Baskić, Dejan

Link to this page

Authority KeyName Variants
e8d9ef09-860f-44fc-8529-8c8f533c36dc
  • Baskić, Dejan (3)
Projects

Author's Bibliography

The Effects of Newly Synthesized Platinum(IV) Complexes on Cytotoxicity and Radiosensitization of Human Tumour Cells In Vitro

Petrović, Marija; Popović, Suzana; Baskić, Dejan; Todorović, Miloš; Đurđević, Predrag; Ristić-Fira, Aleksandra; Keta, Otilija D.; Petković, Vladana; Korićanac, Lela; Stojković, Danijela; Jevtić, Verica; Trifunović, Srećko; Todorović, Danijela

(2020)

TY  - JOUR
AU  - Petrović, Marija
AU  - Popović, Suzana
AU  - Baskić, Dejan
AU  - Todorović, Miloš
AU  - Đurđević, Predrag
AU  - Ristić-Fira, Aleksandra
AU  - Keta, Otilija D.
AU  - Petković, Vladana
AU  - Korićanac, Lela
AU  - Stojković, Danijela
AU  - Jevtić, Verica
AU  - Trifunović, Srećko
AU  - Todorović, Danijela
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9631
AB  - Aim: Newly synthesized platinum(IV) complexes with ethylenediamine-N,N’-diacetate ligands (EDDA-type) (butyl-Pt and pentyl-Pt) were investigated against two cancer (A549 lung, and HTB 140 melanoma) and one non-cancerous (MRC-5 embryonic lung fibroblast) human cell lines. Materials and Methods: The effects of these agents were compared with those of cisplatin after 6-, 24- and 48-h treatment. Sulforhodamine-B (SRB) assay was performed to estimate the cytotoxic effect, while the inhibitory effect on cell proliferation was measured using 5-bromo-2,-deoxyuridine (BrdU) incorporation assay. Cell cycle analysis was performed by flow cytometry. Type of cell death induced by these agents was determined by electrophoretic analysis of DNA, flow cytometry and by western blot analysis of proteins involved in induction of apoptosis. The effects of gamma irradiation, alone and in combination with platinum-based compounds, were examined by clonogenic and SRB assays. Results: All examined platinum-based compounds had inhibitory and antiproliferative effects on A549 cells, but not on HTB140 and MRC-5 cells. Butyl-Pt, pentyl-Pt and cisplatin arrested the cell cycle in the S-phase and induced apoptotic cell death via regulation of expression of B-cell lymphoma 2 (BCL2) and BCL2-associated X (BAX) proteins. Platinum-based compounds increased the sensitivity of A549 cells to gamma irradiation. Butyl-Pt and pentyl-Pt showed better antitumour effects against A549 cells than did cisplatin, by interfering in cell proliferation and the cell cycle, and by triggering apoptosis. Conclusion: The effects of gamma irradiation on tumour cells may be amplified by pre-treatment of cells with platinum-based compounds.
T2  - Anticancer Research
T1  - The Effects of Newly Synthesized Platinum(IV) Complexes on Cytotoxicity and Radiosensitization of Human Tumour Cells In Vitro
VL  - 40
IS  - 9
SP  - 5001
EP  - 5013
DO  - 10.21873/anticanres.14503
ER  - 
@article{
author = "Petrović, Marija and Popović, Suzana and Baskić, Dejan and Todorović, Miloš and Đurđević, Predrag and Ristić-Fira, Aleksandra and Keta, Otilija D. and Petković, Vladana and Korićanac, Lela and Stojković, Danijela and Jevtić, Verica and Trifunović, Srećko and Todorović, Danijela",
year = "2020",
