Dimić, Ivana

Link to this page

Authority KeyName Variants
orcid::0000-0001-5079-5049
  • Dimić, Ivana (4)
  • Dimić, Ivana (1)
Projects

Author's Bibliography

Corrosion Resistance of High Pressure Torsion Obtained Commercially Pure Titanium in Acidic Solution

Barjaktarević, Dragana R.; Dimić, Ivana ; Cvijović-Alagić, Ivana; Veljović, Đorđe N.; Rakin, Marko P.

(2017)

TY  - JOUR
AU  - Barjaktarević, Dragana R.
AU  - Dimić, Ivana 
AU  - Cvijović-Alagić, Ivana
AU  - Veljović, Đorđe N.
AU  - Rakin, Marko P.
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1854
AB  - The enhancement of commercially pure titanium (cpTi) mechanical properties, which is required for its medical application, can be achieved by grain refinement obtained by severe plastic deformation. In addition to mechanical properties improvement, excellent corrosion resistance of ultrafine-grained (UFG) cpTi in contact with human body fluids is required. Therefore, the aim of this study was to estimate electrochemical behavior of UFG cpTi obtained by high pressure torsion (HPT) under a pressure of 7,8 GPa at room temperature and up to 5 rotations. Electrochemical measurements were performed in artificial saliva at 37 degrees C in order to simulate oral environment, since development of UFG cpTi is primarily aimed for dental implant applications. Electrochemical behavior of UFG cpTi was investigated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The obtained results indicate that HPT process, through significant grain size reduction, increases corrosion resistance of cpTi.
T2  - Tehnički vjesnik - Technical Gazette
T1  - Corrosion Resistance of High Pressure Torsion Obtained Commercially Pure Titanium in Acidic Solution
VL  - 24
IS  - 6
SP  - 1689
EP  - 1695
DO  - 10.17559/TV-20160303141534
ER  - 
@article{
author = "Barjaktarević, Dragana R. and Dimić, Ivana  and Cvijović-Alagić, Ivana and Veljović, Đorđe N. and Rakin, Marko P.",
year = "2017",
abstract = "The enhancement of commercially pure titanium (cpTi) mechanical properties, which is required for its medical application, can be achieved by grain refinement obtained by severe plastic deformation. In addition to mechanical properties improvement, excellent corrosion resistance of ultrafine-grained (UFG) cpTi in contact with human body fluids is required. Therefore, the aim of this study was to estimate electrochemical behavior of UFG cpTi obtained by high pressure torsion (HPT) under a pressure of 7,8 GPa at room temperature and up to 5 rotations. Electrochemical measurements were performed in artificial saliva at 37 degrees C in order to simulate oral environment, since development of UFG cpTi is primarily aimed for dental implant applications. Electrochemical behavior of UFG cpTi was investigated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The obtained results indicate that HPT process, through significant grain size reduction, increases corrosion resistance of cpTi.",
journal = "Tehnički vjesnik - Technical Gazette",
title = "Corrosion Resistance of High Pressure Torsion Obtained Commercially Pure Titanium in Acidic Solution",
volume = "24",
number = "6",
pages = "1689-1695",
doi = "10.17559/TV-20160303141534"
}
Barjaktarević, D. R., Dimić, I., Cvijović-Alagić, I., Veljović, Đ. N.,& Rakin, M. P.. (2017). Corrosion Resistance of High Pressure Torsion Obtained Commercially Pure Titanium in Acidic Solution. in Tehnički vjesnik - Technical Gazette, 24(6), 1689-1695.
https://doi.org/10.17559/TV-20160303141534
Barjaktarević DR, Dimić I, Cvijović-Alagić I, Veljović ĐN, Rakin MP. Corrosion Resistance of High Pressure Torsion Obtained Commercially Pure Titanium in Acidic Solution. in Tehnički vjesnik - Technical Gazette. 2017;24(6):1689-1695.
doi:10.17559/TV-20160303141534 .
Barjaktarević, Dragana R., Dimić, Ivana , Cvijović-Alagić, Ivana, Veljović, Đorđe N., Rakin, Marko P., "Corrosion Resistance of High Pressure Torsion Obtained Commercially Pure Titanium in Acidic Solution" in Tehnički vjesnik - Technical Gazette, 24, no. 6 (2017):1689-1695,
https://doi.org/10.17559/TV-20160303141534 . .
6
3
6

Anodization of Ti-Based Materials for Biomedical Applications: a Review

Barjaktarević, Dragana R.; Cvijović-Alagić, Ivana; Dimić, Ivana; Đokić, Veljko R.; Rakin, Marko P.

