 272.8% when PSSMA was combined with STO for reinforcing denture PMMA. These results demonstrate the significant potential of PSSMA, which could be combined with other ceramic nanoparticles for denture reinforcement in the future. Highlights: This research presents novel dental hybrid composite. Influence of strontium titanate (STO) and poly(4-styrenesulfonic acid-co-maleic anhydride) sodium salt (PSSMA) on poly(methyl methacrylate) (PMMA) was investigated. PSSMA/STO improved modulus of elasticity, microhardness and impact resistance. Sample with 5 wt% PSSMA and 1 wt% STO showed the highest improvement compared to PMMA. Presented hybrid composite could use as denture base material.",
journal = "Polymer Composites",
title = "Mechanical performance of denture acrylic resin modified with poly(4‐styrenesulfonic acid‐                                          co                                        ‐maleic anhydride) sodium salt and strontium titanate",
doi = "10.1002/pc.28574"
}
Elhmali, H. T., Stajčić, I., Petrović, M., Janković, B., Simović, B., Stajčić, A.,& Radojević, V.. (2024). Mechanical performance of denture acrylic resin modified with poly(4‐styrenesulfonic acid‐                                          co                                        ‐maleic anhydride) sodium salt and strontium titanate. in Polymer Composites.
https://doi.org/10.1002/pc.28574
Elhmali HT, Stajčić I, Petrović M, Janković B, Simović B, Stajčić A, Radojević V. Mechanical performance of denture acrylic resin modified with poly(4‐styrenesulfonic acid‐                                          co                                        ‐maleic anhydride) sodium salt and strontium titanate. in Polymer Composites. 2024;.
doi:10.1002/pc.28574 .
Elhmali, Houda Taher, Stajčić, Ivana, Petrović, Miloš, Janković, Bojan, Simović, Bojana, Stajčić, Aleksandar, Radojević, Vesna, "Mechanical performance of denture acrylic resin modified with poly(4‐styrenesulfonic acid‐                                          co                                        ‐maleic anhydride) sodium salt and strontium titanate" in Polymer Composites (2024),
https://doi.org/10.1002/pc.28574 . .

Structure and properties of ZnO/ZnMn2O4 composite obtained by thermal decomposition of terephthalate precursor: Scientific paper

Radovanović, Lidija; Radovanović, Željko; Simović, Bojana; Vasić, Milica V.; Balanč, Bojana; Dapčević, Aleksandra; Dramićanin, Miroslav; Rogan, Jelena

(2023)

