Lazić, Emilija

Link to this page

Authority KeyName Variants
e72fdb2d-db78-4046-9d3a-35fa2a33345b
  • Lazić, Emilija (2)
Projects

Author's Bibliography

Prevalence of FA-D2 Rare Complementation Group of Fanconi Anemia in Serbia

Vujić, Dragana; Petrović, Sandra; Lazić, Emilija; Kuzmanović, Miloš; Leskovac, Andreja; Joksić, Ivana; Mićić, Dragan; Jovanović, Ankica; Zečević, Željko; Guć-Šćekić, Marija; Ćirković, Sanja; Joksić, Gordana

(2014)

TY  - JOUR
AU  - Vujić, Dragana
AU  - Petrović, Sandra
AU  - Lazić, Emilija
AU  - Kuzmanović, Miloš
AU  - Leskovac, Andreja
AU  - Joksić, Ivana
AU  - Mićić, Dragan
AU  - Jovanović, Ankica
AU  - Zečević, Željko
AU  - Guć-Šćekić, Marija
AU  - Ćirković, Sanja
AU  - Joksić, Gordana
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5928
AB  - To investigate genetic subtypes of inherited bone marrow failure syndrome Fanconi anemia (FA) in Sebia. FA-D2 subtype was found to be the most frequent genetic subtype among investigated FA patients; specific observations of FA-D2 phenotype are pointed out. Several biological endpoints of FA cells in vitro such as radiation-induced level of lymphocyte micronuclei (radiosensitivity), base line and radiation induced level of the DNA double strand breaks (DSBs), leukocyte apoptosis, and telomere capping function were assessed. The results indicate that all FA-D2 patients display radioresistant in vitro response, which is seen as significantly reduced yield of radiation-induced micronuclei. On the contrary, FA-A patients display radiosensitive in vitro response seen as increased number of radiation-induced micronuclei (MN). A massive elimination of irradiated cells via apoptosis is found in both FA-A and FA-D2 subtypes. In FA-A subtype apoptosis positively relates with the yield of radiation-induced MN, whereas in FA-D2 subtype apoptosis relates with a high percentage of cells carrying dysfunctional telomeres. The present results unequivocally demonstrate that cytokinesis-block micronucleus (CBMN) assay and analyses of telomere capping function can be used to distinguish FA-D2 and FA-A complementation groups. Considering all biological endpoints were analyzed, it can be concluded that all FA patients are radiosensitive, regardless of their complementation group. Thus, using CBMN test and telomere capping function analysis can discriminate FA-A from FA-D2 complementation groups, which could be important for assessment the conditioning regimens prior to bone marrow transplantation.
T2  - Indian Journal of Pediatrics
T1  - Prevalence of FA-D2 Rare Complementation Group of Fanconi Anemia in Serbia
VL  - 81
IS  - 3
SP  - 260
EP  - 265
DO  - 10.1007/s12098-013-1284-4
ER  - 
@article{
author = "Vujić, Dragana and Petrović, Sandra and Lazić, Emilija and Kuzmanović, Miloš and Leskovac, Andreja and Joksić, Ivana and Mićić, Dragan and Jovanović, Ankica and Zečević, Željko and Guć-Šćekić, Marija and Ćirković, Sanja and Joksić, Gordana",
year = "2014",