(2016)

TY  - JOUR
AU  - Barjaktarević, Dragana R.
AU  - Cvijović-Alagić, Ivana
AU  - Dimić, Ivana
AU  - Đokić, Veljko R.
AU  - Rakin, Marko P.
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1709
AB  - Commercially pure titanium (cpTi) and titanium alloys are the most commonly used metallic biomaterials. Biomedical requirements for the successful usage of metallic implant materials include their high mechanical strength, low elastic modulus, excellent biocompatibility and high corrosion resistance. It is evident that the response of a biomaterial implanted into the human body depends entirely on its biocompatibility and surface properties. Therefore, in order to improve the performance of biomaterials in biological systems modification of their surface is necessary. One of most commonly used method of implant materials surface modification is electrochemical anodization and this method is reviewed in the present work. Aim of the presented review article is to explain the electrochemical anodization process and the way in which the nanotubes are formed by anodization on the metallic material surface. Influence of anodizing parameters on the nanotubes characteristics, such as nanotube diameter, length and nanotubular layer thickness, are described, as well as the anodized nanotubes influence on the material surface properties, corrosion resistance and biocompatibility.
T2  - Metallurgical and Materials Engineering
T1  - Anodization of Ti-Based Materials for Biomedical Applications: a Review
VL  - 22
IS  - 3
SP  - 129
EP  - 143
DO  - 10.30544/209
UR  - https://hdl.handle.net/21.15107/rcub_vinar_1709
ER  - 
@article{
author = "Barjaktarević, Dragana R. and Cvijović-Alagić, Ivana and Dimić, Ivana and Đokić, Veljko R. and Rakin, Marko P.",
year = "2016",
abstract = "Commercially pure titanium (cpTi) and titanium alloys are the most commonly used metallic biomaterials. Biomedical requirements for the successful usage of metallic implant materials include their high mechanical strength, low elastic modulus, excellent biocompatibility and high corrosion resistance. It is evident that the response of a biomaterial implanted into the human body depends entirely on its biocompatibility and surface properties. Therefore, in order to improve the performance of biomaterials in biological systems modification of their surface is necessary. One of most commonly used method of implant materials surface modification is electrochemical anodization and this method is reviewed in the present work. Aim of the presented review article is to explain the electrochemical anodization process and the way in which the nanotubes are formed by anodization on the metallic material surface. Influence of anodizing parameters on the nanotubes characteristics, such as nanotube diameter, length and nanotubular layer thickness, are described, as well as the anodized nanotubes influence on the material surface properties, corrosion resistance and biocompatibility.",
journal = "Metallurgical and Materials Engineering",
title = "Anodization of Ti-Based Materials for Biomedical Applications: a Review",
volume = "22",
number = "3",
pages = "129-143",
doi = "10.30544/209",
url = "https://hdl.handle.net/21.15107/rcub_vinar_1709"
}
Barjaktarević, D. R., Cvijović-Alagić, I., Dimić, I., Đokić, V. R.,& Rakin, M. P.. (2016). Anodization of Ti-Based Materials for Biomedical Applications: a Review. in Metallurgical and Materials Engineering, 22(3), 129-143.
https://doi.org/10.30544/209
https://hdl.handle.net/21.15107/rcub_vinar_1709
Barjaktarević DR, Cvijović-Alagić I, Dimić I, Đokić VR, Rakin MP. Anodization of Ti-Based Materials for Biomedical Applications: a Review. in Metallurgical and Materials Engineering. 2016;22(3):129-143.
doi:10.30544/209
https://hdl.handle.net/21.15107/rcub_vinar_1709 .
Barjaktarević, Dragana R., Cvijović-Alagić, Ivana, Dimić, Ivana, Đokić, Veljko R., Rakin, Marko P., "Anodization of Ti-Based Materials for Biomedical Applications: a Review" in Metallurgical and Materials Engineering, 22, no. 3 (2016):129-143,
https://doi.org/10.30544/209 .,
https://hdl.handle.net/21.15107/rcub_vinar_1709 .
10
8

Microstructure and metallic ion release of pure titanium and Ti-13Nb-13Zr alloy processed by high pressure torsion

Dimić, Ivana ; Cvijović-Alagić, Ivana; Voelker, Bernhard; Hohenwarter, Anton; Pippan, Reinhard; Veljović, Đorđe N.; Rakin, Marko P.; Bugarski, Branko M.

