Trišić, Dijana

Link to this page

Authority KeyName Variants
orcid::0000-0002-0650-8193
  • Trišić, Dijana (10)
  • Trišić, Dijana (1)
Projects

Author's Bibliography

Novel Nanocoated Nitinol Archwires With Antibacterial Properties

Ilić, Jana; Trišić, Dijana; Čolović, Božana; Ilić, Bojana; Filipović Tričković, Jelena

(European Orthodontic Society, 2023)

TY  - CONF
AU  - Ilić, Jana
AU  - Trišić, Dijana
AU  - Čolović, Božana
AU  - Ilić, Bojana
AU  - Filipović Tričković, Jelena
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12812
AB  - Aim: The use of nitinol archwires (NiTi) in orthodontic treatment has expanded significantly due to unique
mechanical properties such as shape memory effect and superelasticity. The greatest barrier to safe
application of NiTi archwires is microbiologically or electrochemically induced corrosion. Corrosion of NiTi
archwires result in Ni2+ release, leading to different health implications. The purpose of this investigation is
the improvement of NiTi archwires properties by synthesis of multilayerd, firmly bonded nanocoatings with
antibacterial properties using the magnetron sputtering (MS). These nanocoatings will enhance corrosion
resistance and decrease cytotoxic properties by preventing Ni2+ release, without compromising mechanical
characteristics of the conventional NiTi archwires. Materials and Method: The nanocoatings of TiO2, TiN,
TiN+Cu were acquired by pulsed magnetron sputtering using the commercially available nickel-titanium
archwires. The samples were assessed using atomic force microscopy and X-ray diffraction. Inductively
coupled plasma - optical emission spectrometry was used to estimate the release of Ni, Ti, Cu, Fe, Cr, Zn
ions into DMEM and acidic solution. Biocompatibility of samples' eluates was investigated using Neutral red
staining. Disk Diffusion Method was used for assessing the antibacterial properties against bacterial
suspensions of Streptococcus mutans. Results: Compared to NiTi and stainless steel, the nonocoated
archwires showed statistically lower release of nickel both in DMEM and acidic environment (p<0.05).
Regarding the relative cell viability, the 7-day eluates of nanocoated archwires was the highest (p<0.05).
Antibacterial activity of nanocoated archwires was statistically significant in comparison to the conventional
NiTi and stainless steel archwires (p<0.05). Conclusions: As nanocoated archwires presented desired
antibacterial properties with better stability in both acidic and non-acidic conditions, as well as satisfactory biocompatibility, they may be a good candidate for further clinical investigations.
PB  - European Orthodontic Society
C3  - European Journal of Orthodontics
T1  - Novel Nanocoated Nitinol Archwires With Antibacterial Properties
VL  - 45
IS  - 6 - EOS2023 Abstracts
SP  - e162
EP  - e162
DO  - 10.1093/ejo/cjad072
ER  - 
@conference{
author = "Ilić, Jana and Trišić, Dijana and Čolović, Božana and Ilić, Bojana and Filipović Tričković, Jelena",
year = "2023",
abstract = "Aim: The use of nitinol archwires (NiTi) in orthodontic treatment has expanded significantly due to unique
mechanical properties such as shape memory effect and superelasticity. The greatest barrier to safe
application of NiTi archwires is microbiologically or electrochemically induced corrosion. Corrosion of NiTi
archwires result in Ni2+ release, leading to different health implications. The purpose of this investigation is
the improvement of NiTi archwires properties by synthesis of multilayerd, firmly bonded nanocoatings with
antibacterial properties using the magnetron sputtering (MS). These nanocoatings will enhance corrosion
resistance and decrease cytotoxic properties by preventing Ni2+ release, without compromising mechanical
characteristics of the conventional NiTi archwires. Materials and Method: The nanocoatings of TiO2, TiN,
TiN+Cu were acquired by pulsed magnetron sputtering using the commercially available nickel-titanium
archwires. The samples were assessed using atomic force microscopy and X-ray diffraction. Inductively
coupled plasma - optical emission spectrometry was used to estimate the release of Ni, Ti, Cu, Fe, Cr, Zn
ions into DMEM and acidic solution. Biocompatibility of samples' eluates was investigated using Neutral red
staining. Disk Diffusion Method was used for assessing the antibacterial properties against bacterial
suspensions of Streptococcus mutans. Results: Compared to NiTi and stainless steel, the nonocoated
archwires showed statistically lower release of nickel both in DMEM and acidic environment (p<0.05).
Regarding the relative cell viability, the 7-day eluates of nanocoated archwires was the highest (p<0.05).
Antibacterial activity of nanocoated archwires was statistically significant in comparison to the conventional
NiTi and stainless steel archwires (p<0.05). Conclusions: As nanocoated archwires presented desired
antibacterial properties with better stability in both acidic and non-acidic conditions, as well as satisfactory biocompatibility, they may be a good candidate for further clinical investigations.",
publisher = "European Orthodontic Society",
journal = "European Journal of Orthodontics",
title = "Novel Nanocoated Nitinol Archwires With Antibacterial Properties",
volume = "45",
number = "6 - EOS2023 Abstracts",
pages = "e162-e162",
doi = "10.1093/ejo/cjad072"
}
Ilić, J., Trišić, D., Čolović, B., Ilić, B.,& Filipović Tričković, J.. (2023). Novel Nanocoated Nitinol Archwires With Antibacterial Properties. in European Journal of Orthodontics
European Orthodontic Society., 45(6 - EOS2023 Abstracts), e162-e162.
https://doi.org/10.1093/ejo/cjad072
Ilić J, Trišić D, Čolović B, Ilić B, Filipović Tričković J. Novel Nanocoated Nitinol Archwires With Antibacterial Properties. in European Journal of Orthodontics. 2023;45(6 - EOS2023 Abstracts):e162-e162.
doi:10.1093/ejo/cjad072 .
Ilić, Jana, Trišić, Dijana, Čolović, Božana, Ilić, Bojana, Filipović Tričković, Jelena, "Novel Nanocoated Nitinol Archwires With Antibacterial Properties" in European Journal of Orthodontics, 45, no. 6 - EOS2023 Abstracts (2023):e162-e162,
https://doi.org/10.1093/ejo/cjad072 . .

Corrigendum: Developing a novel resorptive hydroxyapatite-based bone substitute for over-critical size defect reconstruction: Physicochemical and biological characterization and proof of concept in segmental rabbit's ulna reconstruction (Biomedical Engineering / Biomedizinische Technik 65:4 (491-505) DOI: 10.1515/bmt-2019-0218)

Micić, Milutin; Antonijević, Đorđe; Milutinović-Smiljanić, Sanja; Trišić, Dijana; Čolović, Božana M.; Kosanović, Dejana; Prokić, Bogomir Bolka; Vasić, Jugoslav; Živković, Slavoljub; Milašin, Jelena; Danilović, Vesna; Đurić, Marija P.; Jokanović, Vukoman R.

