Lukić, Miodrag

Link to this page

Authority KeyName Variants
ac096133-c642-4e8c-9c85-5f8beea868b8
  • Lukić, Miodrag (1)
Projects

Author's Bibliography

Study of milling time impact on hydrogen desorption from LiAlH4-Fe2O3 composites

Milanović, Igor; Milošević Govedarović, Sanja S.; Lukić, Miodrag; Jovanović, Zoran; Rmuš, Jelena; Mitrović-Rajić, Anđela; Grbović-Novaković, Jasmina; Kurko, Sandra V.

(2022)

TY  - JOUR
AU  - Milanović, Igor
AU  - Milošević Govedarović, Sanja S.
AU  - Lukić, Miodrag
AU  - Jovanović, Zoran
AU  - Rmuš, Jelena
AU  - Mitrović-Rajić, Anđela
AU  - Grbović-Novaković, Jasmina
AU  - Kurko, Sandra V.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10504
AB  - LiAlH4 was modified by mechanical milling and with the addition of 5 wt.% Fe2O3 in order to improve its hydrogen desorption properties. The composite was milled for 1, 3, 5, 7 or 15min, and depending on the milling time, various phenomena took place. Up to a milling time of 5min, the particle size of the composite decreases. Further milling leads to the particles agglomeration reaching the size of the starting material after 15min. Moreover, the mechanical milling process leads to the transformation of AlH - 4 to AlH 3 - 6 structure as a result of partial hydrogen desorption. Hydrogen desorption during the milling is the most pronounced in the sample milled for 15min, so this sample has only one hydrogen desorption peak in the temperature-programmed desorption measurements.Mechanical milling with the addition of Fe2O3 for up to 15min improves LiAlH4 hydrogen desorption properties as hydrogen desorption temperature and apparent activation energies decrease.
T2  - Processing and Application of Ceramics
T1  - Study of milling time impact on hydrogen desorption from LiAlH4-Fe2O3 composites
VL  - 16
IS  - 3
SP  - 259
EP  - 266
DO  - 10.2298/PAC2203259M
ER  - 
@article{
author = "Milanović, Igor and Milošević Govedarović, Sanja S. and Lukić, Miodrag and Jovanović, Zoran and Rmuš, Jelena and Mitrović-Rajić, Anđela and Grbović-Novaković, Jasmina and Kurko, Sandra V.",
year = "2022",
abstract = "LiAlH4 was modified by mechanical milling and with the addition of 5 wt.% Fe2O3 in order to improve its hydrogen desorption properties. The composite was milled for 1, 3, 5, 7 or 15min, and depending on the milling time, various phenomena took place. Up to a milling time of 5min, the particle size of the composite decreases. Further milling leads to the particles agglomeration reaching the size of the starting material after 15min. Moreover, the mechanical milling process leads to the transformation of AlH - 4 to AlH 3 - 6 structure as a result of partial hydrogen desorption. Hydrogen desorption during the milling is the most pronounced in the sample milled for 15min, so this sample has only one hydrogen desorption peak in the temperature-programmed desorption measurements.Mechanical milling with the addition of Fe2O3 for up to 15min improves LiAlH4 hydrogen desorption properties as hydrogen desorption temperature and apparent activation energies decrease.",
journal = "Processing and Application of Ceramics",
title = "Study of milling time impact on hydrogen desorption from LiAlH4-Fe2O3 composites",
volume = "16",
number = "3",
pages = "259-266",
doi = "10.2298/PAC2203259M"
}
Milanović, I., Milošević Govedarović, S. S., Lukić, M., Jovanović, Z., Rmuš, J., Mitrović-Rajić, A., Grbović-Novaković, J.,& Kurko, S. V.. (2022). Study of milling time impact on hydrogen desorption from LiAlH4-Fe2O3 composites. in Processing and Application of Ceramics, 16(3), 259-266.
https://doi.org/10.2298/PAC2203259M
Milanović I, Milošević Govedarović SS, Lukić M, Jovanović Z, Rmuš J, Mitrović-Rajić A, Grbović-Novaković J, Kurko SV. Study of milling time impact on hydrogen desorption from LiAlH4-Fe2O3 composites. in Processing and Application of Ceramics. 2022;16(3):259-266.
doi:10.2298/PAC2203259M .
Milanović, Igor, Milošević Govedarović, Sanja S., Lukić, Miodrag, Jovanović, Zoran, Rmuš, Jelena, Mitrović-Rajić, Anđela, Grbović-Novaković, Jasmina, Kurko, Sandra V., "Study of milling time impact on hydrogen desorption from LiAlH4-Fe2O3 composites" in Processing and Application of Ceramics, 16, no. 3 (2022):259-266,
https://doi.org/10.2298/PAC2203259M . .
1
1