(Elsevier, 2016)

TY  - JOUR
AU  - Dimić, Ivana 
AU  - Cvijović-Alagić, Ivana
AU  - Voelker, Bernhard
AU  - Hohenwarter, Anton
AU  - Pippan, Reinhard
AU  - Veljović, Đorđe N.
AU  - Rakin, Marko P.
AU  - Bugarski, Branko M.
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/871
AB  - Significant enhancement of mechanical properties of metallic biomaterials can be achieved by grain refinement obtained by severe plastic deformation. The purpose of this study was to determine metallic ion release from commercially pure titanium (CPTi) and Ti-13Nb-13Zr alloy processed by high pressure torsion (HPT). The materials microstructures, in the initial state and after HPT deformation, were examined by scanning and transmission electron microscopy. The microhardness was determined along the radius of the disc-shaped samples of ultrafine-grained (UFG) CPTi and Ti-13Nb-13Zr alloy in order to evaluate homogeneity of HPT-processed materials. The quantities of released ions were determined using inductively coupled plasma-mass spectrophotometer for samples immersed in artificial saliva at 37 degrees C for 7 days. Also, the effect of artificial saliva pH value on metallic ion release was estimated. Obtained results revealed that the quantities of released ions from UFG CPTi and Ti-13Nb-13Zr alloy obtained by HPT process were higher than the quantities of released ions from CPTi and Ti-13Nb-13Zr alloy produced by traditional casting. This behavior can be explained by the fact that metallic ions are easily released from microstructure with smaller grains achieved by HPT process. (C) 2015 Elsevier Ltd. All rights reserved.
PB  - Elsevier
T2  - Materials and Design
T1  - Microstructure and metallic ion release of pure titanium and Ti-13Nb-13Zr alloy processed by high pressure torsion
VL  - 91
SP  - 340
EP  - 347
DO  - 10.1016/j.matdes.2015.11.088
ER  - 
@article{
author = "Dimić, Ivana  and Cvijović-Alagić, Ivana and Voelker, Bernhard and Hohenwarter, Anton and Pippan, Reinhard and Veljović, Đorđe N. and Rakin, Marko P. and Bugarski, Branko M.",
year = "2016",
abstract = "Significant enhancement of mechanical properties of metallic biomaterials can be achieved by grain refinement obtained by severe plastic deformation. The purpose of this study was to determine metallic ion release from commercially pure titanium (CPTi) and Ti-13Nb-13Zr alloy processed by high pressure torsion (HPT). The materials microstructures, in the initial state and after HPT deformation, were examined by scanning and transmission electron microscopy. The microhardness was determined along the radius of the disc-shaped samples of ultrafine-grained (UFG) CPTi and Ti-13Nb-13Zr alloy in order to evaluate homogeneity of HPT-processed materials. The quantities of released ions were determined using inductively coupled plasma-mass spectrophotometer for samples immersed in artificial saliva at 37 degrees C for 7 days. Also, the effect of artificial saliva pH value on metallic ion release was estimated. Obtained results revealed that the quantities of released ions from UFG CPTi and Ti-13Nb-13Zr alloy obtained by HPT process were higher than the quantities of released ions from CPTi and Ti-13Nb-13Zr alloy produced by traditional casting. This behavior can be explained by the fact that metallic ions are easily released from microstructure with smaller grains achieved by HPT process. (C) 2015 Elsevier Ltd. All rights reserved.",
publisher = "Elsevier",
journal = "Materials and Design",
title = "Microstructure and metallic ion release of pure titanium and Ti-13Nb-13Zr alloy processed by high pressure torsion",
volume = "91",
pages = "340-347",
doi = "10.1016/j.matdes.2015.11.088"
}
Dimić, I., Cvijović-Alagić, I., Voelker, B., Hohenwarter, A., Pippan, R., Veljović, Đ. N., Rakin, M. P.,& Bugarski, B. M.. (2016). Microstructure and metallic ion release of pure titanium and Ti-13Nb-13Zr alloy processed by high pressure torsion. in Materials and Design
Elsevier., 91, 340-347.
https://doi.org/10.1016/j.matdes.2015.11.088
Dimić I, Cvijović-Alagić I, Voelker B, Hohenwarter A, Pippan R, Veljović ĐN, Rakin MP, Bugarski BM. Microstructure and metallic ion release of pure titanium and Ti-13Nb-13Zr alloy processed by high pressure torsion. in Materials and Design. 2016;91:340-347.
doi:10.1016/j.matdes.2015.11.088 .
Dimić, Ivana , Cvijović-Alagić, Ivana, Voelker, Bernhard, Hohenwarter, Anton, Pippan, Reinhard, Veljović, Đorđe N., Rakin, Marko P., Bugarski, Branko M., "Microstructure and metallic ion release of pure titanium and Ti-13Nb-13Zr alloy processed by high pressure torsion" in Materials and Design, 91 (2016):340-347,
https://doi.org/10.1016/j.matdes.2015.11.088 . .
44
35
45