(2022)

TY  - JOUR
AU  - Micić, Milutin
AU  - Antonijević, Đorđe
AU  - Milutinović-Smiljanić, Sanja
AU  - Trišić, Dijana
AU  - Čolović, Božana M.
AU  - Kosanović, Dejana
AU  - Prokić, Bogomir Bolka
AU  - Vasić, Jugoslav
AU  - Živković, Slavoljub
AU  - Milašin, Jelena
AU  - Danilović, Vesna
AU  - Đurić, Marija P.
AU  - Jokanović, Vukoman R.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10363
AB  - Article Corrigendum to: Developing a novel resorptive hydroxyapatite-based bone substitute for over-critical size defect reconstruction: physicochemical and biological characterization and proof of concept in segmental rabbit’s ulna reconstruction was published on June 28, 2022 in the journal Biomedical Engineering / Biomedizinische Technik
T2  - Biomedical Engineering / Biomedizinische Technik
T1  - Corrigendum: Developing a novel resorptive hydroxyapatite-based bone substitute for over-critical size defect reconstruction: Physicochemical and biological characterization and proof of concept in segmental rabbit's ulna reconstruction (Biomedical Engineering / Biomedizinische Technik 65:4 (491-505) DOI: 10.1515/bmt-2019-0218)
DO  - 10.1515/bmt-2022-0188
ER  - 
@article{
author = "Micić, Milutin and Antonijević, Đorđe and Milutinović-Smiljanić, Sanja and Trišić, Dijana and Čolović, Božana M. and Kosanović, Dejana and Prokić, Bogomir Bolka and Vasić, Jugoslav and Živković, Slavoljub and Milašin, Jelena and Danilović, Vesna and Đurić, Marija P. and Jokanović, Vukoman R.",
year = "2022",
abstract = "Article Corrigendum to: Developing a novel resorptive hydroxyapatite-based bone substitute for over-critical size defect reconstruction: physicochemical and biological characterization and proof of concept in segmental rabbit’s ulna reconstruction was published on June 28, 2022 in the journal Biomedical Engineering / Biomedizinische Technik",
journal = "Biomedical Engineering / Biomedizinische Technik",
title = "Corrigendum: Developing a novel resorptive hydroxyapatite-based bone substitute for over-critical size defect reconstruction: Physicochemical and biological characterization and proof of concept in segmental rabbit's ulna reconstruction (Biomedical Engineering / Biomedizinische Technik 65:4 (491-505) DOI: 10.1515/bmt-2019-0218)",
doi = "10.1515/bmt-2022-0188"
}
Micić, M., Antonijević, Đ., Milutinović-Smiljanić, S., Trišić, D., Čolović, B. M., Kosanović, D., Prokić, B. B., Vasić, J., Živković, S., Milašin, J., Danilović, V., Đurić, M. P.,& Jokanović, V. R.. (2022). Corrigendum: Developing a novel resorptive hydroxyapatite-based bone substitute for over-critical size defect reconstruction: Physicochemical and biological characterization and proof of concept in segmental rabbit's ulna reconstruction (Biomedical Engineering / Biomedizinische Technik 65:4 (491-505) DOI: 10.1515/bmt-2019-0218). in Biomedical Engineering / Biomedizinische Technik.
https://doi.org/10.1515/bmt-2022-0188
Micić M, Antonijević Đ, Milutinović-Smiljanić S, Trišić D, Čolović BM, Kosanović D, Prokić BB, Vasić J, Živković S, Milašin J, Danilović V, Đurić MP, Jokanović VR. Corrigendum: Developing a novel resorptive hydroxyapatite-based bone substitute for over-critical size defect reconstruction: Physicochemical and biological characterization and proof of concept in segmental rabbit's ulna reconstruction (Biomedical Engineering / Biomedizinische Technik 65:4 (491-505) DOI: 10.1515/bmt-2019-0218). in Biomedical Engineering / Biomedizinische Technik. 2022;.
doi:10.1515/bmt-2022-0188 .
Micić, Milutin, Antonijević, Đorđe, Milutinović-Smiljanić, Sanja, Trišić, Dijana, Čolović, Božana M., Kosanović, Dejana, Prokić, Bogomir Bolka, Vasić, Jugoslav, Živković, Slavoljub, Milašin, Jelena, Danilović, Vesna, Đurić, Marija P., Jokanović, Vukoman R., "Corrigendum: Developing a novel resorptive hydroxyapatite-based bone substitute for over-critical size defect reconstruction: Physicochemical and biological characterization and proof of concept in segmental rabbit's ulna reconstruction (Biomedical Engineering / Biomedizinische Technik 65:4 (491-505) DOI: 10.1515/bmt-2019-0218)" in Biomedical Engineering / Biomedizinische Technik (2022),
https://doi.org/10.1515/bmt-2022-0188 . .

Influence of the addition of different radiopacifiers and bioactive nano-hydroxyapatite on physicochemical and biological properties of calcium silicate based endodontic ceramic

Antonijević, Đorđe; Despotović, Ana; Biočanin, Vladimir; Milošević, Miloš; Trišić, Dijana; Lazović, Vladimir M.; Zogović, Nevena; Milašin, Jelena; Ilić, Dragan V.

(2021)

TY  - JOUR
AU  - Antonijević, Đorđe
AU  - Despotović, Ana
AU  - Biočanin, Vladimir
AU  - Milošević, Miloš
AU  - Trišić, Dijana
AU  - Lazović, Vladimir M.
AU  - Zogović, Nevena
AU  - Milašin, Jelena
AU  - Ilić, Dragan V.
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9880
AB  - The purpose of this study was to investigate the influence of different radiopacifiers on the physicochemical and biological properties of novel calcium silicate based endodontic ceramic enriched with bioactive nano-particulated hydroxyapatite – ECHA. Namely, ECHA was used as a basis for mixing with the following radiopacifiers: strontium fluoride (SrF2), zirconium dioxide (ZrO2) and bismuth oxide (Bi2O3). For comparison, Portland cement (PC) and mineral trioxide aggregate (MTA) were used. The following physicochemical characteristics were examined: the radiopacity, setting time, compressive strength, porosity, wettability and pH value. The biocompatibility of the cements was assessed by crystal violet, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) and cell adhesion assays. The highest radiopacity was obtained for the ECHA + Bi2O3 mixture and MTA that were statistically significant in comparison to other materials (p < 0.05). Both initial and final setting times as well as compressive strengths were statistically lower for experimental cements than for PC and MTA (p < 0.05). The lowest total porosity was observed in the ECHA + ZrO2 group when compared with the other two experimental cements (p < 0.05), but not when compared with PC and MTA (p > 0.05). Experimental cements exhibited statistically higher contact angles of glycerol than PC and MTA (p < 0.05). For blood plasma, a statistical difference was found only between ECHA + Bi2O3 and PC (p < 0.05). All investigated materials had alkalization ability. Cell viability assays revealed that the extracts of tested cements did not exhibit cytotoxic effect on L929 cells. Scanning electron microscopy had shown a high degree of cell proliferation and adhesion of cells from apical papilla on experimental cements’ surfaces. Novel endodontic ceramics with nano-hydroxyapatite addition have satisfactory biological and physicochemical properties when compared to MTA and PC controls. Considerable lower setting time of experimental cements might present a huge advantage of these synthesized materials in clinical practice. SrF2 presents a novel promising radiopacifying agent for dental cements manufacturing.
T2  - Ceramics International
T1  - Influence of the addition of different radiopacifiers and bioactive nano-hydroxyapatite on physicochemical and biological properties of calcium silicate based endodontic ceramic
VL  - 47
IS  - 20
SP  - 28913
EP  - 28923
DO  - 10.1016/j.ceramint.2021.07.052
ER  - 
@article{
author = "Antonijević, Đorđe and Despotović, Ana and Biočanin, Vladimir and Milošević, Miloš and Trišić, Dijana and Lazović, Vladimir M. and Zogović, Nevena and Milašin, Jelena and Ilić, Dragan V.",
year = "2021",
abstract = "The purpose of this study was to investigate the influence of different radiopacifiers on the physicochemical and biological properties of novel calcium silicate based endodontic ceramic enriched with bioactive nano-particulated hydroxyapatite – ECHA. Namely, ECHA was used as a basis for mixing with the following radiopacifiers: strontium fluoride (SrF2), zirconium dioxide (ZrO2) and bismuth oxide (Bi2O3). For comparison, Portland cement (PC) and mineral trioxide aggregate (MTA) were used. The following physicochemical characteristics were examined: the radiopacity, setting time, compressive strength, porosity, wettability and pH value. The biocompatibility of the cements was assessed by crystal violet, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) and cell adhesion assays. The highest radiopacity was obtained for the ECHA + Bi2O3 mixture and MTA that were statistically significant in comparison to other materials (p < 0.05). Both initial and final setting times as well as compressive strengths were statistically lower for experimental cements than for PC and MTA (p < 0.05). The lowest total porosity was observed in the ECHA + ZrO2 group when compared with the other two experimental cements (p < 0.05), but not when compared with PC and MTA (p > 0.05). Experimental cements exhibited statistically higher contact angles of glycerol than PC and MTA (p < 0.05). For blood plasma, a statistical difference was found only between ECHA + Bi2O3 and PC (p < 0.05). All investigated materials had alkalization ability. Cell viability assays revealed that the extracts of tested cements did not exhibit cytotoxic effect on L929 cells. Scanning electron microscopy had shown a high degree of cell proliferation and adhesion of cells from apical papilla on experimental cements’ surfaces. Novel endodontic ceramics with nano-hydroxyapatite addition have satisfactory biological and physicochemical properties when compared to MTA and PC controls. Considerable lower setting time of experimental cements might present a huge advantage of these synthesized materials in clinical practice. SrF2 presents a novel promising radiopacifying agent for dental cements manufacturing.",
journal = "Ceramics International",
title = "Influence of the addition of different radiopacifiers and bioactive nano-hydroxyapatite on physicochemical and biological properties of calcium silicate based endodontic ceramic",
volume = "47",
number = "20",
pages = "28913-28923",
doi = "10.1016/j.ceramint.2021.07.052"
}
Antonijević, Đ., Despotović, A., Biočanin, V., Milošević, M., Trišić, D., Lazović, V. M., Zogović, N., Milašin, J.,& Ilić, D. V.. (2021). Influence of the addition of different radiopacifiers and bioactive nano-hydroxyapatite on physicochemical and biological properties of calcium silicate based endodontic ceramic. in Ceramics International, 47(20), 28913-28923.
https://doi.org/10.1016/j.ceramint.2021.07.052
Antonijević Đ, Despotović A, Biočanin V, Milošević M, Trišić D, Lazović VM, Zogović N, Milašin J, Ilić DV. Influence of the addition of different radiopacifiers and bioactive nano-hydroxyapatite on physicochemical and biological properties of calcium silicate based endodontic ceramic. in Ceramics International. 2021;47(20):28913-28923.
doi:10.1016/j.ceramint.2021.07.052 .
Antonijević, Đorđe, Despotović, Ana, Biočanin, Vladimir, Milošević, Miloš, Trišić, Dijana, Lazović, Vladimir M., Zogović, Nevena, Milašin, Jelena, Ilić, Dragan V., "Influence of the addition of different radiopacifiers and bioactive nano-hydroxyapatite on physicochemical and biological properties of calcium silicate based endodontic ceramic" in Ceramics International, 47, no. 20 (2021):28913-28923,
https://doi.org/10.1016/j.ceramint.2021.07.052 . .
9
2
7