TY  - JOUR
AU  - Radovanović, Lidija
AU  - Radovanović, Željko
AU  - Simović, Bojana
AU  - Vasić, Milica V.
AU  - Balanč, Bojana
AU  - Dapčević, Aleksandra
AU  - Dramićanin, Miroslav
AU  - Rogan, Jelena
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10873
AB  - A biphasic [Mn(dipya)(H2O)4](tpht)/{[Zn(dipya)(tpht)]·H2O}n com­plex material, I (dipya = 2,2’-dipyridylamine, tpht2– = dianion of terephthalatic acid) was synthesized by ligand exchange reaction and characterized by XRPD and FTIR spectroscopy. A ZnO/ZnMn2O4 composite, II, has been prepared via thermal decomposition of I in an air atmosphere at 450 °C. XRPD, FTIR and FESEM analyses of II revealed the simultaneous presence of spherical nano­particles of wurtzite ZnO and elongated nanoparticles of spinel ZnMn2O4. The specific surface area of II was determined by the BET method, whereas the volume and average size of the mesopores were calculated in accordance with the BJH method. The measurements of the mean size, polydispersity index and zeta potential showed colloidal instability of II. Two band gap values of 2.4 and 3.3 eV were determined using UV–Vis diffuse reflectance spectroscopy, while the measurements of photoluminescence revealed that II is active in the blue region of the visible spectrum. Testing of composite II as a pigmentary material showed that it can be used for the colouring of a ceramic glaze.
T2  - Journal of the Serbian Chemical Society
T1  - Structure and properties of ZnO/ZnMn2O4 composite obtained by thermal decomposition of terephthalate precursor: Scientific paper
VL  - 88
IS  - 3
DO  - 10.2298/JSC221102090R
ER  - 
@article{
author = "Radovanović, Lidija and Radovanović, Željko and Simović, Bojana and Vasić, Milica V. and Balanč, Bojana and Dapčević, Aleksandra and Dramićanin, Miroslav and Rogan, Jelena",
year = "2023",
abstract = "A biphasic [Mn(dipya)(H2O)4](tpht)/{[Zn(dipya)(tpht)]·H2O}n com­plex material, I (dipya = 2,2’-dipyridylamine, tpht2– = dianion of terephthalatic acid) was synthesized by ligand exchange reaction and characterized by XRPD and FTIR spectroscopy. A ZnO/ZnMn2O4 composite, II, has been prepared via thermal decomposition of I in an air atmosphere at 450 °C. XRPD, FTIR and FESEM analyses of II revealed the simultaneous presence of spherical nano­particles of wurtzite ZnO and elongated nanoparticles of spinel ZnMn2O4. The specific surface area of II was determined by the BET method, whereas the volume and average size of the mesopores were calculated in accordance with the BJH method. The measurements of the mean size, polydispersity index and zeta potential showed colloidal instability of II. Two band gap values of 2.4 and 3.3 eV were determined using UV–Vis diffuse reflectance spectroscopy, while the measurements of photoluminescence revealed that II is active in the blue region of the visible spectrum. Testing of composite II as a pigmentary material showed that it can be used for the colouring of a ceramic glaze.",
journal = "Journal of the Serbian Chemical Society",
title = "Structure and properties of ZnO/ZnMn2O4 composite obtained by thermal decomposition of terephthalate precursor: Scientific paper",
volume = "88",
number = "3",
doi = "10.2298/JSC221102090R"
}
Radovanović, L., Radovanović, Ž., Simović, B., Vasić, M. V., Balanč, B., Dapčević, A., Dramićanin, M.,& Rogan, J.. (2023). Structure and properties of ZnO/ZnMn2O4 composite obtained by thermal decomposition of terephthalate precursor: Scientific paper. in Journal of the Serbian Chemical Society, 88(3).
https://doi.org/10.2298/JSC221102090R
Radovanović L, Radovanović Ž, Simović B, Vasić MV, Balanč B, Dapčević A, Dramićanin M, Rogan J. Structure and properties of ZnO/ZnMn2O4 composite obtained by thermal decomposition of terephthalate precursor: Scientific paper. in Journal of the Serbian Chemical Society. 2023;88(3).
doi:10.2298/JSC221102090R .
Radovanović, Lidija, Radovanović, Željko, Simović, Bojana, Vasić, Milica V., Balanč, Bojana, Dapčević, Aleksandra, Dramićanin, Miroslav, Rogan, Jelena, "Structure and properties of ZnO/ZnMn2O4 composite obtained by thermal decomposition of terephthalate precursor: Scientific paper" in Journal of the Serbian Chemical Society, 88, no. 3 (2023),
https://doi.org/10.2298/JSC221102090R . .

Zinc oxide nanoparticles prepared by thermal decomposition of zinc benzenepolycarboxylato precursors: Photoluminescent, photocatalytic and antimicrobial properties

Radovanović, Lidija; Zdravković, Jelena D.; Simović, Bojana; Radovanović, Željko; Mihajlovski, Katarina; Dramićanin, Miroslav; Rogan, Jelena

(2020)