In vitro biocompatibility assessment of Co-Cr-Mo dental cast alloy

Dimić, Ivana ; Cvijović-Alagić, Ivana; Obradović, Nataša; Petrović, Jelena; Putić, Slaviša S.; Rakin, Marko P.; Bugarski, Branko M.

(2015)

TY  - JOUR
AU  - Dimić, Ivana 
AU  - Cvijović-Alagić, Ivana
AU  - Obradović, Nataša
AU  - Petrović, Jelena
AU  - Putić, Slaviša S.
AU  - Rakin, Marko P.
AU  - Bugarski, Branko M.
PY  - 2015
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/870
AB  - Metallic materials, such as Co-Cr-Mo alloys, are exposed to aggressive conditions in the oral cavity that represents an ideal environment for metallic ion release and biodegradation. The metallic ions released from dental materials can cause local and/or systemic adverse effects in the human body. Therefore, dental materials are required to possess appropriate mechanical, physical, chemical and biological properties. The biocompatibility of metallic materials is very important for dental applications. Accordingly, the aim of this study was to examine metallic ion release and cytotoxicity of Co-30Cr-5Mo cast alloy as the initial phase of biocompatibility evaluation. Determination of the viability of human (MRC-5) and animal (L929) fibroblast cells were conducted using three in vitro test methods: the colorimetric methyl-thiazol-tetrazolium (MTT) test, the dye exclusion test (DET) and the agar diffusion test (ADT). Furthermore, the morphology and growth of the cells were analyzed using scanning electron microscopy (SEM). The obtained results indicated that Co-30Cr-5Mo alloy did not release harmful elements in concentrations high enough to have detrimental effects on human and animal fibroblasts under the given experimental conditions. Moreover, the fibroblast cells showed good adhesion on the surface of the Co-30Cr-5Mo alloy. Therefore, it could be concluded that Co-30Cr-5Mo alloy is a biocompatible material that could be safely used in dentistry.
T2  - Journal of the Serbian Chemical Society
T1  - In vitro biocompatibility assessment of Co-Cr-Mo dental cast alloy
VL  - 80
IS  - 12
SP  - 1541
EP  - 1552
DO  - 10.2298/JSC150505070M
ER  - 
@article{
author = "Dimić, Ivana  and Cvijović-Alagić, Ivana and Obradović, Nataša and Petrović, Jelena and Putić, Slaviša S. and Rakin, Marko P. and Bugarski, Branko M.",
year = "2015",
abstract = "Metallic materials, such as Co-Cr-Mo alloys, are exposed to aggressive conditions in the oral cavity that represents an ideal environment for metallic ion release and biodegradation. The metallic ions released from dental materials can cause local and/or systemic adverse effects in the human body. Therefore, dental materials are required to possess appropriate mechanical, physical, chemical and biological properties. The biocompatibility of metallic materials is very important for dental applications. Accordingly, the aim of this study was to examine metallic ion release and cytotoxicity of Co-30Cr-5Mo cast alloy as the initial phase of biocompatibility evaluation. Determination of the viability of human (MRC-5) and animal (L929) fibroblast cells were conducted using three in vitro test methods: the colorimetric methyl-thiazol-tetrazolium (MTT) test, the dye exclusion test (DET) and the agar diffusion test (ADT). Furthermore, the morphology and growth of the cells were analyzed using scanning electron microscopy (SEM). The obtained results indicated that Co-30Cr-5Mo alloy did not release harmful elements in concentrations high enough to have detrimental effects on human and animal fibroblasts under the given experimental conditions. Moreover, the fibroblast cells showed good adhesion on the surface of the Co-30Cr-5Mo alloy. Therefore, it could be concluded that Co-30Cr-5Mo alloy is a biocompatible material that could be safely used in dentistry.",
journal = "Journal of the Serbian Chemical Society",
title = "In vitro biocompatibility assessment of Co-Cr-Mo dental cast alloy",
volume = "80",
number = "12",
pages = "1541-1552",
doi = "10.2298/JSC150505070M"
}
Dimić, I., Cvijović-Alagić, I., Obradović, N., Petrović, J., Putić, S. S., Rakin, M. P.,& Bugarski, B. M.. (2015). In vitro biocompatibility assessment of Co-Cr-Mo dental cast alloy. in Journal of the Serbian Chemical Society, 80(12), 1541-1552.
https://doi.org/10.2298/JSC150505070M
Dimić I, Cvijović-Alagić I, Obradović N, Petrović J, Putić SS, Rakin MP, Bugarski BM. In vitro biocompatibility assessment of Co-Cr-Mo dental cast alloy. in Journal of the Serbian Chemical Society. 2015;80(12):1541-1552.
doi:10.2298/JSC150505070M .
Dimić, Ivana , Cvijović-Alagić, Ivana, Obradović, Nataša, Petrović, Jelena, Putić, Slaviša S., Rakin, Marko P., Bugarski, Branko M., "In vitro biocompatibility assessment of Co-Cr-Mo dental cast alloy" in Journal of the Serbian Chemical Society, 80, no. 12 (2015):1541-1552,
https://doi.org/10.2298/JSC150505070M . .
5
4
6