abstract = "Aim: Newly synthesized platinum(IV) complexes with ethylenediamine-N,N’-diacetate ligands (EDDA-type) (butyl-Pt and pentyl-Pt) were investigated against two cancer (A549 lung, and HTB 140 melanoma) and one non-cancerous (MRC-5 embryonic lung fibroblast) human cell lines. Materials and Methods: The effects of these agents were compared with those of cisplatin after 6-, 24- and 48-h treatment. Sulforhodamine-B (SRB) assay was performed to estimate the cytotoxic effect, while the inhibitory effect on cell proliferation was measured using 5-bromo-2,-deoxyuridine (BrdU) incorporation assay. Cell cycle analysis was performed by flow cytometry. Type of cell death induced by these agents was determined by electrophoretic analysis of DNA, flow cytometry and by western blot analysis of proteins involved in induction of apoptosis. The effects of gamma irradiation, alone and in combination with platinum-based compounds, were examined by clonogenic and SRB assays. Results: All examined platinum-based compounds had inhibitory and antiproliferative effects on A549 cells, but not on HTB140 and MRC-5 cells. Butyl-Pt, pentyl-Pt and cisplatin arrested the cell cycle in the S-phase and induced apoptotic cell death via regulation of expression of B-cell lymphoma 2 (BCL2) and BCL2-associated X (BAX) proteins. Platinum-based compounds increased the sensitivity of A549 cells to gamma irradiation. Butyl-Pt and pentyl-Pt showed better antitumour effects against A549 cells than did cisplatin, by interfering in cell proliferation and the cell cycle, and by triggering apoptosis. Conclusion: The effects of gamma irradiation on tumour cells may be amplified by pre-treatment of cells with platinum-based compounds.",
journal = "Anticancer Research",
title = "The Effects of Newly Synthesized Platinum(IV) Complexes on Cytotoxicity and Radiosensitization of Human Tumour Cells In Vitro",
volume = "40",
number = "9",
pages = "5001-5013",
doi = "10.21873/anticanres.14503"
}
Petrović, M., Popović, S., Baskić, D., Todorović, M., Đurđević, P., Ristić-Fira, A., Keta, O. D., Petković, V., Korićanac, L., Stojković, D., Jevtić, V., Trifunović, S.,& Todorović, D.. (2020). The Effects of Newly Synthesized Platinum(IV) Complexes on Cytotoxicity and Radiosensitization of Human Tumour Cells In Vitro. in Anticancer Research, 40(9), 5001-5013.
https://doi.org/10.21873/anticanres.14503
Petrović M, Popović S, Baskić D, Todorović M, Đurđević P, Ristić-Fira A, Keta OD, Petković V, Korićanac L, Stojković D, Jevtić V, Trifunović S, Todorović D. The Effects of Newly Synthesized Platinum(IV) Complexes on Cytotoxicity and Radiosensitization of Human Tumour Cells In Vitro. in Anticancer Research. 2020;40(9):5001-5013.
doi:10.21873/anticanres.14503 .
Petrović, Marija, Popović, Suzana, Baskić, Dejan, Todorović, Miloš, Đurđević, Predrag, Ristić-Fira, Aleksandra, Keta, Otilija D., Petković, Vladana, Korićanac, Lela, Stojković, Danijela, Jevtić, Verica, Trifunović, Srećko, Todorović, Danijela, "The Effects of Newly Synthesized Platinum(IV) Complexes on Cytotoxicity and Radiosensitization of Human Tumour Cells In Vitro" in Anticancer Research, 40, no. 9 (2020):5001-5013,
https://doi.org/10.21873/anticanres.14503 . .
1
4
1
3