Bactericidal and antioxidant bacterial cellulose hydrogels doped with chitosan as potential urinary tract infection biomedical agent

Zmejkoski, Danica; Marković, Zoran M.; Zdravković, Nemanja M.; Trišić, Dijana; Budimir, Milica; Kuzman, Sanja; Kozyrovska, Natalia O.; Orlovska, Iryna V.; Bugárová, Nikol; Petrović, Đorđe; Kováčová, Mária; Kleinová, Angela; Špitalský, Zdeno; Pavlović, Vladimir B.; Todorović-Marković, Biljana

(2021)

TY  - JOUR
AU  - Zmejkoski, Danica
AU  - Marković, Zoran M.
AU  - Zdravković, Nemanja M.
AU  - Trišić, Dijana
AU  - Budimir, Milica
AU  - Kuzman, Sanja
AU  - Kozyrovska, Natalia O.
AU  - Orlovska, Iryna V.
AU  - Bugárová, Nikol
AU  - Petrović, Đorđe
AU  - Kováčová, Mária
AU  - Kleinová, Angela
AU  - Špitalský, Zdeno
AU  - Pavlović, Vladimir B.
AU  - Todorović-Marković, Biljana
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9143
AB  - Therapy of bacterial urinary tract infections (UTIs) and catheter associated urinary tract infections (CAUTIs) is still a great challenge because of the resistance of bacteria to nowadays used antibiotics and encrustation of catheters. Bacterial cellulose (BC) as a biocompatible material with a high porosity allows incorporation of different materials in its three dimensional network structure. In this work a low molecular weight chitosan (Chi) polymer is incorporated in BC with different concentrations. Different characterization techniques are used to investigate structural and optical properties of these composites. Radical scavenging activity test shows moderate antioxidant activity of these biocompatible composites whereasin vitrorelease test shows that 13.3% of chitosan is released after 72 h. Antibacterial testing of BC-Chi composites conducted on Gram-positive and Gram-negative bacteria causing UTIs and CAUTIs (Escherichia coli,Pseudomonas aeruginosa,Klebsiella pneumoniae) and encrustation (Proteus mirabilis) show bactericidal effect. The morphology analysis of bacteria after the application of BC-Chi shows that they are flattened with a rough surface, with a tendency to agglomerate and with decreased length and width. All obtained results show that BC-Chi composites might be considered as potential biomedical agents in treatment of UTIs and CAUTIs and as a urinary catheter coating in encrustation prevention.
T2  - RSC Advances
T1  - Bactericidal and antioxidant bacterial cellulose hydrogels doped with chitosan as potential urinary tract infection biomedical agent
VL  - 11
IS  - 15
SP  - 8559
EP  - 8568
DO  - 10.1039/D0RA10782D
ER  - 
@article{
author = "Zmejkoski, Danica and Marković, Zoran M. and Zdravković, Nemanja M. and Trišić, Dijana and Budimir, Milica and Kuzman, Sanja and Kozyrovska, Natalia O. and Orlovska, Iryna V. and Bugárová, Nikol and Petrović, Đorđe and Kováčová, Mária and Kleinová, Angela and Špitalský, Zdeno and Pavlović, Vladimir B. and Todorović-Marković, Biljana",
year = "2021",
abstract = "Therapy of bacterial urinary tract infections (UTIs) and catheter associated urinary tract infections (CAUTIs) is still a great challenge because of the resistance of bacteria to nowadays used antibiotics and encrustation of catheters. Bacterial cellulose (BC) as a biocompatible material with a high porosity allows incorporation of different materials in its three dimensional network structure. In this work a low molecular weight chitosan (Chi) polymer is incorporated in BC with different concentrations. Different characterization techniques are used to investigate structural and optical properties of these composites. Radical scavenging activity test shows moderate antioxidant activity of these biocompatible composites whereasin vitrorelease test shows that 13.3% of chitosan is released after 72 h. Antibacterial testing of BC-Chi composites conducted on Gram-positive and Gram-negative bacteria causing UTIs and CAUTIs (Escherichia coli,Pseudomonas aeruginosa,Klebsiella pneumoniae) and encrustation (Proteus mirabilis) show bactericidal effect. The morphology analysis of bacteria after the application of BC-Chi shows that they are flattened with a rough surface, with a tendency to agglomerate and with decreased length and width. All obtained results show that BC-Chi composites might be considered as potential biomedical agents in treatment of UTIs and CAUTIs and as a urinary catheter coating in encrustation prevention.",
journal = "RSC Advances",
title = "Bactericidal and antioxidant bacterial cellulose hydrogels doped with chitosan as potential urinary tract infection biomedical agent",
volume = "11",
number = "15",
pages = "8559-8568",
doi = "10.1039/D0RA10782D"
}
Zmejkoski, D., Marković, Z. M., Zdravković, N. M., Trišić, D., Budimir, M., Kuzman, S., Kozyrovska, N. O., Orlovska, I. V., Bugárová, N., Petrović, Đ., Kováčová, M., Kleinová, A., Špitalský, Z., Pavlović, V. B.,& Todorović-Marković, B.. (2021). Bactericidal and antioxidant bacterial cellulose hydrogels doped with chitosan as potential urinary tract infection biomedical agent. in RSC Advances, 11(15), 8559-8568.
https://doi.org/10.1039/D0RA10782D
Zmejkoski D, Marković ZM, Zdravković NM, Trišić D, Budimir M, Kuzman S, Kozyrovska NO, Orlovska IV, Bugárová N, Petrović Đ, Kováčová M, Kleinová A, Špitalský Z, Pavlović VB, Todorović-Marković B. Bactericidal and antioxidant bacterial cellulose hydrogels doped with chitosan as potential urinary tract infection biomedical agent. in RSC Advances. 2021;11(15):8559-8568.
doi:10.1039/D0RA10782D .
Zmejkoski, Danica, Marković, Zoran M., Zdravković, Nemanja M., Trišić, Dijana, Budimir, Milica, Kuzman, Sanja, Kozyrovska, Natalia O., Orlovska, Iryna V., Bugárová, Nikol, Petrović, Đorđe, Kováčová, Mária, Kleinová, Angela, Špitalský, Zdeno, Pavlović, Vladimir B., Todorović-Marković, Biljana, "Bactericidal and antioxidant bacterial cellulose hydrogels doped with chitosan as potential urinary tract infection biomedical agent" in RSC Advances, 11, no. 15 (2021):8559-8568,
https://doi.org/10.1039/D0RA10782D . .
11
2
7

Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment

Zmejkoski, Danica; Marković, Zoran M.; Budimir, Milica; Zdravković, Nemanja M.; Trišić, Dijana ; Bugárová, Nikol; Danko, Martin; Kozyrovska, Natalia O.; Špitalský, Zdeno; Kleinová, Angela; Kuzman, Sanja; Pavlović, Vladimir B.; Todorović-Marković, Biljana

(2021)

TY  - JOUR
AU  - Zmejkoski, Danica
AU  - Marković, Zoran M.
AU  - Budimir, Milica
AU  - Zdravković, Nemanja M.
AU  - Trišić, Dijana 
AU  - Bugárová, Nikol
AU  - Danko, Martin
AU  - Kozyrovska, Natalia O.
AU  - Špitalský, Zdeno
AU  - Kleinová, Angela
AU  - Kuzman, Sanja
AU  - Pavlović, Vladimir B.
AU  - Todorović-Marković, Biljana
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9566
AB  - Bacterial infection and their resistance to known antibiotics delays wound healing. In this study, nanochitosan dots (nChiD) produced by gamma irradiation have been encapsulated in bacterial cellulose (BC) polymer matrix to study the antibacterial potentials of these nanocomposites and their possible usage in wound healing treatment (scratch assay). Detailed analyses show that nChiDs have disc-like shape and average diameter in the range of 40 to 60 nm depending of the applied dose. All nChiDs as well as BC-nChiD nanocomposites emit green photoluminescence independently on the excitation wavelengths. The new designed nanocomposites do not have a cytotoxic effect; antioxidant analysis shows their moderate radical scavenging activity whereas antibacterial properties show significant growth inhibition of strains mostly found in difficult-to-heal wounds. The obtained results confirm that new designed BC-nChiD nanocomposites might be potential agent in wound healing treatment. © 2021 Elsevier B.V.
T2  - Materials Science and Engineering: C
T1  - Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment
VL  - 122
SP  - 111925
DO  - 10.1016/j.msec.2021.111925
ER  - 
@article{
author = "Zmejkoski, Danica and Marković, Zoran M. and Budimir, Milica and Zdravković, Nemanja M. and Trišić, Dijana  and Bugárová, Nikol and Danko, Martin and Kozyrovska, Natalia O. and Špitalský, Zdeno and Kleinová, Angela and Kuzman, Sanja and Pavlović, Vladimir B. and Todorović-Marković, Biljana",
year = "2021",
abstract = "Bacterial infection and their resistance to known antibiotics delays wound healing. In this study, nanochitosan dots (nChiD) produced by gamma irradiation have been encapsulated in bacterial cellulose (BC) polymer matrix to study the antibacterial potentials of these nanocomposites and their possible usage in wound healing treatment (scratch assay). Detailed analyses show that nChiDs have disc-like shape and average diameter in the range of 40 to 60 nm depending of the applied dose. All nChiDs as well as BC-nChiD nanocomposites emit green photoluminescence independently on the excitation wavelengths. The new designed nanocomposites do not have a cytotoxic effect; antioxidant analysis shows their moderate radical scavenging activity whereas antibacterial properties show significant growth inhibition of strains mostly found in difficult-to-heal wounds. The obtained results confirm that new designed BC-nChiD nanocomposites might be potential agent in wound healing treatment. © 2021 Elsevier B.V.",
journal = "Materials Science and Engineering: C",
title = "Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment",
volume = "122",
pages = "111925",
doi = "10.1016/j.msec.2021.111925"
}
Zmejkoski, D., Marković, Z. M., Budimir, M., Zdravković, N. M., Trišić, D., Bugárová, N., Danko, M., Kozyrovska, N. O., Špitalský, Z., Kleinová, A., Kuzman, S., Pavlović, V. B.,& Todorović-Marković, B.. (2021). Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment. in Materials Science and Engineering: C, 122, 111925.
https://doi.org/10.1016/j.msec.2021.111925
Zmejkoski D, Marković ZM, Budimir M, Zdravković NM, Trišić D, Bugárová N, Danko M, Kozyrovska NO, Špitalský Z, Kleinová A, Kuzman S, Pavlović VB, Todorović-Marković B. Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment. in Materials Science and Engineering: C. 2021;122:111925.
doi:10.1016/j.msec.2021.111925 .
Zmejkoski, Danica, Marković, Zoran M., Budimir, Milica, Zdravković, Nemanja M., Trišić, Dijana , Bugárová, Nikol, Danko, Martin, Kozyrovska, Natalia O., Špitalský, Zdeno, Kleinová, Angela, Kuzman, Sanja, Pavlović, Vladimir B., Todorović-Marković, Biljana, "Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment" in Materials Science and Engineering: C, 122 (2021):111925,
https://doi.org/10.1016/j.msec.2021.111925 . .
25
6
21

Biocompatibility study of a new dental cement based on hydroxyapatite and calcium silicates: Focus on liver, kidney, and spleen tissue effects

Paraš, Smiljana; Trišić, Dijana; Mitrović-Ajtić, Olivera; Antonijević, Đorđe; Čolović, Božana M.; Drobne, Damjana; Jokanović, Vukoman R.

(2021)

