Radonjić, Vojkan D.

Link to this page

Authority KeyName Variants
orcid::0000-0002-1828-000X
  • Radonjić, Vojkan D. (2)
Projects

Author's Bibliography

Simultaneous photodegradation of two textile dyes using TiO2 as a catalyst

Lončarević, Davor; Dostanić, Jasmina; Radonjić, Vojkan D.; Živković, Ljiljana; Jovanović, Dušan M.

(Springer, 2016)

TY  - JOUR
AU  - Lončarević, Davor
AU  - Dostanić, Jasmina
AU  - Radonjić, Vojkan D.
AU  - Živković, Ljiljana
AU  - Jovanović, Dušan M.
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1079
AB  - The simultaneous photocatalytic degradation of two dyes: methylene blue (MB), a cationic dye, and arylazo pyridone dye (SD), an anionic dye was investigated using sol-gel prepared TiO2 particles. The paper shows the main difference in degradation kinetics between single dye solution and binary dye solutions. The effects of competitive adsorption and the concentration of the dyes on degradation rate were analyzed. The preferential adsorption capacity of TiO2 toward MB was attributed to electrostatic interactions between the cationic dye and negatively charged TiO2 surface, while repulsion between the negatively charged surface of the catalyst and SD dye results in its lower adsorption capacity. The TiO2 surface charge and accordingly adsorption affinity of investigated dyes were found to be the main factors affecting degradation rate of the dyes. In the single dye system, the catalyst showed considerably higher degradation activity toward MB than to SD. In binary dye systems, the presence of SD did not affect the degradation of MB. On the other hand, the degradation efficiency of SD was found to be highly influenced by initial MB concentration and absorption ability of MB. In addition, higher MB concentration induces the production of a higher amount of reaction products, which also determine the SD degradation rate. Three kinetic regimes for the photodegradation of SD in binary mixtures were observed, used as a starting point to elucidate most influencing parameters for SD reaction kinetics.
PB  - Springer
T2  - Reaction Kinetics, Mechanisms and Catalysis
T1  - Simultaneous photodegradation of two textile dyes using TiO2 as a catalyst
VL  - 118
IS  - 1
SP  - 153
EP  - 164
DO  - 10.1007/s11144-016-0990-0
ER  - 
@article{
author = "Lončarević, Davor and Dostanić, Jasmina and Radonjić, Vojkan D. and Živković, Ljiljana and Jovanović, Dušan M.",
year = "2016",
abstract = "The simultaneous photocatalytic degradation of two dyes: methylene blue (MB), a cationic dye, and arylazo pyridone dye (SD), an anionic dye was investigated using sol-gel prepared TiO2 particles. The paper shows the main difference in degradation kinetics between single dye solution and binary dye solutions. The effects of competitive adsorption and the concentration of the dyes on degradation rate were analyzed. The preferential adsorption capacity of TiO2 toward MB was attributed to electrostatic interactions between the cationic dye and negatively charged TiO2 surface, while repulsion between the negatively charged surface of the catalyst and SD dye results in its lower adsorption capacity. The TiO2 surface charge and accordingly adsorption affinity of investigated dyes were found to be the main factors affecting degradation rate of the dyes. In the single dye system, the catalyst showed considerably higher degradation activity toward MB than to SD. In binary dye systems, the presence of SD did not affect the degradation of MB. On the other hand, the degradation efficiency of SD was found to be highly influenced by initial MB concentration and absorption ability of MB. In addition, higher MB concentration induces the production of a higher amount of reaction products, which also determine the SD degradation rate. Three kinetic regimes for the photodegradation of SD in binary mixtures were observed, used as a starting point to elucidate most influencing parameters for SD reaction kinetics.",
publisher = "Springer",
journal = "Reaction Kinetics, Mechanisms and Catalysis",
title = "Simultaneous photodegradation of two textile dyes using TiO2 as a catalyst",
volume = "118",
number = "1",
pages = "153-164",
doi = "10.1007/s11144-016-0990-0"
}
Lončarević, D., Dostanić, J., Radonjić, V. D., Živković, L.,& Jovanović, D. M.. (2016). Simultaneous photodegradation of two textile dyes using TiO2 as a catalyst. in Reaction Kinetics, Mechanisms and Catalysis
Springer., 118(1), 153-164.
https://doi.org/10.1007/s11144-016-0990-0
Lončarević D, Dostanić J, Radonjić VD, Živković L, Jovanović DM. Simultaneous photodegradation of two textile dyes using TiO2 as a catalyst. in Reaction Kinetics, Mechanisms and Catalysis. 2016;118(1):153-164.
doi:10.1007/s11144-016-0990-0 .
Lončarević, Davor, Dostanić, Jasmina, Radonjić, Vojkan D., Živković, Ljiljana, Jovanović, Dušan M., "Simultaneous photodegradation of two textile dyes using TiO2 as a catalyst" in Reaction Kinetics, Mechanisms and Catalysis, 118, no. 1 (2016):153-164,
https://doi.org/10.1007/s11144-016-0990-0 . .
19
14
19

Structure-activity relationship of nanosized porous PEG-modified TiO2 powders in degradation of organic pollutants

Lončarević, Davor; Dostanić, Jasmina; Radonjić, Vojkan D.; Radosavljević-Mihajlović, Ana S.; Jovanović, Dušan M.