Synthesis, characterization, anticancer evaluation and mechanisms of cytotoxic activity of novel 3-hydroxy-3-pyrrolin-2-ones bearing thenoyl fragment: DNA, BSA interactions and molecular docking study

Joksimović, Nenad; Petronijević, Jelena; Janković, Nenad Ž.; Baskić, Dejan; Popović, Suzana Lj.; Todorović, Danijela V.; Matić, Sanja Lj.; Bogdanović, Goran A.; Vraneš, Milan; Tot, Aleksandar; Bugarčić, Zorica M.

(2019)

TY  - JOUR
AU  - Joksimović, Nenad
AU  - Petronijević, Jelena
AU  - Janković, Nenad Ž.
AU  - Baskić, Dejan
AU  - Popović, Suzana Lj.
AU  - Todorović, Danijela V.
AU  - Matić, Sanja Lj.
AU  - Bogdanović, Goran A.
AU  - Vraneš, Milan
AU  - Tot, Aleksandar
AU  - Bugarčić, Zorica M.
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8173
AB  - In order to make a progress in discovering a new agents for chemotherapy with improved properties and bearing in mind the fact that substituted 3-hydroxy-3-pyrrolin-2-ones belong to a class of biologically active compounds, series of novel 1,5-diaryl-4-(2-thienylcarbonyl)-3-hydroxy-3-pyrrolin-2-ones were synthesized and characterized by spectral (UV–Vis, IR, NMR, ESI-MS), X-ray and elemental analysis. All compounds were examined for their cytotoxic effect on human cancer cell lines HeLa and MDA-MB 231 and normal fibroblasts (MRC-5). Four compounds, 3-hydroxy-1-(p-tolyl)-4-(2-thienylcarbonyl)-5-(4-chlorophenyl)-2,5-dihydro-1H-pyrrol-2-one (D10), 3-hydroxy-1-(3-nitrophenyl)-4-(2-thienylcarbonyl)-5-(4-(benzyloxy)phenyl)-2,5-dihydro-1H-pyrrol-2-one (D13), 3-hydroxy-1-(4-nitrophenyl)-4-(2-thienylcarbonyl)-5-(4-(benzyloxy)phenyl)-2,5-dihydro-1H-pyrrol-2-one (D14), and 3-hydroxy-1-(4-chlorophenyl)-4-(2-thienylcarbonyl)-5-(4-(benzyloxy)phenyl)-2,5-dihydro-1H-pyrrol-2-one (D15), that showed the highest cytotoxicity against malignant cells and the best selectivity towards normal cells were selected for further experiments. Results obtained by investigating mechanisms of cytotoxic activity suggest that selected 3-hydroxy-3-pyrrolin-2-one derivatives in HeLa cells induce apoptosis that is associated with S phase arrest (D13, D15, and D10) or unrelated to cell cycle distribution (D14). Additionally, to better understand their suitability for potential use as anticancer medicaments we studied the interactions between biomacromolecules (DNA or BSA) and D13 and D15. The results indicated that D13 and D15 have great affinity to displace EB from the EB-DNA complex through intercalation [K sv = (3.7 ± 0.1) and (3.4 ± 0.1) × 10 3 M −1 , respectively], an intercalative mode also confirmed through viscosity measurements. K a values, obtained as result of fluorescence titration of BSA with D13 and D15 [K a = (4.2 ± 0.2) and (2.6 ± 0.2) × 10 5 M, respectively], support the fact that a significant amount of the tested compounds could be transported and distributed through the cells. In addition, by DNA and BSA molecular docking study for D13, D14 and D15 is determined and predicted the binding mode and the interaction region. © 2019 Elsevier Inc.
T2  - Bioorganic Chemistry
T1  - Synthesis, characterization, anticancer evaluation and mechanisms of cytotoxic activity of novel 3-hydroxy-3-pyrrolin-2-ones bearing thenoyl fragment: DNA, BSA interactions and molecular docking study
VL  - 88
SP  - 102954
DO  - 10.1016/j.bioorg.2019.102954
ER  - 
@article{
author = "Joksimović, Nenad and Petronijević, Jelena and Janković, Nenad Ž. and Baskić, Dejan and Popović, Suzana Lj. and Todorović, Danijela V. and Matić, Sanja Lj. and Bogdanović, Goran A. and Vraneš, Milan and Tot, Aleksandar and Bugarčić, Zorica M.",
year = "2019",