abstract = "To investigate genetic subtypes of inherited bone marrow failure syndrome Fanconi anemia (FA) in Sebia. FA-D2 subtype was found to be the most frequent genetic subtype among investigated FA patients; specific observations of FA-D2 phenotype are pointed out. Several biological endpoints of FA cells in vitro such as radiation-induced level of lymphocyte micronuclei (radiosensitivity), base line and radiation induced level of the DNA double strand breaks (DSBs), leukocyte apoptosis, and telomere capping function were assessed. The results indicate that all FA-D2 patients display radioresistant in vitro response, which is seen as significantly reduced yield of radiation-induced micronuclei. On the contrary, FA-A patients display radiosensitive in vitro response seen as increased number of radiation-induced micronuclei (MN). A massive elimination of irradiated cells via apoptosis is found in both FA-A and FA-D2 subtypes. In FA-A subtype apoptosis positively relates with the yield of radiation-induced MN, whereas in FA-D2 subtype apoptosis relates with a high percentage of cells carrying dysfunctional telomeres. The present results unequivocally demonstrate that cytokinesis-block micronucleus (CBMN) assay and analyses of telomere capping function can be used to distinguish FA-D2 and FA-A complementation groups. Considering all biological endpoints were analyzed, it can be concluded that all FA patients are radiosensitive, regardless of their complementation group. Thus, using CBMN test and telomere capping function analysis can discriminate FA-A from FA-D2 complementation groups, which could be important for assessment the conditioning regimens prior to bone marrow transplantation.",
journal = "Indian Journal of Pediatrics",
title = "Prevalence of FA-D2 Rare Complementation Group of Fanconi Anemia in Serbia",
volume = "81",
number = "3",
pages = "260-265",
doi = "10.1007/s12098-013-1284-4"
}
Vujić, D., Petrović, S., Lazić, E., Kuzmanović, M., Leskovac, A., Joksić, I., Mićić, D., Jovanović, A., Zečević, Ž., Guć-Šćekić, M., Ćirković, S.,& Joksić, G.. (2014). Prevalence of FA-D2 Rare Complementation Group of Fanconi Anemia in Serbia. in Indian Journal of Pediatrics, 81(3), 260-265.
https://doi.org/10.1007/s12098-013-1284-4
Vujić D, Petrović S, Lazić E, Kuzmanović M, Leskovac A, Joksić I, Mićić D, Jovanović A, Zečević Ž, Guć-Šćekić M, Ćirković S, Joksić G. Prevalence of FA-D2 Rare Complementation Group of Fanconi Anemia in Serbia. in Indian Journal of Pediatrics. 2014;81(3):260-265.
doi:10.1007/s12098-013-1284-4 .
Vujić, Dragana, Petrović, Sandra, Lazić, Emilija, Kuzmanović, Miloš, Leskovac, Andreja, Joksić, Ivana, Mićić, Dragan, Jovanović, Ankica, Zečević, Željko, Guć-Šćekić, Marija, Ćirković, Sanja, Joksić, Gordana, "Prevalence of FA-D2 Rare Complementation Group of Fanconi Anemia in Serbia" in Indian Journal of Pediatrics, 81, no. 3 (2014):260-265,
https://doi.org/10.1007/s12098-013-1284-4 . .
2
3
3