TY  - JOUR
AU  - Paraš, Smiljana
AU  - Trišić, Dijana
AU  - Mitrović-Ajtić, Olivera
AU  - Antonijević, Đorđe
AU  - Čolović, Božana M.
AU  - Drobne, Damjana
AU  - Jokanović, Vukoman R.
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9821
AB  - The effects of a new material based on hydroxyapatite and calcium silicates, named ALBO-MPCA, were investigated on the liver, kidney and spleen. The material was administrated orally for 120 days in an in vivo model in Wistar rats, and untreated animals served as a control. Hematological and biochemical blood parameters were analyzed. Qualitative histological analysis of tissues, change in mitotic activity of cells, and histological characteristics was conducted, as well as quantitative stereological analysis of parenchymal cells, blood sinusoids, and connective tissues. Additionally, the protein expressions of Ki67 and CD68 markers were evaluated. Histological analysis revealed no pathological changes after the tested period. It showed the preservation of the architecture of blood sinusoids and epithelial cells and the presence of mitosis. Additionally, the significantly increased number of the Ki67 in the presence of ALBO-MPCA confirmed the proliferative effect of the material noticed by stereological analysis, while immunoreactive CD68 positive cells did not differ between groups. The study showed non-toxicity of the tested material based on the effects on the hematological, biochemical, and observed histological parameters; in addition, it showed evidence of its biocompatibility. These results could be the basis for further steps toward the application of tested materials in endodontics.
T2  - International Journal of Molecular Science
T1  - Biocompatibility study of a new dental cement based on hydroxyapatite and calcium silicates: Focus on liver, kidney, and spleen tissue effects
VL  - 22
IS  - 11
SP  - 5468
DO  - 10.3390/ijms22115468
ER  - 
@article{
author = "Paraš, Smiljana and Trišić, Dijana and Mitrović-Ajtić, Olivera and Antonijević, Đorđe and Čolović, Božana M. and Drobne, Damjana and Jokanović, Vukoman R.",
year = "2021",
abstract = "The effects of a new material based on hydroxyapatite and calcium silicates, named ALBO-MPCA, were investigated on the liver, kidney and spleen. The material was administrated orally for 120 days in an in vivo model in Wistar rats, and untreated animals served as a control. Hematological and biochemical blood parameters were analyzed. Qualitative histological analysis of tissues, change in mitotic activity of cells, and histological characteristics was conducted, as well as quantitative stereological analysis of parenchymal cells, blood sinusoids, and connective tissues. Additionally, the protein expressions of Ki67 and CD68 markers were evaluated. Histological analysis revealed no pathological changes after the tested period. It showed the preservation of the architecture of blood sinusoids and epithelial cells and the presence of mitosis. Additionally, the significantly increased number of the Ki67 in the presence of ALBO-MPCA confirmed the proliferative effect of the material noticed by stereological analysis, while immunoreactive CD68 positive cells did not differ between groups. The study showed non-toxicity of the tested material based on the effects on the hematological, biochemical, and observed histological parameters; in addition, it showed evidence of its biocompatibility. These results could be the basis for further steps toward the application of tested materials in endodontics.",
journal = "International Journal of Molecular Science",
title = "Biocompatibility study of a new dental cement based on hydroxyapatite and calcium silicates: Focus on liver, kidney, and spleen tissue effects",
volume = "22",
number = "11",
pages = "5468",
doi = "10.3390/ijms22115468"
}
Paraš, S., Trišić, D., Mitrović-Ajtić, O., Antonijević, Đ., Čolović, B. M., Drobne, D.,& Jokanović, V. R.. (2021). Biocompatibility study of a new dental cement based on hydroxyapatite and calcium silicates: Focus on liver, kidney, and spleen tissue effects. in International Journal of Molecular Science, 22(11), 5468.
https://doi.org/10.3390/ijms22115468
Paraš S, Trišić D, Mitrović-Ajtić O, Antonijević Đ, Čolović BM, Drobne D, Jokanović VR. Biocompatibility study of a new dental cement based on hydroxyapatite and calcium silicates: Focus on liver, kidney, and spleen tissue effects. in International Journal of Molecular Science. 2021;22(11):5468.
doi:10.3390/ijms22115468 .
Paraš, Smiljana, Trišić, Dijana, Mitrović-Ajtić, Olivera, Antonijević, Đorđe, Čolović, Božana M., Drobne, Damjana, Jokanović, Vukoman R., "Biocompatibility study of a new dental cement based on hydroxyapatite and calcium silicates: Focus on liver, kidney, and spleen tissue effects" in International Journal of Molecular Science, 22, no. 11 (2021):5468,
https://doi.org/10.3390/ijms22115468 . .
1

Developing a novel resorptive hydroxyapatite-based bone substitute for over-critical size defect reconstruction: Physicochemical and biological characterization and proof of concept in segmental rabbit's ulna reconstruction

Micić, Milutin; Antonijević, Đorđe; Milutinović-Smiljanić, Sanja; Trišić, Dijana; Čolović, Božana M.; Kosanović, Dejana; Prokić, Bogomir Bolka; Vasić, Jugoslav; Živković, Slavoljub; Milašin, Jelena; Danilović, Vesna; Đurić, Marija P.; Jokanović, Vukoman R.

(2020)

TY  - JOUR
AU  - Micić, Milutin
AU  - Antonijević, Đorđe
AU  - Milutinović-Smiljanić, Sanja
AU  - Trišić, Dijana
AU  - Čolović, Božana M.
AU  - Kosanović, Dejana
AU  - Prokić, Bogomir Bolka
AU  - Vasić, Jugoslav
AU  - Živković, Slavoljub
AU  - Milašin, Jelena
AU  - Danilović, Vesna
AU  - Đurić, Marija P.
AU  - Jokanović, Vukoman R.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8993
AB  - The aim of this study was to develop novel hydroxyapatite (HAP)-based bioactive bone replacement materials for segmental osteotomy reconstruction. Customized three-dimensional (3D) bone construct was manufactured from nanohydroxyapatite (nHAP) with poly(lactide-co-glycolide) (PLGA) coating using 3D models derived from the computed tomography (CT) scanning of the rabbit's ulna and gradient 3D printing of the bone substitute mimicking the anatomical shape of the natural bone defect. Engineered construct revealed adequate micro-architectural design for successful bone regeneration having a total porosity of 64% and an average pore size of 256 μm. Radiography and micro-CT analysis depicted new bone apposition through the whole length of the reconstructed ulna with a small area of non-resorbed construct in the central area of defect. Histological analysis revealed new bone formation with both endochondral and endesmal type of ossification. Immunohistochemistry analysis depicted the presence of bone formation indicators-bone morphogenetic protein (BMP), osteocalcin (OCN) and osteopontin (OPN) within newly formed bone. Manufactured personalized construct acts as a "smart" responsive biomaterial capable of modulating the functionality and potential for the personalized bone reconstruction on a clinically relevant length scale.
T2  - Biomedizinische Technik
T1  - Developing a novel resorptive hydroxyapatite-based bone substitute for over-critical size defect reconstruction: Physicochemical and biological characterization and proof of concept in segmental rabbit's ulna reconstruction
VL  - 65
IS  - 4
SP  - 491
EP  - 505
DO  - 10.1515/bmt-2019-0218
ER  - 
@article{
author = "Micić, Milutin and Antonijević, Đorđe and Milutinović-Smiljanić, Sanja and Trišić, Dijana and Čolović, Božana M. and Kosanović, Dejana and Prokić, Bogomir Bolka and Vasić, Jugoslav and Živković, Slavoljub and Milašin, Jelena and Danilović, Vesna and Đurić, Marija P. and Jokanović, Vukoman R.",
year = "2020",
abstract = "The aim of this study was to develop novel hydroxyapatite (HAP)-based bioactive bone replacement materials for segmental osteotomy reconstruction. Customized three-dimensional (3D) bone construct was manufactured from nanohydroxyapatite (nHAP) with poly(lactide-co-glycolide) (PLGA) coating using 3D models derived from the computed tomography (CT) scanning of the rabbit's ulna and gradient 3D printing of the bone substitute mimicking the anatomical shape of the natural bone defect. Engineered construct revealed adequate micro-architectural design for successful bone regeneration having a total porosity of 64% and an average pore size of 256 μm. Radiography and micro-CT analysis depicted new bone apposition through the whole length of the reconstructed ulna with a small area of non-resorbed construct in the central area of defect. Histological analysis revealed new bone formation with both endochondral and endesmal type of ossification. Immunohistochemistry analysis depicted the presence of bone formation indicators-bone morphogenetic protein (BMP), osteocalcin (OCN) and osteopontin (OPN) within newly formed bone. Manufactured personalized construct acts as a "smart" responsive biomaterial capable of modulating the functionality and potential for the personalized bone reconstruction on a clinically relevant length scale.",
journal = "Biomedizinische Technik",
title = "Developing a novel resorptive hydroxyapatite-based bone substitute for over-critical size defect reconstruction: Physicochemical and biological characterization and proof of concept in segmental rabbit's ulna reconstruction",
volume = "65",
number = "4",
pages = "491-505",
doi = "10.1515/bmt-2019-0218"
}
Micić, M., Antonijević, Đ., Milutinović-Smiljanić, S., Trišić, D., Čolović, B. M., Kosanović, D., Prokić, B. B., Vasić, J., Živković, S., Milašin, J., Danilović, V., Đurić, M. P.,& Jokanović, V. R.. (2020). Developing a novel resorptive hydroxyapatite-based bone substitute for over-critical size defect reconstruction: Physicochemical and biological characterization and proof of concept in segmental rabbit's ulna reconstruction. in Biomedizinische Technik, 65(4), 491-505.
https://doi.org/10.1515/bmt-2019-0218
Micić M, Antonijević Đ, Milutinović-Smiljanić S, Trišić D, Čolović BM, Kosanović D, Prokić BB, Vasić J, Živković S, Milašin J, Danilović V, Đurić MP, Jokanović VR. Developing a novel resorptive hydroxyapatite-based bone substitute for over-critical size defect reconstruction: Physicochemical and biological characterization and proof of concept in segmental rabbit's ulna reconstruction. in Biomedizinische Technik. 2020;65(4):491-505.
doi:10.1515/bmt-2019-0218 .
Micić, Milutin, Antonijević, Đorđe, Milutinović-Smiljanić, Sanja, Trišić, Dijana, Čolović, Božana M., Kosanović, Dejana, Prokić, Bogomir Bolka, Vasić, Jugoslav, Živković, Slavoljub, Milašin, Jelena, Danilović, Vesna, Đurić, Marija P., Jokanović, Vukoman R., "Developing a novel resorptive hydroxyapatite-based bone substitute for over-critical size defect reconstruction: Physicochemical and biological characterization and proof of concept in segmental rabbit's ulna reconstruction" in Biomedizinische Technik, 65, no. 4 (2020):491-505,
https://doi.org/10.1515/bmt-2019-0218 . .
11
1
8

