Gundogdu, Sinan

Link to this page

Authority KeyName Variants
dae6e59e-8ab1-499a-af62-e4035225547d
  • Gundogdu, Sinan (2)

Author's Bibliography

Nonlinear compact localized modes in flux-dressed octagonal-diamond lattice

Stojanović, Mirjana G.; Gundogdu, Sinan; Leykam, Daniel; Angelakis, Dimitris G.; Stojanović Krasić, Marija; Stepić, Milutin; Maluckov, Aleksandra

(2022)

TY  - JOUR
AU  - Stojanović, Mirjana G.
AU  - Gundogdu, Sinan
AU  - Leykam, Daniel
AU  - Angelakis, Dimitris G.
AU  - Stojanović Krasić, Marija
AU  - Stepić, Milutin
AU  - Maluckov, Aleksandra
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10197
AB  - Tuning the values of artificial flux in the two-dimensional octagonal-diamond lattice drives topological phase transitions, including between singular and non-singular flatbands. We study the dynamical properties of nonlinear compact localized modes that can be continued from linear flatband modes. We show how the stability of the compact localized modes can be tuned by the nonlinearity strength or the applied artificial flux. Our model can be realized using ring resonator lattices or nonlinear waveguide arrays.
T2  - Physica Scripta
T1  - Nonlinear compact localized modes in flux-dressed octagonal-diamond lattice
VL  - 97
IS  - 3
SP  - 030006
DO  - 10.1088/1402-4896/ac5357
ER  - 
@article{
author = "Stojanović, Mirjana G. and Gundogdu, Sinan and Leykam, Daniel and Angelakis, Dimitris G. and Stojanović Krasić, Marija and Stepić, Milutin and Maluckov, Aleksandra",
year = "2022",
abstract = "Tuning the values of artificial flux in the two-dimensional octagonal-diamond lattice drives topological phase transitions, including between singular and non-singular flatbands. We study the dynamical properties of nonlinear compact localized modes that can be continued from linear flatband modes. We show how the stability of the compact localized modes can be tuned by the nonlinearity strength or the applied artificial flux. Our model can be realized using ring resonator lattices or nonlinear waveguide arrays.",
journal = "Physica Scripta",
title = "Nonlinear compact localized modes in flux-dressed octagonal-diamond lattice",
volume = "97",
number = "3",
pages = "030006",
doi = "10.1088/1402-4896/ac5357"
}
Stojanović, M. G., Gundogdu, S., Leykam, D., Angelakis, D. G., Stojanović Krasić, M., Stepić, M.,& Maluckov, A.. (2022). Nonlinear compact localized modes in flux-dressed octagonal-diamond lattice. in Physica Scripta, 97(3), 030006.
https://doi.org/10.1088/1402-4896/ac5357
Stojanović MG, Gundogdu S, Leykam D, Angelakis DG, Stojanović Krasić M, Stepić M, Maluckov A. Nonlinear compact localized modes in flux-dressed octagonal-diamond lattice. in Physica Scripta. 2022;97(3):030006.
doi:10.1088/1402-4896/ac5357 .
Stojanović, Mirjana G., Gundogdu, Sinan, Leykam, Daniel, Angelakis, Dimitris G., Stojanović Krasić, Marija, Stepić, Milutin, Maluckov, Aleksandra, "Nonlinear compact localized modes in flux-dressed octagonal-diamond lattice" in Physica Scripta, 97, no. 3 (2022):030006,
https://doi.org/10.1088/1402-4896/ac5357 . .
1

Nonlinear Bloch wave dynamics in photonic Aharonov–Bohm cages

Chang, Nana; Gundogdu, Sinan; Leykam, Daniel; Angelakis, Dimitris G.; Kou, SuPeng; Flach, Sergej; Maluckov, Aleksandra

(2021)

TY  - JOUR
AU  - Chang, Nana
AU  - Gundogdu, Sinan
AU  - Leykam, Daniel
AU  - Angelakis, Dimitris G.
AU  - Kou, SuPeng
AU  - Flach, Sergej
AU  - Maluckov, Aleksandra
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9141
AB  - We study the properties of nonlinear Bloch waves in a diamond chain waveguide lattice in the presence of a synthetic magnetic flux. In the linear limit, the lattice exhibits a completely flat (wavevector k-independent) band structure, resulting in perfect wave localization, known as Aharonov-Bohm caging. We find that in the presence of nonlinearity, the Bloch waves become sensitive to k, exhibiting bifurcations and instabilities. Performing numerical beam propagation simulations using the tight-binding model, we show how the instabilities can result in either the spontaneous or controlled formation of localized modes, which are immobile and remain pinned in place due to the synthetic magnetic flux. © 2021 Author(s.
T2  - APL Photonics
T1  - Nonlinear Bloch wave dynamics in photonic Aharonov–Bohm cages
VL  - 6
IS  - 3
SP  - 030801
DO  - 10.1063/5.0037767
ER  - 
@article{
author = "Chang, Nana and Gundogdu, Sinan and Leykam, Daniel and Angelakis, Dimitris G. and Kou, SuPeng and Flach, Sergej and Maluckov, Aleksandra",
year = "2021",
abstract = "We study the properties of nonlinear Bloch waves in a diamond chain waveguide lattice in the presence of a synthetic magnetic flux. In the linear limit, the lattice exhibits a completely flat (wavevector k-independent) band structure, resulting in perfect wave localization, known as Aharonov-Bohm caging. We find that in the presence of nonlinearity, the Bloch waves become sensitive to k, exhibiting bifurcations and instabilities. Performing numerical beam propagation simulations using the tight-binding model, we show how the instabilities can result in either the spontaneous or controlled formation of localized modes, which are immobile and remain pinned in place due to the synthetic magnetic flux. © 2021 Author(s.",
journal = "APL Photonics",
title = "Nonlinear Bloch wave dynamics in photonic Aharonov–Bohm cages",
volume = "6",
number = "3",
pages = "030801",
doi = "10.1063/5.0037767"
}
Chang, N., Gundogdu, S., Leykam, D., Angelakis, D. G., Kou, S., Flach, S.,& Maluckov, A.. (2021). Nonlinear Bloch wave dynamics in photonic Aharonov–Bohm cages. in APL Photonics, 6(3), 030801.
https://doi.org/10.1063/5.0037767
Chang N, Gundogdu S, Leykam D, Angelakis DG, Kou S, Flach S, Maluckov A. Nonlinear Bloch wave dynamics in photonic Aharonov–Bohm cages. in APL Photonics. 2021;6(3):030801.
doi:10.1063/5.0037767 .
Chang, Nana, Gundogdu, Sinan, Leykam, Daniel, Angelakis, Dimitris G., Kou, SuPeng, Flach, Sergej, Maluckov, Aleksandra, "Nonlinear Bloch wave dynamics in photonic Aharonov–Bohm cages" in APL Photonics, 6, no. 3 (2021):030801,
https://doi.org/10.1063/5.0037767 . .
1
2
1