Regulation of glucose metabolism by insulin in cardiomyocytes

Sudar, Emina; Velebit, Jelena; Gluvić, Zoran; Lazić, Emilija; Isenović, Esma R.

(2007)

TY  - JOUR
AU  - Sudar, Emina
AU  - Velebit, Jelena
AU  - Gluvić, Zoran
AU  - Lazić, Emilija
AU  - Isenović, Esma R.
PY  - 2007
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10331
AB  - Cardiac function is improved during ischemia by stimulating glucose metabolism and subsequent decreasing of fatty acid (FA) oxidation. The impairment of heart glucose metabolism may contribute to the heart dysfunction and cardiomyopathy. Glucose transport is one of the first steps in insulin-stimulated glucose uptake. Glucose entry into cells is a process that requires the involvement of a carrier protein in order to facilitate the movement of glucose across the plasma membrane. In cardiomyocytes (CMY), insulin-stimulated glucose disposal is mediated via translocation of glucose transporters (GLUTs): GLUT4 and GLUT1. The major mechanism by which insulin regulates GLUT4 translocation and stimulation of glycogen synthesis in CMY is through activation of the protein kinase B (PKB) via phosphoinositol 3 kinase (PI3-K). In addition, insulin stimulates GLUT4 translocation and increases glucose uptake in CMY via PI3-K independent pathway by Cbl proto-oncoprotein phosphorylation. Combined activity of both pathways is required for GLUT4 translocation in CMY. Insulin independent pathways, like AMP-activated protein kinase (AMPK) pathway, also contributes to increased glucose uptake in CMY and PKB, and AMPK activity are inversely correlated during myocardial ischemia, although the influence of insulin on AMPK cardiac signaling would contradict previous observations. It has been reported that via PKB, insulin has an ability to inactivate AMPK. Inhibition of AMPK by insulin may be a contributory mechanism to the observation that cardiac FA oxidation is inhibited by insulin. Understanding how these two kinases interact at the molecular level in response to insulin may provide insights into how insulin is cardioprotective against ischemia.
AB  - Funkciju srca, tokom stanja ishemije, moguće je poboljšati stimulacijom metabolizma glukoze i usled toga nastalim smanjenjem oksidacije masnih kiselina (MK). Poremećaji u metabolizmu glukoze uzrokuju poremećaje u radu srca i dovode do kardiomiopatije. Transport glukoze u ćelije jedan je od prvih koraka u insulinom stimulisanom preuzimanju glukoze u ćelije srca-kardiomiocite (CMY). Insulinom stimulisan ulazak glukoze u ćelije odvija se uz pomoć proteina nosača koji olakšavaju transport glukoze kroz ćelijsku membranu i oni su identifikovani kao glukozni transporteri (GLUT). U CMY lokalizovani su GLUT1 i GLUT4. Insulinom stimulisano preuzimanje glukoze i sinteza glikogena u CMY, uglavnom se odvijaju signalnim putem, koji uključuje aktivaciju protein kinaze B (PKB) preko fosfoinozitol 3 kinaze (PI3K). Takođe, insulin stimuliše translokaciju GLUT4 u CMY signalnim putem pomoću fosforilacije Cbl proto-onkoproteina. Aktivnost oba signalna puta neophodna je za translokaciju GLUT4 u CMY. Insulin nezavisni put, takodje je uključen u transport glukoze u CMY. On se ostvaruje preko aktivacije AMP-om aktivirane protein kinaze (AMPK), koju inaktiviše insulinom aktivirana PKB, što dovodi do inhibicije oksidacije MK u CMY. Aktivnosti enzima PKB i AMPK su u inverznoj relaciji tokom ishemije srca. Rasvetljavanje molekularnog mehanizma interakcije AMPK i PKB pod delovanjem insulina u CMY doprineće objašnjenju protektivne uloge insulina u procesima ishemije srca.
T2  - Acta Facultatis Medicae Naissensis
T1  - Regulation of glucose metabolism by insulin in cardiomyocytes
T1  - Regulacija metabolizma glukoze insulinom u kardiomiocitima
VL  - 24
IS  - 1
SP  - 41
EP  - 44
UR  - https://hdl.handle.net/21.15107/rcub_vinar_10331
ER  - 
@article{
author = "Sudar, Emina and Velebit, Jelena and Gluvić, Zoran and Lazić, Emilija and Isenović, Esma R.",
year = "2007",