Review of lasers application in dentistry

Jokanović, Vukoman R.; Trišić, Dijana; Živković, Marija M.

(2020)

TY  - JOUR
AU  - Jokanović, Vukoman R.
AU  - Trišić, Dijana
AU  - Živković, Marija M.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9154
AB  - In this paper the mechanism of stimulated emission is described as the fundamental of laser technology. The types of lasers from the aspect of their operation are also given. The particular attention is paid to dental lasers and their effect on healing processes in bone, dentin, enamel etc.
AB  - U ovom radu opisan je mehanizam stimulisane emisije, kao osnova tehnologije rada lasera. Navedeni su i tipovi lasera sa aspekta njihove primene. Posebna pažnja je posvećena laserima u stomatologiji, kao i uticaju njihovih karakteristika na mogućnost regene-racije kosti, dentina i drugih oralnih tkiva.
T2  - Stomatološki glasnik Srbije
T1  - Review of lasers application in dentistry
VL  - 67
IS  - 1
SP  - 36
EP  - 49
DO  - 10.2298/SGS2001036J
ER  - 
@article{
author = "Jokanović, Vukoman R. and Trišić, Dijana and Živković, Marija M.",
year = "2020",
abstract = "In this paper the mechanism of stimulated emission is described as the fundamental of laser technology. The types of lasers from the aspect of their operation are also given. The particular attention is paid to dental lasers and their effect on healing processes in bone, dentin, enamel etc., U ovom radu opisan je mehanizam stimulisane emisije, kao osnova tehnologije rada lasera. Navedeni su i tipovi lasera sa aspekta njihove primene. Posebna pažnja je posvećena laserima u stomatologiji, kao i uticaju njihovih karakteristika na mogućnost regene-racije kosti, dentina i drugih oralnih tkiva.",
journal = "Stomatološki glasnik Srbije",
title = "Review of lasers application in dentistry",
volume = "67",
number = "1",
pages = "36-49",
doi = "10.2298/SGS2001036J"
}
Jokanović, V. R., Trišić, D.,& Živković, M. M.. (2020). Review of lasers application in dentistry. in Stomatološki glasnik Srbije, 67(1), 36-49.
https://doi.org/10.2298/SGS2001036J
Jokanović VR, Trišić D, Živković MM. Review of lasers application in dentistry. in Stomatološki glasnik Srbije. 2020;67(1):36-49.
doi:10.2298/SGS2001036J .
Jokanović, Vukoman R., Trišić, Dijana, Živković, Marija M., "Review of lasers application in dentistry" in Stomatološki glasnik Srbije, 67, no. 1 (2020):36-49,
https://doi.org/10.2298/SGS2001036J . .

Toxicological Profile of Nanostructured Bone Substitute Based on Hydroxyapatite and Poly(lactide-co-glycolide) after Subchronic Oral Exposure of Rats

Paraš, Smiljana; Trišić, Dijana; Mitrović Ajtić, Olivera; Prokić, Bogomir; Drobne, Damjana; Živković, Slavoljub; Jokanović, Vukoman R.

(2020)

TY  - JOUR
AU  - Paraš, Smiljana
AU  - Trišić, Dijana
AU  - Mitrović Ajtić, Olivera
AU  - Prokić, Bogomir
AU  - Drobne, Damjana
AU  - Živković, Slavoljub
AU  - Jokanović, Vukoman R.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9008
AB  - Novel three-dimensional (3D) nanohydroxyapatite-PLGA scaffolds with high porosity was developed to better mimic mineral component and microstructure of natural bone. To perform a final assessment of this nanomaterial as a potential bone substitute, its toxicological profile was particularly investigated. Therefore, we performed a comet assay on human monocytes for in vitro genotoxicity investigation, and the systemic subchronic toxicity investigation on rats being per oral feed with exactly administrated extract quantities of the nano calcium hydroxyapatite covered with tiny layers of PLGA (ALBO-OS) for 120 days. Histological and stereological parameters of the liver, kidney, and spleen tissue were analyzed. Comet assay revealed low genotoxic potential, while histological analysis and stereological investigation revealed no significant changes in exposed animals when compared to controls, although the volume density of blood sinusoids and connective tissue, as well as numerical density and number of mitosis were slightly increased. Additionally, despite the significantly increased average number of the Ki67 and slightly increased number of CD68 positive cells in the presence of ALBO-OS, immunoreactive cells proliferation was almost neglected. Blood analyses showed that all of the blood parameters in rats fed with extract nanomaterial are comparable with corresponding parameters of no feed rats, taken as blind probe. This study contributes to the toxicological profiling of ALBO-OS scaffold for potential future application in bone tissue engineering.
T2  - Nanomaterials
T1  - Toxicological Profile of Nanostructured Bone Substitute Based on Hydroxyapatite and Poly(lactide-co-glycolide) after Subchronic Oral Exposure of Rats
VL  - 10
IS  - 5
SP  - 918
DO  - 10.3390/nano10050918
ER  - 
@article{
author = "Paraš, Smiljana and Trišić, Dijana and Mitrović Ajtić, Olivera and Prokić, Bogomir and Drobne, Damjana and Živković, Slavoljub and Jokanović, Vukoman R.",
year = "2020",
abstract = "Novel three-dimensional (3D) nanohydroxyapatite-PLGA scaffolds with high porosity was developed to better mimic mineral component and microstructure of natural bone. To perform a final assessment of this nanomaterial as a potential bone substitute, its toxicological profile was particularly investigated. Therefore, we performed a comet assay on human monocytes for in vitro genotoxicity investigation, and the systemic subchronic toxicity investigation on rats being per oral feed with exactly administrated extract quantities of the nano calcium hydroxyapatite covered with tiny layers of PLGA (ALBO-OS) for 120 days. Histological and stereological parameters of the liver, kidney, and spleen tissue were analyzed. Comet assay revealed low genotoxic potential, while histological analysis and stereological investigation revealed no significant changes in exposed animals when compared to controls, although the volume density of blood sinusoids and connective tissue, as well as numerical density and number of mitosis were slightly increased. Additionally, despite the significantly increased average number of the Ki67 and slightly increased number of CD68 positive cells in the presence of ALBO-OS, immunoreactive cells proliferation was almost neglected. Blood analyses showed that all of the blood parameters in rats fed with extract nanomaterial are comparable with corresponding parameters of no feed rats, taken as blind probe. This study contributes to the toxicological profiling of ALBO-OS scaffold for potential future application in bone tissue engineering.",
journal = "Nanomaterials",
title = "Toxicological Profile of Nanostructured Bone Substitute Based on Hydroxyapatite and Poly(lactide-co-glycolide) after Subchronic Oral Exposure of Rats",
volume = "10",
number = "5",
pages = "918",
doi = "10.3390/nano10050918"
}
Paraš, S., Trišić, D., Mitrović Ajtić, O., Prokić, B., Drobne, D., Živković, S.,& Jokanović, V. R.. (2020). Toxicological Profile of Nanostructured Bone Substitute Based on Hydroxyapatite and Poly(lactide-co-glycolide) after Subchronic Oral Exposure of Rats. in Nanomaterials, 10(5), 918.
https://doi.org/10.3390/nano10050918
Paraš S, Trišić D, Mitrović Ajtić O, Prokić B, Drobne D, Živković S, Jokanović VR. Toxicological Profile of Nanostructured Bone Substitute Based on Hydroxyapatite and Poly(lactide-co-glycolide) after Subchronic Oral Exposure of Rats. in Nanomaterials. 2020;10(5):918.
doi:10.3390/nano10050918 .
Paraš, Smiljana, Trišić, Dijana, Mitrović Ajtić, Olivera, Prokić, Bogomir, Drobne, Damjana, Živković, Slavoljub, Jokanović, Vukoman R., "Toxicological Profile of Nanostructured Bone Substitute Based on Hydroxyapatite and Poly(lactide-co-glycolide) after Subchronic Oral Exposure of Rats" in Nanomaterials, 10, no. 5 (2020):918,
https://doi.org/10.3390/nano10050918 . .
4
3
3