TY  - JOUR
AU  - Radovanović, Lidija
AU  - Zdravković, Jelena D.
AU  - Simović, Bojana
AU  - Radovanović, Željko
AU  - Mihajlovski, Katarina
AU  - Dramićanin, Miroslav
AU  - Rogan, Jelena
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9793
AB  - Zinc oxide (ZnO) nanoparticles were obtained by thermal decomposition of one-dimensional zinc-benzenepolycarboxylato complexes as single-source precursors at 450 °C in an air atmosphere. The mechanism and kinetics of thermal degradation of zinc-benzenepolycarboxylato complexes were analyzed under non-isothermal conditions in an air atmosphere. The results of X-ray powder diffraction and field emission scanning electron microscopy revealed hexagonal wurtzite structure of ZnO with an average crystallite size in the range of 39-47 nm and similar morphology. The band gap and the specific surface area of ZnO nanoparticles were determined using UV-Vis diffuse reflectance spectroscopy and the Brunauer, Emmett and Teller method, respectively. The photoluminescent, photocatalytic and antimicrobial properties of the ZnO nanoparticles were also examined. The best photocatalytic activity in the degradation of C. I. Reactive Orange 16 dye was observed for the ZnO powder where the crystallites form the smallest agglomerates. All ZnO nanoparticles showed excellent inhibitory effect against Gram-positive bacterium Staphylococcus aureus and Gram-negative bacterium Escherichia coli.
T2  - Journal of the Serbian Chemical Society
T1  - Zinc oxide nanoparticles prepared by thermal decomposition of zinc benzenepolycarboxylato precursors: Photoluminescent, photocatalytic and antimicrobial properties
VL  - 85
IS  - 11
SP  - 1475
EP  - 1488
DO  - 10.2298/JSC200629048R
ER  - 
@article{
author = "Radovanović, Lidija and Zdravković, Jelena D. and Simović, Bojana and Radovanović, Željko and Mihajlovski, Katarina and Dramićanin, Miroslav and Rogan, Jelena",
year = "2020",
abstract = "Zinc oxide (ZnO) nanoparticles were obtained by thermal decomposition of one-dimensional zinc-benzenepolycarboxylato complexes as single-source precursors at 450 °C in an air atmosphere. The mechanism and kinetics of thermal degradation of zinc-benzenepolycarboxylato complexes were analyzed under non-isothermal conditions in an air atmosphere. The results of X-ray powder diffraction and field emission scanning electron microscopy revealed hexagonal wurtzite structure of ZnO with an average crystallite size in the range of 39-47 nm and similar morphology. The band gap and the specific surface area of ZnO nanoparticles were determined using UV-Vis diffuse reflectance spectroscopy and the Brunauer, Emmett and Teller method, respectively. The photoluminescent, photocatalytic and antimicrobial properties of the ZnO nanoparticles were also examined. The best photocatalytic activity in the degradation of C. I. Reactive Orange 16 dye was observed for the ZnO powder where the crystallites form the smallest agglomerates. All ZnO nanoparticles showed excellent inhibitory effect against Gram-positive bacterium Staphylococcus aureus and Gram-negative bacterium Escherichia coli.",
journal = "Journal of the Serbian Chemical Society",
title = "Zinc oxide nanoparticles prepared by thermal decomposition of zinc benzenepolycarboxylato precursors: Photoluminescent, photocatalytic and antimicrobial properties",
volume = "85",
number = "11",
pages = "1475-1488",
doi = "10.2298/JSC200629048R"
}
Radovanović, L., Zdravković, J. D., Simović, B., Radovanović, Ž., Mihajlovski, K., Dramićanin, M.,& Rogan, J.. (2020). Zinc oxide nanoparticles prepared by thermal decomposition of zinc benzenepolycarboxylato precursors: Photoluminescent, photocatalytic and antimicrobial properties. in Journal of the Serbian Chemical Society, 85(11), 1475-1488.
https://doi.org/10.2298/JSC200629048R
Radovanović L, Zdravković JD, Simović B, Radovanović Ž, Mihajlovski K, Dramićanin M, Rogan J. Zinc oxide nanoparticles prepared by thermal decomposition of zinc benzenepolycarboxylato precursors: Photoluminescent, photocatalytic and antimicrobial properties. in Journal of the Serbian Chemical Society. 2020;85(11):1475-1488.
doi:10.2298/JSC200629048R .
Radovanović, Lidija, Zdravković, Jelena D., Simović, Bojana, Radovanović, Željko, Mihajlovski, Katarina, Dramićanin, Miroslav, Rogan, Jelena, "Zinc oxide nanoparticles prepared by thermal decomposition of zinc benzenepolycarboxylato precursors: Photoluminescent, photocatalytic and antimicrobial properties" in Journal of the Serbian Chemical Society, 85, no. 11 (2020):1475-1488,
https://doi.org/10.2298/JSC200629048R . .
4
1
3

Synthesis, Structure, Morphology and Properties of Biphasic ZnO–ZnMn2O4

Radovanović, Lidija; Vulić, Predrag; Radovanović, Željko; Balanč, Bojana; Simović, Bojana; Zeković, Ivana Lj.; Dramićanin, Miroslav; Rogan, Jelena R.