Metallic Ion Release from Biocompatible Cobalt-Based Alloy

Dimić, Ivana ; Cvijović-Alagić, Ivana; Kostic, Ivana T.; Perić-Grujić, Aleksandra A.; Rakin, Marko P.; Putić, Slaviša S.; Bugarski, Branko M.

(2014)

TY  - JOUR
AU  - Dimić, Ivana 
AU  - Cvijović-Alagić, Ivana
AU  - Kostic, Ivana T.
AU  - Perić-Grujić, Aleksandra A.
AU  - Rakin, Marko P.
AU  - Putić, Slaviša S.
AU  - Bugarski, Branko M.
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/310
AB  - Metallic biomaterials, which are mainly used for the damaged hard tissue replacements, are materials with high strength, excellent toughness and good wear resistance. The disadvantages of metals as implant materials are their susceptibility to corrosion, the elastic modulus mismatch between metals and human hard tissues, relatively high density and metallic ion release, which can cause serious health problems. The aim of this study was to examine metallic ion release from Co-Cr-Mo alloy in artificial saliva. In that purpose, alloy samples were immersed into artificial saliva with different pH values (4.0, 5.5 and 7.5). After a certain immersion period (1, 3 and 6 weeks) the concentrations of released ions were determined using inductively coupled plasma-mass spectrometry (ICP-MS). The research findings were used in order to define the dependence between the concentration of released metallic ions, artificial saliva pH values and immersion time. The determined released metallic ions concentrations were compared with literature data in order to describe and better understand the phenomenon of metallic ion release from the biocom-patible cobalt-based alloy.
AB  - Metalni biomaterijali, koji se najčešće koriste za zamenu oštećenih čvrstih tkiva u organizmu čoveka, su materijali velike čvrstoće, žilavosti i otpornosti prema habanju. Nedostaci metala, kao implantnih materijala, su njihova podložnost koroziji, neusklađenost modula elastičnosti metala i čvrstih ljudskih tkiva, velika gustina i otpuštanje metalnih jona koje može da izazove ozbiljne zdravstvene probleme. Cilj ovog rada je bio da se ispita otpuštanje metalnih jona iz Co-Cr-Mo legure u rastvoru veštačke pljuvačke. Uzorci legure su potopljeni u rastvor veštačke pljuvačke različite pH vrednosti (4,0, 5,5 i 7,5). Nakon određenog vremena izlaganja legure veštačkoj pljuvačci (1, 3 i 6 nedelja) određene su koncentracije otpuštenih jona primenom indukcije spregnute plazme sa masenom spektrometrijom (ICP-MS). Dobijeni rezultati su iskorišćeni u cilju definisanja zavisnosti između koncentracije otpuštenih jona, pH vrednosti veštačke pljuvačke i dužine potapanja legure u rastvor veštačke pljuvačke. Osim toga, utvrđene koncentracije otpuštenih metalnih jona iz ispitivane legure su upoređene sa podacima dostupnim u literaturi u cilju što boljeg opisivanja i razumevanja fenomena otpuštanja metalnih jona iz biokompatibilne Co-Cr-Mo legure.
T2  - Chemical Industry and Chemical Engineering Quarterly / CICEQ
T1  - Metallic Ion Release from Biocompatible Cobalt-Based Alloy
VL  - 20
IS  - 4
SP  - 571
EP  - 577
DO  - 10.2298/CICEQ130813039D
ER  - 
@article{
author = "Dimić, Ivana  and Cvijović-Alagić, Ivana and Kostic, Ivana T. and Perić-Grujić, Aleksandra A. and Rakin, Marko P. and Putić, Slaviša S. and Bugarski, Branko M.",
year = "2014",