Influence of nanostructured calcium aluminate and calcium silicate on the liver: histological and unbiased stereological analysis

Paraš, Smiljana; Janković, Ognjenka; Trišić, Dijana; Čolović, Božana M.; Mitrović‐Ajtić, Olivera; Dekić, Radoslav; Soldatović, Ivan A.; Živković-Sandić, Marija; Živković, Slavoljub; Jokanović, Vukoman R.

(2019)

TY  - JOUR
AU  - Paraš, Smiljana
AU  - Janković, Ognjenka
AU  - Trišić, Dijana
AU  - Čolović, Božana M.
AU  - Mitrović‐Ajtić, Olivera
AU  - Dekić, Radoslav
AU  - Soldatović, Ivan A.
AU  - Živković-Sandić, Marija
AU  - Živković, Slavoljub
AU  - Jokanović, Vukoman R.
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8557
AB  - Aim: To examine the potential systemic toxicity of nanostructured materials based on calcium silicate and calcium aluminate, for potential application in Dentistry. Methodology: Twenty-four Albino Wistar rats aged 2 months were used as an in vivo animal model for subcutaneous implantation of the investigated materials, placed in polyethylene tubes. Thirty days after implantation, the livers of the rats were analysed and following histological and stereological parameters were evaluated for volume density of hepatocytes and blood sinusoids, number and numerical density of hepatocytes, surface of hepatocytes and their nucleuses, nucleocytoplasmic ratio and mitotic index of hepatocytes. Stereological measurements were achieved using Cavalieri's principle, with grid P2 and unbiased analysis. Additionally, immunohistochemistry studies were performed to further analyse changes in liver tissue. Several haematological and biochemical parameters of blood of experimental animals were also analysed, as well as local tissue reactions around the implants. Statistical analysis was performed using parametric (anova and t-test) and nonparametric tests (Kruskal–Wallis and Mann–Whitney U-test) depending on data distribution. Results: Implanted dental cements led to an increase in stereological and histological parameters in liver tissue compared to control rats. Although the investigated parameters mostly showed significant differences between control and experimental animals, the liver tissue of the experimental animals did not have visible signs of pathological changes. This was supported by the analysis of blood parameters which were not significantly different between control and experimental animals. Also, the subcutaneous tissues had minimal inflammatory reactions. Immunohistochemistry studies revealed that nanostructured materials induced proliferation of hepatocytes, but that the immunological response to the materials was not strong enough to induce proliferation of immunoreactive cells in liver in the observed time period. Conclusions: This study was performed as a contribution to the attestation of the biocompatibility of dental cements based on calcium silicate and calcium aluminate. Although these materials induced several changes in the liver structure, they were not clinically relevant and represent a normal and reversible response of the liver to the presence of biocompatible materials in the body. Blood and immunohistochemistry analyses and local tissue reactions further confirmed that these materials possess good biocompatible potential. © 2019 International Endodontic Journal. Published by John Wiley & Sons Ltd
T2  - International Endodontic Journal
T1  - Influence of nanostructured calcium aluminate and calcium silicate on the liver: histological and unbiased stereological analysis
SP  - 1162
EP  - 1172
DO  - 10.1111/iej.13105
ER  - 
@article{
author = "Paraš, Smiljana and Janković, Ognjenka and Trišić, Dijana and Čolović, Božana M. and Mitrović‐Ajtić, Olivera and Dekić, Radoslav and Soldatović, Ivan A. and Živković-Sandić, Marija and Živković, Slavoljub and Jokanović, Vukoman R.",
year = "2019",
abstract = "Aim: To examine the potential systemic toxicity of nanostructured materials based on calcium silicate and calcium aluminate, for potential application in Dentistry. Methodology: Twenty-four Albino Wistar rats aged 2 months were used as an in vivo animal model for subcutaneous implantation of the investigated materials, placed in polyethylene tubes. Thirty days after implantation, the livers of the rats were analysed and following histological and stereological parameters were evaluated for volume density of hepatocytes and blood sinusoids, number and numerical density of hepatocytes, surface of hepatocytes and their nucleuses, nucleocytoplasmic ratio and mitotic index of hepatocytes. Stereological measurements were achieved using Cavalieri's principle, with grid P2 and unbiased analysis. Additionally, immunohistochemistry studies were performed to further analyse changes in liver tissue. Several haematological and biochemical parameters of blood of experimental animals were also analysed, as well as local tissue reactions around the implants. Statistical analysis was performed using parametric (anova and t-test) and nonparametric tests (Kruskal–Wallis and Mann–Whitney U-test) depending on data distribution. Results: Implanted dental cements led to an increase in stereological and histological parameters in liver tissue compared to control rats. Although the investigated parameters mostly showed significant differences between control and experimental animals, the liver tissue of the experimental animals did not have visible signs of pathological changes. This was supported by the analysis of blood parameters which were not significantly different between control and experimental animals. Also, the subcutaneous tissues had minimal inflammatory reactions. Immunohistochemistry studies revealed that nanostructured materials induced proliferation of hepatocytes, but that the immunological response to the materials was not strong enough to induce proliferation of immunoreactive cells in liver in the observed time period. Conclusions: This study was performed as a contribution to the attestation of the biocompatibility of dental cements based on calcium silicate and calcium aluminate. Although these materials induced several changes in the liver structure, they were not clinically relevant and represent a normal and reversible response of the liver to the presence of biocompatible materials in the body. Blood and immunohistochemistry analyses and local tissue reactions further confirmed that these materials possess good biocompatible potential. © 2019 International Endodontic Journal. Published by John Wiley & Sons Ltd",
journal = "International Endodontic Journal",
title = "Influence of nanostructured calcium aluminate and calcium silicate on the liver: histological and unbiased stereological analysis",
pages = "1162-1172",
doi = "10.1111/iej.13105"
}
Paraš, S., Janković, O., Trišić, D., Čolović, B. M., Mitrović‐Ajtić, O., Dekić, R., Soldatović, I. A., Živković-Sandić, M., Živković, S.,& Jokanović, V. R.. (2019). Influence of nanostructured calcium aluminate and calcium silicate on the liver: histological and unbiased stereological analysis. in International Endodontic Journal, 1162-1172.
https://doi.org/10.1111/iej.13105
Paraš S, Janković O, Trišić D, Čolović BM, Mitrović‐Ajtić O, Dekić R, Soldatović IA, Živković-Sandić M, Živković S, Jokanović VR. Influence of nanostructured calcium aluminate and calcium silicate on the liver: histological and unbiased stereological analysis. in International Endodontic Journal. 2019;:1162-1172.
doi:10.1111/iej.13105 .
Paraš, Smiljana, Janković, Ognjenka, Trišić, Dijana, Čolović, Božana M., Mitrović‐Ajtić, Olivera, Dekić, Radoslav, Soldatović, Ivan A., Živković-Sandić, Marija, Živković, Slavoljub, Jokanović, Vukoman R., "Influence of nanostructured calcium aluminate and calcium silicate on the liver: histological and unbiased stereological analysis" in International Endodontic Journal (2019):1162-1172,
https://doi.org/10.1111/iej.13105 . .
12
6
10