abstract = "In order to make a progress in discovering a new agents for chemotherapy with improved properties and bearing in mind the fact that substituted 3-hydroxy-3-pyrrolin-2-ones belong to a class of biologically active compounds, series of novel 1,5-diaryl-4-(2-thienylcarbonyl)-3-hydroxy-3-pyrrolin-2-ones were synthesized and characterized by spectral (UV–Vis, IR, NMR, ESI-MS), X-ray and elemental analysis. All compounds were examined for their cytotoxic effect on human cancer cell lines HeLa and MDA-MB 231 and normal fibroblasts (MRC-5). Four compounds, 3-hydroxy-1-(p-tolyl)-4-(2-thienylcarbonyl)-5-(4-chlorophenyl)-2,5-dihydro-1H-pyrrol-2-one (D10), 3-hydroxy-1-(3-nitrophenyl)-4-(2-thienylcarbonyl)-5-(4-(benzyloxy)phenyl)-2,5-dihydro-1H-pyrrol-2-one (D13), 3-hydroxy-1-(4-nitrophenyl)-4-(2-thienylcarbonyl)-5-(4-(benzyloxy)phenyl)-2,5-dihydro-1H-pyrrol-2-one (D14), and 3-hydroxy-1-(4-chlorophenyl)-4-(2-thienylcarbonyl)-5-(4-(benzyloxy)phenyl)-2,5-dihydro-1H-pyrrol-2-one (D15), that showed the highest cytotoxicity against malignant cells and the best selectivity towards normal cells were selected for further experiments. Results obtained by investigating mechanisms of cytotoxic activity suggest that selected 3-hydroxy-3-pyrrolin-2-one derivatives in HeLa cells induce apoptosis that is associated with S phase arrest (D13, D15, and D10) or unrelated to cell cycle distribution (D14). Additionally, to better understand their suitability for potential use as anticancer medicaments we studied the interactions between biomacromolecules (DNA or BSA) and D13 and D15. The results indicated that D13 and D15 have great affinity to displace EB from the EB-DNA complex through intercalation [K sv = (3.7 ± 0.1) and (3.4 ± 0.1) × 10 3 M −1 , respectively], an intercalative mode also confirmed through viscosity measurements. K a values, obtained as result of fluorescence titration of BSA with D13 and D15 [K a = (4.2 ± 0.2) and (2.6 ± 0.2) × 10 5 M, respectively], support the fact that a significant amount of the tested compounds could be transported and distributed through the cells. In addition, by DNA and BSA molecular docking study for D13, D14 and D15 is determined and predicted the binding mode and the interaction region. © 2019 Elsevier Inc.",
journal = "Bioorganic Chemistry",
title = "Synthesis, characterization, anticancer evaluation and mechanisms of cytotoxic activity of novel 3-hydroxy-3-pyrrolin-2-ones bearing thenoyl fragment: DNA, BSA interactions and molecular docking study",
volume = "88",
pages = "102954",
doi = "10.1016/j.bioorg.2019.102954"
}
Joksimović, N., Petronijević, J., Janković, N. Ž., Baskić, D., Popović, S. Lj., Todorović, D. V., Matić, S. Lj., Bogdanović, G. A., Vraneš, M., Tot, A.,& Bugarčić, Z. M.. (2019). Synthesis, characterization, anticancer evaluation and mechanisms of cytotoxic activity of novel 3-hydroxy-3-pyrrolin-2-ones bearing thenoyl fragment: DNA, BSA interactions and molecular docking study. in Bioorganic Chemistry, 88, 102954.
https://doi.org/10.1016/j.bioorg.2019.102954
Joksimović N, Petronijević J, Janković NŽ, Baskić D, Popović SL, Todorović DV, Matić SL, Bogdanović GA, Vraneš M, Tot A, Bugarčić ZM. Synthesis, characterization, anticancer evaluation and mechanisms of cytotoxic activity of novel 3-hydroxy-3-pyrrolin-2-ones bearing thenoyl fragment: DNA, BSA interactions and molecular docking study. in Bioorganic Chemistry. 2019;88:102954.
doi:10.1016/j.bioorg.2019.102954 .
Joksimović, Nenad, Petronijević, Jelena, Janković, Nenad Ž., Baskić, Dejan, Popović, Suzana Lj., Todorović, Danijela V., Matić, Sanja Lj., Bogdanović, Goran A., Vraneš, Milan, Tot, Aleksandar, Bugarčić, Zorica M., "Synthesis, characterization, anticancer evaluation and mechanisms of cytotoxic activity of novel 3-hydroxy-3-pyrrolin-2-ones bearing thenoyl fragment: DNA, BSA interactions and molecular docking study" in Bioorganic Chemistry, 88 (2019):102954,
https://doi.org/10.1016/j.bioorg.2019.102954 . .
1
21
9
20