(Belgrade : Serbian Academy of Sciences and Arts, 2018)

TY  - CONF
AU  - Radovanović, Lidija
AU  - Vulić, Predrag
AU  - Radovanović, Željko
AU  - Balanč, Bojana
AU  - Simović, Bojana
AU  - Zeković, Ivana Lj.
AU  - Dramićanin, Miroslav
AU  - Rogan, Jelena R.
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8737
PB  - Belgrade : Serbian Academy of Sciences and Arts
C3  - Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructures ELMINA 2018, August 27-29, 2018, Belgrade, Serbia
T1  - Synthesis, Structure, Morphology and Properties of Biphasic ZnO–ZnMn2O4
SP  - 171
EP  - 173
UR  - https://hdl.handle.net/21.15107/rcub_vinar_8737
ER  - 
@conference{
author = "Radovanović, Lidija and Vulić, Predrag and Radovanović, Željko and Balanč, Bojana and Simović, Bojana and Zeković, Ivana Lj. and Dramićanin, Miroslav and Rogan, Jelena R.",
year = "2018",
publisher = "Belgrade : Serbian Academy of Sciences and Arts",
journal = "Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructures ELMINA 2018, August 27-29, 2018, Belgrade, Serbia",
title = "Synthesis, Structure, Morphology and Properties of Biphasic ZnO–ZnMn2O4",
pages = "171-173",
url = "https://hdl.handle.net/21.15107/rcub_vinar_8737"
}
Radovanović, L., Vulić, P., Radovanović, Ž., Balanč, B., Simović, B., Zeković, I. Lj., Dramićanin, M.,& Rogan, J. R.. (2018). Synthesis, Structure, Morphology and Properties of Biphasic ZnO–ZnMn2O4. in Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructures ELMINA 2018, August 27-29, 2018, Belgrade, Serbia
Belgrade : Serbian Academy of Sciences and Arts., 171-173.
https://hdl.handle.net/21.15107/rcub_vinar_8737
Radovanović L, Vulić P, Radovanović Ž, Balanč B, Simović B, Zeković IL, Dramićanin M, Rogan JR. Synthesis, Structure, Morphology and Properties of Biphasic ZnO–ZnMn2O4. in Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructures ELMINA 2018, August 27-29, 2018, Belgrade, Serbia. 2018;:171-173.
https://hdl.handle.net/21.15107/rcub_vinar_8737 .
Radovanović, Lidija, Vulić, Predrag, Radovanović, Željko, Balanč, Bojana, Simović, Bojana, Zeković, Ivana Lj., Dramićanin, Miroslav, Rogan, Jelena R., "Synthesis, Structure, Morphology and Properties of Biphasic ZnO–ZnMn2O4" in Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructures ELMINA 2018, August 27-29, 2018, Belgrade, Serbia (2018):171-173,
https://hdl.handle.net/21.15107/rcub_vinar_8737 .

Sol-gel Synthesis of Anatase Nanopowders for Efficient Photocatalytic Degradation of Herbicide Clomazone in Aqueous Media

Golubović, Aleksandar V.; Simović, Bojana; Gašić, Slavica M.; Mijin, Dušan Ž.; Matković, Aleksandar; Babić, Biljana M.; Šćepanović, Maja

(2017)

