Milosavljević, Aleksandar R.

Link to this page

Authority KeyName Variants
orcid::0000-0003-3541-8872
  • Milosavljević, Aleksandar R. (8)
Projects
Physics of collisions and photo processes in atomic, (bio)molecular and nanosized systems Size-, shape- and structure- dependent properties of nanoparticles and nanocomposites
Functional, Functionalized and Advanced Nanomaterials Materials of Reduced Dimensions for Efficient Light Harvesting and Energy conversion
[20120810] Bilateral Austrian-Serbian project "Interaction of charged particles with capillaries" [451-03-01039/2015-09/25]
Department of Energy Office of Science [DE-FC02-04ER15533 (NDRL# 5292)] DISCO beamline of Synchrotron SOLEIL (France) [20120810]
European COST Actions [CA15107] European COST Actions [MP1306]
Hungarian SRF OTKA [NN 103279], Hungarian Academy, Serbian Academy VRE for regional Interdisciplinary communities in Southeast Europe and the Eastern Mediterranean
Modeling and Numerical Simulations of Complex Many-Body Systems Ministry of Education, Science and Technological Development of the Republic of Serbia
Ministry of Education, Science, and Technological Development of the Republic of Serbia National Research, Development and Innovation Office (NKFIH) [KH 126886]
SOLEIL [20190421] SOLEIL [no. 2019042]
SOLEIL synchrotron radiation facility (20160324) SOLEIL synchrotron radiation facility (20170609)
Stiftung Aktion Osterreich-Ungarn [96ou9] U.S. Department of Energy Office of Science, Office of Basic Energy Sciences (DE-FC02-04ER15533 (NDRL no: 5205))
US Department of Energy Office of Science, Office of Basic Energy Sciences under award number DE-FC02-04ER15533 (NDRL no. 5356)

Author's Bibliography

Electronic Properties of Silver–Bismuth Iodide Rudorffite Nanoplatelets

Danilović, Danijela; Milosavljević, Aleksandar R.; Sapkota, Pitambar; Dojčilović, Radovan; Tošić, Dragana; Vukmirović, Nenad; Jocić, Milan; Đoković, Vladimir; Ptasinska, Sylwia; Božanić, Dušan K.

(2022)