Synthesis, characterization, anticancer evaluation and mechanisms of cytotoxic activity of novel 3-hydroxy-3-pyrrolin-2-ones bearing thenoyl fragment: DNA, BSA interactions and molecular docking study

Joksimović, Nenad; Petronijević, Jelena; Janković, Nenad Ž.; Baskić, Dejan; Popović, Suzana Lj.; Todorović, Danijela V.; Matić, Sanja Lj.; Bogdanović, Goran A.; Vraneš, Milan; Tot, Aleksandar; Bugarčić, Zorica M.

(2019)

TY  - JOUR
AU  - Joksimović, Nenad
AU  - Petronijević, Jelena
AU  - Janković, Nenad Ž.
AU  - Baskić, Dejan
AU  - Popović, Suzana Lj.
AU  - Todorović, Danijela V.
AU  - Matić, Sanja Lj.
AU  - Bogdanović, Goran A.
AU  - Vraneš, Milan
AU  - Tot, Aleksandar
AU  - Bugarčić, Zorica M.
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8186
AB  - In order to make a progress in discovering a new agents for chemotherapy with improved properties and bearing in mind the fact that substituted 3-hydroxy-3-pyrrolin-2-ones belong to a class of biologically active compounds, series of novel 1,5-diaryl-4-(2-thienylcarbonyl)-3-hydroxy-3-pyrrolin-2-ones were synthesized and characterized by spectral (UV–Vis, IR, NMR, ESI-MS), X-ray and elemental analysis. All compounds were examined for their cytotoxic effect on human cancer cell lines HeLa and MDA-MB 231 and normal fibroblasts (MRC-5). Four compounds, 3-hydroxy-1-(p-tolyl)-4-(2-thienylcarbonyl)-5-(4-chlorophenyl)-2,5-dihydro-1H-pyrrol-2-one (D10), 3-hydroxy-1-(3-nitrophenyl)-4-(2-thienylcarbonyl)-5-(4-(benzyloxy)phenyl)-2,5-dihydro-1H-pyrrol-2-one (D13), 3-hydroxy-1-(4-nitrophenyl)-4-(2-thienylcarbonyl)-5-(4-(benzyloxy)phenyl)-2,5-dihydro-1H-pyrrol-2-one (D14), and 3-hydroxy-1-(4-chlorophenyl)-4-(2-thienylcarbonyl)-5-(4-(benzyloxy)phenyl)-2,5-dihydro-1H-pyrrol-2-one (D15), that showed the highest cytotoxicity against malignant cells and the best selectivity towards normal cells were selected for further experiments. Results obtained by investigating mechanisms of cytotoxic activity suggest that selected 3-hydroxy-3-pyrrolin-2-one derivatives in HeLa cells induce apoptosis that is associated with S phase arrest (D13, D15, and D10) or unrelated to cell cycle distribution (D14). Additionally, to better understand their suitability for potential use as anticancer medicaments we studied the interactions between biomacromolecules (DNA or BSA) and D13 and D15. The results indicated that D13 and D15 have great affinity to displace EB from the EB-DNA complex through intercalation [K sv = (3.7 ± 0.1) and (3.4 ± 0.1) × 10 3 M −1 , respectively], an intercalative mode also confirmed through viscosity measurements. K a values, obtained as result of fluorescence titration of BSA with D13 and D15 [K a = (4.2 ± 0.2) and (2.6 ± 0.2) × 10 5 M, respectively], support the fact that a significant amount of the tested compounds could be transported and distributed through the cells. In addition, by DNA and BSA molecular docking study for D13, D14 and D15 is determined and predicted the binding mode and the interaction region. © 2019 Elsevier Inc.
T2  - Bioorganic Chemistry
T1  - Synthesis, characterization, anticancer evaluation and mechanisms of cytotoxic activity of novel 3-hydroxy-3-pyrrolin-2-ones bearing thenoyl fragment: DNA, BSA interactions and molecular docking study
VL  - 88
SP  - 102954
DO  - 10.1016/j.bioorg.2019.102954
ER  - 
@article{
author = "Joksimović, Nenad and Petronijević, Jelena and Janković, Nenad Ž. and Baskić, Dejan and Popović, Suzana Lj. and Todorović, Danijela V. and Matić, Sanja Lj. and Bogdanović, Goran A. and Vraneš, Milan and Tot, Aleksandar and Bugarčić, Zorica M.",
year = "2019",