Antibacterial effects of new endodontic materials based on calcium silicates

Trišić, Dijana; Ćetenović, Bojana; Zdravković, Nemanja M.; Marković, Tatjana; Dojčinović, Biljana P.; Jokanović, Vukoman R.; Marković, Dejan

(2019)

TY  - JOUR
AU  - Trišić, Dijana
AU  - Ćetenović, Bojana
AU  - Zdravković, Nemanja M.
AU  - Marković, Tatjana
AU  - Dojčinović, Biljana P.
AU  - Jokanović, Vukoman R.
AU  - Marković, Dejan
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8426
AB  - Background/Aim. The main task of endodontic treatment is to eliminate pathologically altered tissue, to disinfect root canal space and to obtain its three-dimensional hermetic obturation. The main purpose of this study was to evaluate antimicrobial activity of new endodontic nano-structured highly active calcium silicates based materials albo-mineral plyoxide carbonate aggregate (ALBO-MPCA) and calcium silicates (CS) in comparison to mineral trioxide aggregate (MTA+) and UltraCal XS (CH). Methods. The antimicrobial activity of materials was tested against Staphylococcus aureus (ATCC 25923) and Enterococcus faecalis (ATCC 14506) strains, and following clinical isolates: Rothia dentocariosa, Enterococcus faecalis, Staphylococcus aureus, Streptococcus anginosus and Streptococcus vestibularis using a double layer agar diffusion test. The pH measurements were performed using the pH meter. Total amount of released ions was determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Results. All tested materials showed the best antibacterial potential after 1 h of incubation. After 3h and 24h of the incubation period, the antibacterial potential of all tested materials were similar. The Agar diffusion test showed that ALBO-MPCA, CS and MTA+ had similar inhibition zones (p > 0.05), except in the activity against Staphylococcus aureus where ALBO-MPCA showed better antimicrobial properties than MTA+ in 3h and 24h of the incubation period (p < 0.05). Following 24h of the incubation, the inhibition zones were the strongest with CH against Staphylococcus aureus (16.67 ± 2.34 mm) followed by ALBO-MPCA (14.67 ± 1.21 mm) and the weakest with CS against Enterococcus faecalis (6.50 ± 1.76 mm). CH showed the highest pH, followed by ALBO-MPCA, CS and MTA+. Conclusion. The expressed antibacterial effects indicate that materials based on nano-structured highly active calcium silicates represent effective therapeutic agents for root canal obturation in one-visit apexification treatment, therefore they are recommend for further examination and clinical trials as they are proposed for MTA substitution. © 2019, Inst. Sci. inf., Univ. Defence in Belgrade. All rights reserved.
T2  - Vojnosanitetski pregled
T1  - Antibacterial effects of new endodontic materials based on calcium silicates
VL  - 76
IS  - 4
SP  - 365
EP  - 372
DO  - 10.2298/VSP161231130T
ER  - 
@article{
author = "Trišić, Dijana and Ćetenović, Bojana and Zdravković, Nemanja M. and Marković, Tatjana and Dojčinović, Biljana P. and Jokanović, Vukoman R. and Marković, Dejan",
year = "2019",
abstract = "Background/Aim. The main task of endodontic treatment is to eliminate pathologically altered tissue, to disinfect root canal space and to obtain its three-dimensional hermetic obturation. The main purpose of this study was to evaluate antimicrobial activity of new endodontic nano-structured highly active calcium silicates based materials albo-mineral plyoxide carbonate aggregate (ALBO-MPCA) and calcium silicates (CS) in comparison to mineral trioxide aggregate (MTA+) and UltraCal XS (CH). Methods. The antimicrobial activity of materials was tested against Staphylococcus aureus (ATCC 25923) and Enterococcus faecalis (ATCC 14506) strains, and following clinical isolates: Rothia dentocariosa, Enterococcus faecalis, Staphylococcus aureus, Streptococcus anginosus and Streptococcus vestibularis using a double layer agar diffusion test. The pH measurements were performed using the pH meter. Total amount of released ions was determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Results. All tested materials showed the best antibacterial potential after 1 h of incubation. After 3h and 24h of the incubation period, the antibacterial potential of all tested materials were similar. The Agar diffusion test showed that ALBO-MPCA, CS and MTA+ had similar inhibition zones (p > 0.05), except in the activity against Staphylococcus aureus where ALBO-MPCA showed better antimicrobial properties than MTA+ in 3h and 24h of the incubation period (p < 0.05). Following 24h of the incubation, the inhibition zones were the strongest with CH against Staphylococcus aureus (16.67 ± 2.34 mm) followed by ALBO-MPCA (14.67 ± 1.21 mm) and the weakest with CS against Enterococcus faecalis (6.50 ± 1.76 mm). CH showed the highest pH, followed by ALBO-MPCA, CS and MTA+. Conclusion. The expressed antibacterial effects indicate that materials based on nano-structured highly active calcium silicates represent effective therapeutic agents for root canal obturation in one-visit apexification treatment, therefore they are recommend for further examination and clinical trials as they are proposed for MTA substitution. © 2019, Inst. Sci. inf., Univ. Defence in Belgrade. All rights reserved.",
journal = "Vojnosanitetski pregled",
title = "Antibacterial effects of new endodontic materials based on calcium silicates",
volume = "76",
number = "4",
pages = "365-372",
doi = "10.2298/VSP161231130T"
}
Trišić, D., Ćetenović, B., Zdravković, N. M., Marković, T., Dojčinović, B. P., Jokanović, V. R.,& Marković, D.. (2019). Antibacterial effects of new endodontic materials based on calcium silicates. in Vojnosanitetski pregled, 76(4), 365-372.
https://doi.org/10.2298/VSP161231130T
Trišić D, Ćetenović B, Zdravković NM, Marković T, Dojčinović BP, Jokanović VR, Marković D. Antibacterial effects of new endodontic materials based on calcium silicates. in Vojnosanitetski pregled. 2019;76(4):365-372.
doi:10.2298/VSP161231130T .
Trišić, Dijana, Ćetenović, Bojana, Zdravković, Nemanja M., Marković, Tatjana, Dojčinović, Biljana P., Jokanović, Vukoman R., Marković, Dejan, "Antibacterial effects of new endodontic materials based on calcium silicates" in Vojnosanitetski pregled, 76, no. 4 (2019):365-372,
https://doi.org/10.2298/VSP161231130T . .
1
1