Rudonja, Nedzad R.

Link to this page

Authority KeyName Variants
39222964-4dfc-4306-8048-38497dd86a6d
  • Rudonja, Nedzad R. (2)
Projects

Author's Bibliography

Numerical simulation of latent heat storage with conductance enhancing fins

Rudonja, Nedzad R.; Komatina, Mirko S.; Antonijević, Dragi Lj.; Živković, Goran S.

(2016)

TY  - JOUR
AU  - Rudonja, Nedzad R.
AU  - Komatina, Mirko S.
AU  - Antonijević, Dragi Lj.
AU  - Živković, Goran S.
PY  - 2016
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7151
AB  - Precise understanding of heat transfer processes inside the latent thermal energy storage exposed to different initial and boundary conditions is crucial for development of optimized design and operating features of similar devices. The paper presents 3D numerical study of phase change material heat storage in the shape of vertical cylinder reservoir with axially placed heat source/sink equipped with variable number of conductance enhancing longitudinal rectangular fins. As the principally important observed is the case of vertically variable heat flux supplied to the phase change material during the melting process. The numerical modeling is based on the physical model of the process and is being carried out by Fluent software that uses finite volume method for solving continuity, momentum and energy equations. The coupling between pressure and velocity is based on the Semi- Implicit Pressure- Linked Equation (SIMPLE) algorithm. The results of numerical simulations are verified through the comparison with the own experimental results. Exemplary results for characteristic heat storage geometries and boundary conditions are presented and analyzed in the paper.
T2  - Bulgarian Chemical Communications
T1  - Numerical simulation of latent heat storage with conductance enhancing fins
VL  - 48
SP  - 199
EP  - 205
ER  - 
@article{
author = "Rudonja, Nedzad R. and Komatina, Mirko S. and Antonijević, Dragi Lj. and Živković, Goran S.",
year = "2016",
abstract = "Precise understanding of heat transfer processes inside the latent thermal energy storage exposed to different initial and boundary conditions is crucial for development of optimized design and operating features of similar devices. The paper presents 3D numerical study of phase change material heat storage in the shape of vertical cylinder reservoir with axially placed heat source/sink equipped with variable number of conductance enhancing longitudinal rectangular fins. As the principally important observed is the case of vertically variable heat flux supplied to the phase change material during the melting process. The numerical modeling is based on the physical model of the process and is being carried out by Fluent software that uses finite volume method for solving continuity, momentum and energy equations. The coupling between pressure and velocity is based on the Semi- Implicit Pressure- Linked Equation (SIMPLE) algorithm. The results of numerical simulations are verified through the comparison with the own experimental results. Exemplary results for characteristic heat storage geometries and boundary conditions are presented and analyzed in the paper.",
journal = "Bulgarian Chemical Communications",
title = "Numerical simulation of latent heat storage with conductance enhancing fins",
volume = "48",
pages = "199-205"
}
Rudonja, N. R., Komatina, M. S., Antonijević, D. Lj.,& Živković, G. S.. (2016). Numerical simulation of latent heat storage with conductance enhancing fins. in Bulgarian Chemical Communications, 48, 199-205.
Rudonja NR, Komatina MS, Antonijević DL, Živković GS. Numerical simulation of latent heat storage with conductance enhancing fins. in Bulgarian Chemical Communications. 2016;48:199-205..
Rudonja, Nedzad R., Komatina, Mirko S., Antonijević, Dragi Lj., Živković, Goran S., "Numerical simulation of latent heat storage with conductance enhancing fins" in Bulgarian Chemical Communications, 48 (2016):199-205.

Heat Transfer Enhancement Through Pcm Thermal Storage By Use of Copper Fins

Rudonja, Nedzad R.; Komatina, Mirko S.; Živković, Goran S.; Antonijević, Dragi Lj.

(2016)

TY  - JOUR
AU  - Rudonja, Nedzad R.
AU  - Komatina, Mirko S.
AU  - Živković, Goran S.
AU  - Antonijević, Dragi Lj.
PY  - 2016
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1148
AB  - Enhancement of heat transfer over a cylinder shaped thermal energy storage filled by paraffin E53 by use of longitudinal rectangular copper fins was analyzed. The thermo-physical features of the storage material are determined in separate experiments and implemented to FLUENT software over user defined function. Advanced thermal storage geometry comprehension and optimization required introduction of a parameter suitable for the analysis of heat transfer enhancement, so the ratio of heat transfer surfaces as a factor was proposed and applied. It is revealed that increase of the ratio of heat transfer surfaces leads to the decrease of melting time and vice versa. Numerical analysis, employing the 3-D model built in Ansys software, observed storage reservoir geometries with variable number of longitudinal fins. The adjusted set of boundary conditions was carried out and both written in C language and implemented over user defined function in order to define variable heat flux along the height of the heater. The comparison of acquired numerical and experimental results showed a strong correlation. Experimental validation of numerical results was done on the real thermal energy storage apparatus.
T2  - Thermal Science
T1  - Heat Transfer Enhancement Through Pcm Thermal Storage By Use of Copper Fins
VL  - 20
SP  - S251
EP  - S259
DO  - 10.2298/TSCI150729136R
ER  - 
@article{
author = "Rudonja, Nedzad R. and Komatina, Mirko S. and Živković, Goran S. and Antonijević, Dragi Lj.",
year = "2016",
abstract = "Enhancement of heat transfer over a cylinder shaped thermal energy storage filled by paraffin E53 by use of longitudinal rectangular copper fins was analyzed. The thermo-physical features of the storage material are determined in separate experiments and implemented to FLUENT software over user defined function. Advanced thermal storage geometry comprehension and optimization required introduction of a parameter suitable for the analysis of heat transfer enhancement, so the ratio of heat transfer surfaces as a factor was proposed and applied. It is revealed that increase of the ratio of heat transfer surfaces leads to the decrease of melting time and vice versa. Numerical analysis, employing the 3-D model built in Ansys software, observed storage reservoir geometries with variable number of longitudinal fins. The adjusted set of boundary conditions was carried out and both written in C language and implemented over user defined function in order to define variable heat flux along the height of the heater. The comparison of acquired numerical and experimental results showed a strong correlation. Experimental validation of numerical results was done on the real thermal energy storage apparatus.",
journal = "Thermal Science",
title = "Heat Transfer Enhancement Through Pcm Thermal Storage By Use of Copper Fins",
volume = "20",
pages = "S251-S259",
doi = "10.2298/TSCI150729136R"
}
Rudonja, N. R., Komatina, M. S., Živković, G. S.,& Antonijević, D. Lj.. (2016). Heat Transfer Enhancement Through Pcm Thermal Storage By Use of Copper Fins. in Thermal Science, 20, S251-S259.
https://doi.org/10.2298/TSCI150729136R
Rudonja NR, Komatina MS, Živković GS, Antonijević DL. Heat Transfer Enhancement Through Pcm Thermal Storage By Use of Copper Fins. in Thermal Science. 2016;20:S251-S259.
doi:10.2298/TSCI150729136R .
Rudonja, Nedzad R., Komatina, Mirko S., Živković, Goran S., Antonijević, Dragi Lj., "Heat Transfer Enhancement Through Pcm Thermal Storage By Use of Copper Fins" in Thermal Science, 20 (2016):S251-S259,
https://doi.org/10.2298/TSCI150729136R . .
3
5