abstract = "Metallic biomaterials, which are mainly used for the damaged hard tissue replacements, are materials with high strength, excellent toughness and good wear resistance. The disadvantages of metals as implant materials are their susceptibility to corrosion, the elastic modulus mismatch between metals and human hard tissues, relatively high density and metallic ion release, which can cause serious health problems. The aim of this study was to examine metallic ion release from Co-Cr-Mo alloy in artificial saliva. In that purpose, alloy samples were immersed into artificial saliva with different pH values (4.0, 5.5 and 7.5). After a certain immersion period (1, 3 and 6 weeks) the concentrations of released ions were determined using inductively coupled plasma-mass spectrometry (ICP-MS). The research findings were used in order to define the dependence between the concentration of released metallic ions, artificial saliva pH values and immersion time. The determined released metallic ions concentrations were compared with literature data in order to describe and better understand the phenomenon of metallic ion release from the biocom-patible cobalt-based alloy., Metalni biomaterijali, koji se najčešće koriste za zamenu oštećenih čvrstih tkiva u organizmu čoveka, su materijali velike čvrstoće, žilavosti i otpornosti prema habanju. Nedostaci metala, kao implantnih materijala, su njihova podložnost koroziji, neusklađenost modula elastičnosti metala i čvrstih ljudskih tkiva, velika gustina i otpuštanje metalnih jona koje može da izazove ozbiljne zdravstvene probleme. Cilj ovog rada je bio da se ispita otpuštanje metalnih jona iz Co-Cr-Mo legure u rastvoru veštačke pljuvačke. Uzorci legure su potopljeni u rastvor veštačke pljuvačke različite pH vrednosti (4,0, 5,5 i 7,5). Nakon određenog vremena izlaganja legure veštačkoj pljuvačci (1, 3 i 6 nedelja) određene su koncentracije otpuštenih jona primenom indukcije spregnute plazme sa masenom spektrometrijom (ICP-MS). Dobijeni rezultati su iskorišćeni u cilju definisanja zavisnosti između koncentracije otpuštenih jona, pH vrednosti veštačke pljuvačke i dužine potapanja legure u rastvor veštačke pljuvačke. Osim toga, utvrđene koncentracije otpuštenih metalnih jona iz ispitivane legure su upoređene sa podacima dostupnim u literaturi u cilju što boljeg opisivanja i razumevanja fenomena otpuštanja metalnih jona iz biokompatibilne Co-Cr-Mo legure.",
journal = "Chemical Industry and Chemical Engineering Quarterly / CICEQ",
title = "Metallic Ion Release from Biocompatible Cobalt-Based Alloy",
volume = "20",
number = "4",
pages = "571-577",
doi = "10.2298/CICEQ130813039D"
}
Dimić, I., Cvijović-Alagić, I., Kostic, I. T., Perić-Grujić, A. A., Rakin, M. P., Putić, S. S.,& Bugarski, B. M.. (2014). Metallic Ion Release from Biocompatible Cobalt-Based Alloy. in Chemical Industry and Chemical Engineering Quarterly / CICEQ, 20(4), 571-577.
https://doi.org/10.2298/CICEQ130813039D
Dimić I, Cvijović-Alagić I, Kostic IT, Perić-Grujić AA, Rakin MP, Putić SS, Bugarski BM. Metallic Ion Release from Biocompatible Cobalt-Based Alloy. in Chemical Industry and Chemical Engineering Quarterly / CICEQ. 2014;20(4):571-577.
doi:10.2298/CICEQ130813039D .
Dimić, Ivana , Cvijović-Alagić, Ivana, Kostic, Ivana T., Perić-Grujić, Aleksandra A., Rakin, Marko P., Putić, Slaviša S., Bugarski, Branko M., "Metallic Ion Release from Biocompatible Cobalt-Based Alloy" in Chemical Industry and Chemical Engineering Quarterly / CICEQ, 20, no. 4 (2014):571-577,
https://doi.org/10.2298/CICEQ130813039D . .
8
3
7