abstract = "In order to make a progress in discovering a new agents for chemotherapy with improved properties and bearing in mind the fact that substituted 3-hydroxy-3-pyrrolin-2-ones belong to a class of biologically active compounds, series of novel 1,5-diaryl-4-(2-thienylcarbonyl)-3-hydroxy-3-pyrrolin-2-ones were synthesized and characterized by spectral (UV–Vis, IR, NMR, ESI-MS), X-ray and elemental analysis. All compounds were examined for their cytotoxic effect on human cancer cell lines HeLa and MDA-MB 231 and normal fibroblasts (MRC-5). Four compounds, 3-hydroxy-1-(p-tolyl)-4-(2-thienylcarbonyl)-5-(4-chlorophenyl)-2,5-dihydro-1H-pyrrol-2-one (D10), 3-hydroxy-1-(3-nitrophenyl)-4-(2-thienylcarbonyl)-5-(4-(benzyloxy)phenyl)-2,5-dihydro-1H-pyrrol-2-one (D13), 3-hydroxy-1-(4-nitrophenyl)-4-(2-thienylcarbonyl)-5-(4-(benzyloxy)phenyl)-2,5-dihydro-1H-pyrrol-2-one (D14), and 3-hydroxy-1-(4-chlorophenyl)-4-(2-thienylcarbonyl)-5-(4-(benzyloxy)phenyl)-2,5-dihydro-1H-pyrrol-2-one (D15), that showed the highest cytotoxicity against malignant cells and the best selectivity towards normal cells were selected for further experiments. Results obtained by investigating mechanisms of cytotoxic activity suggest that selected 3-hydroxy-3-pyrrolin-2-one derivatives in HeLa cells induce apoptosis that is associated with S phase arrest (D13, D15, and D10) or unrelated to cell cycle distribution (D14). Additionally, to better understand their suitability for potential use as anticancer medicaments we studied the interactions between biomacromolecules (DNA or BSA) and D13 and D15. The results indicated that D13 and D15 have great affinity to displace EB from the EB-DNA complex through intercalation [K sv = (3.7 ± 0.1) and (3.4 ± 0.1) × 10 3 M −1 , respectively], an intercalative mode also confirmed through viscosity measurements. K a values, obtained as result of fluorescence titration of BSA with D13 and D15 [K a = (4.2 ± 0.2) and (2.6 ± 0.2) × 10 5 M, respectively], support the fact that a significant amount of the tested compounds could be transported and distributed through the cells. In addition, by DNA and BSA molecular docking study for D13, D14 and D15 is determined and predicted the binding mode and the interaction region. © 2019 Elsevier Inc.",
journal = "Bioorganic Chemistry",
title = "Synthesis, characterization, anticancer evaluation and mechanisms of cytotoxic activity of novel 3-hydroxy-3-pyrrolin-2-ones bearing thenoyl fragment: DNA, BSA interactions and molecular docking study",
volume = "88",
pages = "102954",
doi = "10.1016/j.bioorg.2019.102954"
}
Joksimović, N., Petronijević, J., Janković, N. Ž., Baskić, D., Popović, S. Lj., Todorović, D. V., Matić, S. Lj., Bogdanović, G. A., Vraneš, M., Tot, A.,& Bugarčić, Z. M.. (2019). Synthesis, characterization, anticancer evaluation and mechanisms of cytotoxic activity of novel 3-hydroxy-3-pyrrolin-2-ones bearing thenoyl fragment: DNA, BSA interactions and molecular docking study. in Bioorganic Chemistry, 88, 102954.
https://doi.org/10.1016/j.bioorg.2019.102954
Joksimović N, Petronijević J, Janković NŽ, Baskić D, Popović SL, Todorović DV, Matić SL, Bogdanović GA, Vraneš M, Tot A, Bugarčić ZM. Synthesis, characterization, anticancer evaluation and mechanisms of cytotoxic activity of novel 3-hydroxy-3-pyrrolin-2-ones bearing thenoyl fragment: DNA, BSA interactions and molecular docking study. in Bioorganic Chemistry. 2019;88:102954.
doi:10.1016/j.bioorg.2019.102954 .
Joksimović, Nenad, Petronijević, Jelena, Janković, Nenad Ž., Baskić, Dejan, Popović, Suzana Lj., Todorović, Danijela V., Matić, Sanja Lj., Bogdanović, Goran A., Vraneš, Milan, Tot, Aleksandar, Bugarčić, Zorica M., "Synthesis, characterization, anticancer evaluation and mechanisms of cytotoxic activity of novel 3-hydroxy-3-pyrrolin-2-ones bearing thenoyl fragment: DNA, BSA interactions and molecular docking study" in Bioorganic Chemistry, 88 (2019):102954,
https://doi.org/10.1016/j.bioorg.2019.102954 . .
1
21
9
20