abstract = "Cardiac function is improved during ischemia by stimulating glucose metabolism and subsequent decreasing of fatty acid (FA) oxidation. The impairment of heart glucose metabolism may contribute to the heart dysfunction and cardiomyopathy. Glucose transport is one of the first steps in insulin-stimulated glucose uptake. Glucose entry into cells is a process that requires the involvement of a carrier protein in order to facilitate the movement of glucose across the plasma membrane. In cardiomyocytes (CMY), insulin-stimulated glucose disposal is mediated via translocation of glucose transporters (GLUTs): GLUT4 and GLUT1. The major mechanism by which insulin regulates GLUT4 translocation and stimulation of glycogen synthesis in CMY is through activation of the protein kinase B (PKB) via phosphoinositol 3 kinase (PI3-K). In addition, insulin stimulates GLUT4 translocation and increases glucose uptake in CMY via PI3-K independent pathway by Cbl proto-oncoprotein phosphorylation. Combined activity of both pathways is required for GLUT4 translocation in CMY. Insulin independent pathways, like AMP-activated protein kinase (AMPK) pathway, also contributes to increased glucose uptake in CMY and PKB, and AMPK activity are inversely correlated during myocardial ischemia, although the influence of insulin on AMPK cardiac signaling would contradict previous observations. It has been reported that via PKB, insulin has an ability to inactivate AMPK. Inhibition of AMPK by insulin may be a contributory mechanism to the observation that cardiac FA oxidation is inhibited by insulin. Understanding how these two kinases interact at the molecular level in response to insulin may provide insights into how insulin is cardioprotective against ischemia., Funkciju srca, tokom stanja ishemije, moguće je poboljšati stimulacijom metabolizma glukoze i usled toga nastalim smanjenjem oksidacije masnih kiselina (MK). Poremećaji u metabolizmu glukoze uzrokuju poremećaje u radu srca i dovode do kardiomiopatije. Transport glukoze u ćelije jedan je od prvih koraka u insulinom stimulisanom preuzimanju glukoze u ćelije srca-kardiomiocite (CMY). Insulinom stimulisan ulazak glukoze u ćelije odvija se uz pomoć proteina nosača koji olakšavaju transport glukoze kroz ćelijsku membranu i oni su identifikovani kao glukozni transporteri (GLUT). U CMY lokalizovani su GLUT1 i GLUT4. Insulinom stimulisano preuzimanje glukoze i sinteza glikogena u CMY, uglavnom se odvijaju signalnim putem, koji uključuje aktivaciju protein kinaze B (PKB) preko fosfoinozitol 3 kinaze (PI3K). Takođe, insulin stimuliše translokaciju GLUT4 u CMY signalnim putem pomoću fosforilacije Cbl proto-onkoproteina. Aktivnost oba signalna puta neophodna je za translokaciju GLUT4 u CMY. Insulin nezavisni put, takodje je uključen u transport glukoze u CMY. On se ostvaruje preko aktivacije AMP-om aktivirane protein kinaze (AMPK), koju inaktiviše insulinom aktivirana PKB, što dovodi do inhibicije oksidacije MK u CMY. Aktivnosti enzima PKB i AMPK su u inverznoj relaciji tokom ishemije srca. Rasvetljavanje molekularnog mehanizma interakcije AMPK i PKB pod delovanjem insulina u CMY doprineće objašnjenju protektivne uloge insulina u procesima ishemije srca.",
journal = "Acta Facultatis Medicae Naissensis",
title = "Regulation of glucose metabolism by insulin in cardiomyocytes, Regulacija metabolizma glukoze insulinom u kardiomiocitima",
volume = "24",
number = "1",
pages = "41-44",
url = "https://hdl.handle.net/21.15107/rcub_vinar_10331"
}
Sudar, E., Velebit, J., Gluvić, Z., Lazić, E.,& Isenović, E. R.. (2007). Regulation of glucose metabolism by insulin in cardiomyocytes. in Acta Facultatis Medicae Naissensis, 24(1), 41-44.
https://hdl.handle.net/21.15107/rcub_vinar_10331
Sudar E, Velebit J, Gluvić Z, Lazić E, Isenović ER. Regulation of glucose metabolism by insulin in cardiomyocytes. in Acta Facultatis Medicae Naissensis. 2007;24(1):41-44.
https://hdl.handle.net/21.15107/rcub_vinar_10331 .
Sudar, Emina, Velebit, Jelena, Gluvić, Zoran, Lazić, Emilija, Isenović, Esma R., "Regulation of glucose metabolism by insulin in cardiomyocytes" in Acta Facultatis Medicae Naissensis, 24, no. 1 (2007):41-44,
https://hdl.handle.net/21.15107/rcub_vinar_10331 .