TY  - JOUR
AU  - Golubović, Aleksandar V.
AU  - Simović, Bojana
AU  - Gašić, Slavica M.
AU  - Mijin, Dušan Ž.
AU  - Matković, Aleksandar
AU  - Babić, Biljana M.
AU  - Šćepanović, Maja
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1779
AB  - TiO2 nanopowders were produced by sol-gel technique using TiCl4 as a starting material. For the preparation of crystalline anatase with developed surface area, this aqueous solution has been mixed with 0.05 M or 0.07 M (NH4)(2)SO4 solution in a temperature-controlled bath. The pH values of the suspension were 7, 8 or 9. According to the x-ray diffraction (XRD) analysis the anatase crystallite sizes were about 12 nm, which coincided with the average particle size revealed by scanning electron microscopy (SEM). The Raman scattering measurements have shown the presence of a small amount of highly disordered brookite phase in addition to dominant anatase phase with similar nanostructure in all synthesized powders. BET measurements revealed that all synthesized catalysts were fully mesoporous, except the sample synthesized with 0.07 M (NH4)(2)SO4 at pH=9, which had small amount of micropores. The photocatalytic degradation of herbicide Clomazone was carried out for both the pure active substance and as the commercial product (GAMIT 4-EC) under UV irradiation. The best photocatalytic efficiency was obtained for the catalyst with the largest specific surface area, confirming this parameter as crucial for enhanced photocatalytic degradation of the pure active substance and commercial product of herbicide Clomazone.
T2  - Science of Sintering
T1  - Sol-gel Synthesis of Anatase Nanopowders for Efficient Photocatalytic Degradation of Herbicide Clomazone in Aqueous Media
VL  - 49
IS  - 3
SP  - 319
EP  - 330
DO  - 10.2298/SOS1703319G
ER  - 
@article{
author = "Golubović, Aleksandar V. and Simović, Bojana and Gašić, Slavica M. and Mijin, Dušan Ž. and Matković, Aleksandar and Babić, Biljana M. and Šćepanović, Maja",
year = "2017",
abstract = "TiO2 nanopowders were produced by sol-gel technique using TiCl4 as a starting material. For the preparation of crystalline anatase with developed surface area, this aqueous solution has been mixed with 0.05 M or 0.07 M (NH4)(2)SO4 solution in a temperature-controlled bath. The pH values of the suspension were 7, 8 or 9. According to the x-ray diffraction (XRD) analysis the anatase crystallite sizes were about 12 nm, which coincided with the average particle size revealed by scanning electron microscopy (SEM). The Raman scattering measurements have shown the presence of a small amount of highly disordered brookite phase in addition to dominant anatase phase with similar nanostructure in all synthesized powders. BET measurements revealed that all synthesized catalysts were fully mesoporous, except the sample synthesized with 0.07 M (NH4)(2)SO4 at pH=9, which had small amount of micropores. The photocatalytic degradation of herbicide Clomazone was carried out for both the pure active substance and as the commercial product (GAMIT 4-EC) under UV irradiation. The best photocatalytic efficiency was obtained for the catalyst with the largest specific surface area, confirming this parameter as crucial for enhanced photocatalytic degradation of the pure active substance and commercial product of herbicide Clomazone.",
journal = "Science of Sintering",
title = "Sol-gel Synthesis of Anatase Nanopowders for Efficient Photocatalytic Degradation of Herbicide Clomazone in Aqueous Media",
volume = "49",
number = "3",
pages = "319-330",
doi = "10.2298/SOS1703319G"
}
Golubović, A. V., Simović, B., Gašić, S. M., Mijin, D. Ž., Matković, A., Babić, B. M.,& Šćepanović, M.. (2017). Sol-gel Synthesis of Anatase Nanopowders for Efficient Photocatalytic Degradation of Herbicide Clomazone in Aqueous Media. in Science of Sintering, 49(3), 319-330.
https://doi.org/10.2298/SOS1703319G
Golubović AV, Simović B, Gašić SM, Mijin DŽ, Matković A, Babić BM, Šćepanović M. Sol-gel Synthesis of Anatase Nanopowders for Efficient Photocatalytic Degradation of Herbicide Clomazone in Aqueous Media. in Science of Sintering. 2017;49(3):319-330.
doi:10.2298/SOS1703319G .
Golubović, Aleksandar V., Simović, Bojana, Gašić, Slavica M., Mijin, Dušan Ž., Matković, Aleksandar, Babić, Biljana M., Šćepanović, Maja, "Sol-gel Synthesis of Anatase Nanopowders for Efficient Photocatalytic Degradation of Herbicide Clomazone in Aqueous Media" in Science of Sintering, 49, no. 3 (2017):319-330,
https://doi.org/10.2298/SOS1703319G . .
2
2

Enhanced photocatalytic degradation of RO16 dye using Ag modified ZnO nanopowders prepared by the solvothermal method

Simović, Bojana; Poleti, Dejan; Golubović, Aleksandar V.; Matković, Aleksandar; Šćepanović, Maja; Babić, Biljana M.; Branković, Goran O.

(2017)