(2015)

TY  - JOUR
AU  - Lončarević, Davor
AU  - Dostanić, Jasmina
AU  - Radonjić, Vojkan D.
AU  - Radosavljević-Mihajlović, Ana S.
AU  - Jovanović, Dušan M.
PY  - 2015
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/693
AB  - This study aims to gain insights in structure-activity relationship of TiO2 photocatalysts. For this purpose photocatalysts were synthesized via classical sol-gel method using titanium isopropoxide as a precursor and polyethylene glycols (PEGs) of different molecular mass (M-n = 200, 600, 2000, 10,000) as a template agents. Incorporating PEG into TiO2 network enhanced not only catalyst porous structure, but also increased the fraction of anatase phase. The use of low-molecular-weight PEGs resulted in catalysts with increased anatase content and enlarged specific surface area. The catalyst photoactivity was estimated through degradation of organic pollutants: Reactive Black 5, arylazo pyridone dye and phenol. The results revealed that the photoactivity was following the same order independently of target pollutant: TiO2/P600 GT TiO2/P200 GT TiO2/P2000 GT TiO2/P10000 GT TiO2. BET surface area and anatase fraction, rather than pore diameter or pore volume, were found to be predominant catalyst property determining the activity for particular reaction system. The existence of synergistic effect between anatase and rutile phases was confirmed for the most active catalysts TiO2/P200 and TiO2/P600. These catalysts showed similar activity in dye degradation, while TiO2/P200 displayed significantly lower activity in phenol degradation, which was attributed to its lower sorption capacity and lower UV light utilization. The difference in the reactivity between investigated pollutants was discussed in relationship with their size, structure and sorption ability. (C) 2015 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.
T2  - Advanced Powder Technology
T1  - Structure-activity relationship of nanosized porous PEG-modified TiO2 powders in degradation of organic pollutants
VL  - 26
IS  - 4
SP  - 1162
EP  - 1170
DO  - 10.1016/j.apt.2015.05.012
ER  - 
@article{
author = "Lončarević, Davor and Dostanić, Jasmina and Radonjić, Vojkan D. and Radosavljević-Mihajlović, Ana S. and Jovanović, Dušan M.",
year = "2015",
abstract = "This study aims to gain insights in structure-activity relationship of TiO2 photocatalysts. For this purpose photocatalysts were synthesized via classical sol-gel method using titanium isopropoxide as a precursor and polyethylene glycols (PEGs) of different molecular mass (M-n = 200, 600, 2000, 10,000) as a template agents. Incorporating PEG into TiO2 network enhanced not only catalyst porous structure, but also increased the fraction of anatase phase. The use of low-molecular-weight PEGs resulted in catalysts with increased anatase content and enlarged specific surface area. The catalyst photoactivity was estimated through degradation of organic pollutants: Reactive Black 5, arylazo pyridone dye and phenol. The results revealed that the photoactivity was following the same order independently of target pollutant: TiO2/P600 GT TiO2/P200 GT TiO2/P2000 GT TiO2/P10000 GT TiO2. BET surface area and anatase fraction, rather than pore diameter or pore volume, were found to be predominant catalyst property determining the activity for particular reaction system. The existence of synergistic effect between anatase and rutile phases was confirmed for the most active catalysts TiO2/P200 and TiO2/P600. These catalysts showed similar activity in dye degradation, while TiO2/P200 displayed significantly lower activity in phenol degradation, which was attributed to its lower sorption capacity and lower UV light utilization. The difference in the reactivity between investigated pollutants was discussed in relationship with their size, structure and sorption ability. (C) 2015 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.",
journal = "Advanced Powder Technology",
title = "Structure-activity relationship of nanosized porous PEG-modified TiO2 powders in degradation of organic pollutants",
volume = "26",
number = "4",
pages = "1162-1170",
doi = "10.1016/j.apt.2015.05.012"
}
Lončarević, D., Dostanić, J., Radonjić, V. D., Radosavljević-Mihajlović, A. S.,& Jovanović, D. M.. (2015). Structure-activity relationship of nanosized porous PEG-modified TiO2 powders in degradation of organic pollutants. in Advanced Powder Technology, 26(4), 1162-1170.
https://doi.org/10.1016/j.apt.2015.05.012
Lončarević D, Dostanić J, Radonjić VD, Radosavljević-Mihajlović AS, Jovanović DM. Structure-activity relationship of nanosized porous PEG-modified TiO2 powders in degradation of organic pollutants. in Advanced Powder Technology. 2015;26(4):1162-1170.
doi:10.1016/j.apt.2015.05.012 .
Lončarević, Davor, Dostanić, Jasmina, Radonjić, Vojkan D., Radosavljević-Mihajlović, Ana S., Jovanović, Dušan M., "Structure-activity relationship of nanosized porous PEG-modified TiO2 powders in degradation of organic pollutants" in Advanced Powder Technology, 26, no. 4 (2015):1162-1170,
https://doi.org/10.1016/j.apt.2015.05.012 . .
7
6
9