Fecht, Hans

Link to this page

Authority KeyName Variants
68a2beed-0948-4323-8742-a0f86bb66e19
  • Fecht, Hans (1)
Projects

Author's Bibliography

Microstructure of Epoxy-Based Composites: Fractal Nature Analysis †

Stajčić, Ivana; Stajčić, Aleksandar; Serpa, Cristina; Vasiljević-Radović, Dana; Ranđelović, Branislav; Radojević, Vesna; Fecht, Hans

(2022)

TY  - JOUR
AU  - Stajčić, Ivana
AU  - Stajčić, Aleksandar
AU  - Serpa, Cristina
AU  - Vasiljević-Radović, Dana
AU  - Ranđelović, Branislav
AU  - Radojević, Vesna
AU  - Fecht, Hans
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10576
AB  - Polymers and polymer matrix composites are commonly used materials with applications extending from packaging materials to delicate electronic devices. Epoxy resins and fiber-reinforced epoxy-based composites have been used as adhesives and construction parts. Fractal analysis has been recognized in materials science as a valuable tool for the microstructural characterization of composites by connecting fractal characteristics with composites’ functional properties. In this study, fractal reconstructions of different microstructural shapes in an epoxy-based composite were performed on field emission scanning electron microscopy (FESEM) images. These images were of glass fiber reinforced epoxy as well as a hybrid composite containing both glass and electrospun polystyrene fibers in an epoxy matrix. Fractal reconstruction enables the identification of self-similarity in the fractal structure, which represents a novelty in analyzing the fractal properties of materials. Fractal Real Finder software, based on the mathematical affine fractal regression model, was employed to reconstruct different microstructure shapes and calculate fractal dimensions to develop a method of predicting the optimal structure–property relations in composite materials in the future.
T2  - Fractal and Fractional
T1  - Microstructure of Epoxy-Based Composites: Fractal Nature Analysis †
VL  - 6
IS  - 12
SP  - 741
DO  - 10.3390/fractalfract6120741
ER  - 
@article{
author = "Stajčić, Ivana and Stajčić, Aleksandar and Serpa, Cristina and Vasiljević-Radović, Dana and Ranđelović, Branislav and Radojević, Vesna and Fecht, Hans",
year = "2022",
abstract = "Polymers and polymer matrix composites are commonly used materials with applications extending from packaging materials to delicate electronic devices. Epoxy resins and fiber-reinforced epoxy-based composites have been used as adhesives and construction parts. Fractal analysis has been recognized in materials science as a valuable tool for the microstructural characterization of composites by connecting fractal characteristics with composites’ functional properties. In this study, fractal reconstructions of different microstructural shapes in an epoxy-based composite were performed on field emission scanning electron microscopy (FESEM) images. These images were of glass fiber reinforced epoxy as well as a hybrid composite containing both glass and electrospun polystyrene fibers in an epoxy matrix. Fractal reconstruction enables the identification of self-similarity in the fractal structure, which represents a novelty in analyzing the fractal properties of materials. Fractal Real Finder software, based on the mathematical affine fractal regression model, was employed to reconstruct different microstructure shapes and calculate fractal dimensions to develop a method of predicting the optimal structure–property relations in composite materials in the future.",
journal = "Fractal and Fractional",
title = "Microstructure of Epoxy-Based Composites: Fractal Nature Analysis †",
volume = "6",
number = "12",
pages = "741",
doi = "10.3390/fractalfract6120741"
}
Stajčić, I., Stajčić, A., Serpa, C., Vasiljević-Radović, D., Ranđelović, B., Radojević, V.,& Fecht, H.. (2022). Microstructure of Epoxy-Based Composites: Fractal Nature Analysis †. in Fractal and Fractional, 6(12), 741.
https://doi.org/10.3390/fractalfract6120741
Stajčić I, Stajčić A, Serpa C, Vasiljević-Radović D, Ranđelović B, Radojević V, Fecht H. Microstructure of Epoxy-Based Composites: Fractal Nature Analysis †. in Fractal and Fractional. 2022;6(12):741.
doi:10.3390/fractalfract6120741 .
Stajčić, Ivana, Stajčić, Aleksandar, Serpa, Cristina, Vasiljević-Radović, Dana, Ranđelović, Branislav, Radojević, Vesna, Fecht, Hans, "Microstructure of Epoxy-Based Composites: Fractal Nature Analysis †" in Fractal and Fractional, 6, no. 12 (2022):741,
https://doi.org/10.3390/fractalfract6120741 . .
2
2