TY  - JOUR
AU  - Simović, Bojana
AU  - Poleti, Dejan
AU  - Golubović, Aleksandar V.
AU  - Matković, Aleksandar
AU  - Šćepanović, Maja
AU  - Babić, Biljana M.
AU  - Branković, Goran O.
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1523
AB  - In this work, Zn(CH3 COO)(2) 2 H-2 O with AgNO3 content from 0 to 6 mol% was solvothermally treated at 120 C for 18 h in the presence of poly(vinyl pyrrolidone), ethylene glycol and sodium hydroxide. The structural , microstructural and photocatalytic properties of the unmodified and Ag modified ZnO powders have been investigated by the XRPD, FESEM, TEM, UV-vis, Raman and BET techniques. The Ag modified samples consist of ZnO nanocrystals and metallic Ag on the surface. The average crystallite size of all samples was about 20 nm. The FESEM revealed the uniformity in size and approximately spherical shape of ZnO nanopar-ticles. The BET data suggest that all prepared samples are mesoporous. All prepared samples showed higher photocatalytic efficiency in the degradation of the Reactive Orange 16 (RO16) azo dye than the commercial ZnO. In addition, Ag modified ZnO powders, especially those with 1.5 and 0.75 mol% of Ag, were more efficient than the unmodified one.
T2  - Processing and Application of Ceramics
T1  - Enhanced photocatalytic degradation of RO16 dye using Ag modified ZnO nanopowders prepared by the solvothermal method
VL  - 11
IS  - 1
SP  - 27
EP  - 38
DO  - 10.2298/PAC1701027S
ER  - 
@article{
author = "Simović, Bojana and Poleti, Dejan and Golubović, Aleksandar V. and Matković, Aleksandar and Šćepanović, Maja and Babić, Biljana M. and Branković, Goran O.",
year = "2017",
abstract = "In this work, Zn(CH3 COO)(2) 2 H-2 O with AgNO3 content from 0 to 6 mol% was solvothermally treated at 120 C for 18 h in the presence of poly(vinyl pyrrolidone), ethylene glycol and sodium hydroxide. The structural , microstructural and photocatalytic properties of the unmodified and Ag modified ZnO powders have been investigated by the XRPD, FESEM, TEM, UV-vis, Raman and BET techniques. The Ag modified samples consist of ZnO nanocrystals and metallic Ag on the surface. The average crystallite size of all samples was about 20 nm. The FESEM revealed the uniformity in size and approximately spherical shape of ZnO nanopar-ticles. The BET data suggest that all prepared samples are mesoporous. All prepared samples showed higher photocatalytic efficiency in the degradation of the Reactive Orange 16 (RO16) azo dye than the commercial ZnO. In addition, Ag modified ZnO powders, especially those with 1.5 and 0.75 mol% of Ag, were more efficient than the unmodified one.",
journal = "Processing and Application of Ceramics",
title = "Enhanced photocatalytic degradation of RO16 dye using Ag modified ZnO nanopowders prepared by the solvothermal method",
volume = "11",
number = "1",
pages = "27-38",
doi = "10.2298/PAC1701027S"
}
Simović, B., Poleti, D., Golubović, A. V., Matković, A., Šćepanović, M., Babić, B. M.,& Branković, G. O.. (2017). Enhanced photocatalytic degradation of RO16 dye using Ag modified ZnO nanopowders prepared by the solvothermal method. in Processing and Application of Ceramics, 11(1), 27-38.
https://doi.org/10.2298/PAC1701027S
Simović B, Poleti D, Golubović AV, Matković A, Šćepanović M, Babić BM, Branković GO. Enhanced photocatalytic degradation of RO16 dye using Ag modified ZnO nanopowders prepared by the solvothermal method. in Processing and Application of Ceramics. 2017;11(1):27-38.
doi:10.2298/PAC1701027S .
Simović, Bojana, Poleti, Dejan, Golubović, Aleksandar V., Matković, Aleksandar, Šćepanović, Maja, Babić, Biljana M., Branković, Goran O., "Enhanced photocatalytic degradation of RO16 dye using Ag modified ZnO nanopowders prepared by the solvothermal method" in Processing and Application of Ceramics, 11, no. 1 (2017):27-38,
https://doi.org/10.2298/PAC1701027S . .
13
9
12

Synthesis of Anatase Nanopowders by Sol-gel Method and Influence of Temperatures of Calcination to Their Photocatalitic Properties

Golubović, Aleksandar V.; Simović, Bojana; Šćepanović, Maja; Mijin, Dušan Ž.; Matkovic, A.; Grujić-Brojčin, Mirjana; Babić, Biljana M.

(2015)

TY  - JOUR
AU  - Golubović, Aleksandar V.
AU  - Simović, Bojana
AU  - Šćepanović, Maja
AU  - Mijin, Dušan Ž.
AU  - Matkovic, A.
AU  - Grujić-Brojčin, Mirjana
AU  - Babić, Biljana M.
PY  - 2015
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/566
AB  - The titanium dioxide (TiO2) nanopowders were produced by sol-gel technique from tetrabutyl titanate as a precursor, varying the temperature of calcination (from 500 to 550 degrees C with the step of 10 degrees C). XRPD results have shown that all synthesized nanopowders are dominantly in anatase phase. The analysis of the shift and linewidth of the most intensive anatase E-g Raman mode confirmed the XRPD results and added the presence of small amount of highly disordered brookite phase in all samples. The analysis of pore structure from nitrogen sorption experimental data described all samples as mesoporous, with mean pore diameters in the range of 1.5 and 4.5 nm. Nanopowder properties have been related to the photocatalytic activity, tested in degradation of the textile dye (C.I. Reactive Orange 16). The sample calcined at temperature of 510 degrees C showed the best photocatalytic performance.
T2  - Science of Sintering
T1  - Synthesis of Anatase Nanopowders by Sol-gel Method and Influence of Temperatures of Calcination to Their Photocatalitic Properties
VL  - 47
IS  - 1
SP  - 41
EP  - 49
DO  - 10.2298/SOS1501041G
ER  - 
@article{
author = "Golubović, Aleksandar V. and Simović, Bojana and Šćepanović, Maja and Mijin, Dušan Ž. and Matkovic, A. and Grujić-Brojčin, Mirjana and Babić, Biljana M.",
year = "2015",
abstract = "The titanium dioxide (TiO2) nanopowders were produced by sol-gel technique from tetrabutyl titanate as a precursor, varying the temperature of calcination (from 500 to 550 degrees C with the step of 10 degrees C). XRPD results have shown that all synthesized nanopowders are dominantly in anatase phase. The analysis of the shift and linewidth of the most intensive anatase E-g Raman mode confirmed the XRPD results and added the presence of small amount of highly disordered brookite phase in all samples. The analysis of pore structure from nitrogen sorption experimental data described all samples as mesoporous, with mean pore diameters in the range of 1.5 and 4.5 nm. Nanopowder properties have been related to the photocatalytic activity, tested in degradation of the textile dye (C.I. Reactive Orange 16). The sample calcined at temperature of 510 degrees C showed the best photocatalytic performance.",
journal = "Science of Sintering",
title = "Synthesis of Anatase Nanopowders by Sol-gel Method and Influence of Temperatures of Calcination to Their Photocatalitic Properties",
volume = "47",
number = "1",
pages = "41-49",
doi = "10.2298/SOS1501041G"
}
Golubović, A. V., Simović, B., Šćepanović, M., Mijin, D. Ž., Matkovic, A., Grujić-Brojčin, M.,& Babić, B. M.. (2015). Synthesis of Anatase Nanopowders by Sol-gel Method and Influence of Temperatures of Calcination to Their Photocatalitic Properties. in Science of Sintering, 47(1), 41-49.
https://doi.org/10.2298/SOS1501041G
Golubović AV, Simović B, Šćepanović M, Mijin DŽ, Matkovic A, Grujić-Brojčin M, Babić BM. Synthesis of Anatase Nanopowders by Sol-gel Method and Influence of Temperatures of Calcination to Their Photocatalitic Properties. in Science of Sintering. 2015;47(1):41-49.
doi:10.2298/SOS1501041G .
Golubović, Aleksandar V., Simović, Bojana, Šćepanović, Maja, Mijin, Dušan Ž., Matkovic, A., Grujić-Brojčin, Mirjana, Babić, Biljana M., "Synthesis of Anatase Nanopowders by Sol-gel Method and Influence of Temperatures of Calcination to Their Photocatalitic Properties" in Science of Sintering, 47, no. 1 (2015):41-49,
https://doi.org/10.2298/SOS1501041G . .
2
3
3

Photocatalytic degradation of alprazolam in water suspension of brookite type TiO2 nanopowders prepared using hydrothermal route

Tomić, Nataša; Grujić-Brojčin, Mirjana; Finčur, Nina L.; Abramović, Biljana F.; Simović, Bojana; Krstić, Jugoslav B.; Matović, Branko; Šćepanović, Maja

(Elsevier, 2015)

TY  - JOUR
AU  - Tomić, Nataša
AU  - Grujić-Brojčin, Mirjana
AU  - Finčur, Nina L.
AU  - Abramović, Biljana F.
AU  - Simović, Bojana
AU  - Krstić, Jugoslav B.
AU  - Matović, Branko
AU  - Šćepanović, Maja
PY  - 2015
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/821
AB  - Two series of nanocrystalline brookite-type powders have been synthesized by using combined sal gel hydrothermal method with titanium tetrachloride (TiCI4) as a precursor and hydrothermal temperature and reaction time varied in the range of 120-200 degrees C and 12-48 h, respectively. The effects of chosen synthesis parameters on structural, morphological and optical properties of synthesized powders have been investigated by the XRPD, SEM, EDS and BET measurements, as well Raman spectroscopy and spectroscopic ellipsometry. The XRPD results have shown that pure brookite phase, with mean crystallite size of -33 nm, has been obtained only in the sample synthesized at 200 degrees C, after 24 h of hydrothermal process. In all other samples anatase phase also appears, whereas rutile and sodium titanate phases have been noticed in the samples synthesized at lower temperatures. The presence of different titania phases has also been confirmed and analyzed by Raman scattering measurements. The SEM measurements have shown spindle-like particles in brookite-rich samples synthesized at 200 degrees C, whereas BET measurements have detected mesoporous structure in these samples. The properties of synthesized powders have been correlated to their photocatalytic efficiency, tested in degradation of alprazolam, one of the 5th generation benzodiazepines. The sample consisted of pure brookite has shown the highest efficiency in the photodegradation of alprazolam, practically equal to the activity of Degussa P25. (C) 2015 Elsevier B.V. All rights reserved.
PB  - Elsevier
T2  - Materials Chemistry and Physics
T1  - Photocatalytic degradation of alprazolam in water suspension of brookite type TiO2 nanopowders prepared using hydrothermal route
VL  - 163
SP  - 518
EP  - 528
DO  - 10.1016/j.matchemphys.2015.08.008
ER  - 
@article{
author = "Tomić, Nataša and Grujić-Brojčin, Mirjana and Finčur, Nina L. and Abramović, Biljana F. and Simović, Bojana and Krstić, Jugoslav B. and Matović, Branko and Šćepanović, Maja",
year = "2015",
abstract = "Two series of nanocrystalline brookite-type powders have been synthesized by using combined sal gel hydrothermal method with titanium tetrachloride (TiCI4) as a precursor and hydrothermal temperature and reaction time varied in the range of 120-200 degrees C and 12-48 h, respectively. The effects of chosen synthesis parameters on structural, morphological and optical properties of synthesized powders have been investigated by the XRPD, SEM, EDS and BET measurements, as well Raman spectroscopy and spectroscopic ellipsometry. The XRPD results have shown that pure brookite phase, with mean crystallite size of -33 nm, has been obtained only in the sample synthesized at 200 degrees C, after 24 h of hydrothermal process. In all other samples anatase phase also appears, whereas rutile and sodium titanate phases have been noticed in the samples synthesized at lower temperatures. The presence of different titania phases has also been confirmed and analyzed by Raman scattering measurements. The SEM measurements have shown spindle-like particles in brookite-rich samples synthesized at 200 degrees C, whereas BET measurements have detected mesoporous structure in these samples. The properties of synthesized powders have been correlated to their photocatalytic efficiency, tested in degradation of alprazolam, one of the 5th generation benzodiazepines. The sample consisted of pure brookite has shown the highest efficiency in the photodegradation of alprazolam, practically equal to the activity of Degussa P25. (C) 2015 Elsevier B.V. All rights reserved.",
publisher = "Elsevier",
journal = "Materials Chemistry and Physics",
title = "Photocatalytic degradation of alprazolam in water suspension of brookite type TiO2 nanopowders prepared using hydrothermal route",
volume = "163",
pages = "518-528",
doi = "10.1016/j.matchemphys.2015.08.008"
}
Tomić, N., Grujić-Brojčin, M., Finčur, N. L., Abramović, B. F., Simović, B., Krstić, J. B., Matović, B.,& Šćepanović, M.. (2015). Photocatalytic degradation of alprazolam in water suspension of brookite type TiO2 nanopowders prepared using hydrothermal route. in Materials Chemistry and Physics
Elsevier., 163, 518-528.
https://doi.org/10.1016/j.matchemphys.2015.08.008
Tomić N, Grujić-Brojčin M, Finčur NL, Abramović BF, Simović B, Krstić JB, Matović B, Šćepanović M. Photocatalytic degradation of alprazolam in water suspension of brookite type TiO2 nanopowders prepared using hydrothermal route. in Materials Chemistry and Physics. 2015;163:518-528.
doi:10.1016/j.matchemphys.2015.08.008 .
Tomić, Nataša, Grujić-Brojčin, Mirjana, Finčur, Nina L., Abramović, Biljana F., Simović, Bojana, Krstić, Jugoslav B., Matović, Branko, Šćepanović, Maja, "Photocatalytic degradation of alprazolam in water suspension of brookite type TiO2 nanopowders prepared using hydrothermal route" in Materials Chemistry and Physics, 163 (2015):518-528,
https://doi.org/10.1016/j.matchemphys.2015.08.008 . .
36
30
37