TY  - JOUR
AU  - Danilović, Danijela
AU  - Milosavljević, Aleksandar R.
AU  - Sapkota, Pitambar
AU  - Dojčilović, Radovan
AU  - Tošić, Dragana
AU  - Vukmirović, Nenad
AU  - Jocić, Milan
AU  - Đoković, Vladimir
AU  - Ptasinska, Sylwia
AU  - Božanić, Dušan K.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10402
AB  - Silver–bismuth iodide (Ag–Bi–I) rudorffites are chemically stable and non-toxic materials that can act as a possible lead-free replacement for methylammonium lead halides in optoelectronic applications. We report on a simple route for fabricating Ag–Bi–I colloidal nanoplatelets approximately 160 nm in lateral dimensions and 1–8 nm in thickness via exfoliation of Ag–Bi–I rudorffite powders in acetonitrile. The valence band electronic structure of isolated Ag–Bi–I nanoplatelets was investigated using synchrotron radiation to perform X-ray aerosol photoelectron spectroscopy (XAPS). The ionization energy of the material was found to be 6.1 ± 0.2 eV with respect to the vacuum level. UV–vis absorption and photoluminescence spectroscopies of the Ag–Bi–I colloids showed that the optical properties of the nanoplatelets originate from I 5p to Bi 6p and I 5p to I 5p transitions, which is further confirmed by density functional theory (DFT) calculations. Finally, calculations based on the DFT and k · p theoretical methods showed that the quantum confinement effect is very weak in the system studied.
T2  - The Journal of Physical Chemistry C
T1  - Electronic Properties of Silver–Bismuth Iodide Rudorffite Nanoplatelets
VL  - 126
IS  - 32
SP  - 13739
EP  - 13747
DO  - 10.1021/acs.jpcc.2c03208
ER  - 
@article{
author = "Danilović, Danijela and Milosavljević, Aleksandar R. and Sapkota, Pitambar and Dojčilović, Radovan and Tošić, Dragana and Vukmirović, Nenad and Jocić, Milan and Đoković, Vladimir and Ptasinska, Sylwia and Božanić, Dušan K.",
year = "2022",
abstract = "Silver–bismuth iodide (Ag–Bi–I) rudorffites are chemically stable and non-toxic materials that can act as a possible lead-free replacement for methylammonium lead halides in optoelectronic applications. We report on a simple route for fabricating Ag–Bi–I colloidal nanoplatelets approximately 160 nm in lateral dimensions and 1–8 nm in thickness via exfoliation of Ag–Bi–I rudorffite powders in acetonitrile. The valence band electronic structure of isolated Ag–Bi–I nanoplatelets was investigated using synchrotron radiation to perform X-ray aerosol photoelectron spectroscopy (XAPS). The ionization energy of the material was found to be 6.1 ± 0.2 eV with respect to the vacuum level. UV–vis absorption and photoluminescence spectroscopies of the Ag–Bi–I colloids showed that the optical properties of the nanoplatelets originate from I 5p to Bi 6p and I 5p to I 5p transitions, which is further confirmed by density functional theory (DFT) calculations. Finally, calculations based on the DFT and k · p theoretical methods showed that the quantum confinement effect is very weak in the system studied.",
journal = "The Journal of Physical Chemistry C",
title = "Electronic Properties of Silver–Bismuth Iodide Rudorffite Nanoplatelets",
volume = "126",
number = "32",
pages = "13739-13747",
doi = "10.1021/acs.jpcc.2c03208"
}
Danilović, D., Milosavljević, A. R., Sapkota, P., Dojčilović, R., Tošić, D., Vukmirović, N., Jocić, M., Đoković, V., Ptasinska, S.,& Božanić, D. K.. (2022). Electronic Properties of Silver–Bismuth Iodide Rudorffite Nanoplatelets. in The Journal of Physical Chemistry C, 126(32), 13739-13747.
https://doi.org/10.1021/acs.jpcc.2c03208
Danilović D, Milosavljević AR, Sapkota P, Dojčilović R, Tošić D, Vukmirović N, Jocić M, Đoković V, Ptasinska S, Božanić DK. Electronic Properties of Silver–Bismuth Iodide Rudorffite Nanoplatelets. in The Journal of Physical Chemistry C. 2022;126(32):13739-13747.
doi:10.1021/acs.jpcc.2c03208 .
Danilović, Danijela, Milosavljević, Aleksandar R., Sapkota, Pitambar, Dojčilović, Radovan, Tošić, Dragana, Vukmirović, Nenad, Jocić, Milan, Đoković, Vladimir, Ptasinska, Sylwia, Božanić, Dušan K., "Electronic Properties of Silver–Bismuth Iodide Rudorffite Nanoplatelets" in The Journal of Physical Chemistry C, 126, no. 32 (2022):13739-13747,
https://doi.org/10.1021/acs.jpcc.2c03208 . .
2

Aerosol Synthesis and Gas-Phase Photoelectron Spectroscopy of Ag-Bi-I Nanosystems

Danilović, Danijela; Božanić, Dušan K.; Dojčilović, Radovan; Vukmirović, Nenad; Sapkota, Pitambar; Vukašinović, Ivana; Đoković, Vladimir; Bozek, John; Nicolas, Christophe; Ptasinska, Sylwia; Milosavljević, Aleksandar R.

(2020)

TY  - JOUR
AU  - Danilović, Danijela
AU  - Božanić, Dušan K.
AU  - Dojčilović, Radovan
AU  - Vukmirović, Nenad
AU  - Sapkota, Pitambar
AU  - Vukašinović, Ivana
AU  - Đoković, Vladimir
AU  - Bozek, John
AU  - Nicolas, Christophe
AU  - Ptasinska, Sylwia
AU  - Milosavljević, Aleksandar R.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9732
AB  - We report on the aerosol generation of ligand-free silver iodobismuthate (Ag-Bi-I) nanoparticles (NPs) and on in situ investigation of their electronic structure using synchrotron radiation soft X-ray aerosol photoelectron spectroscopy (XAPS). The structural and morphological characterizations revealed the aerosol to be composed of spherical rudorffite Ag3BiI6 particles, approximately 100 nm in size. The XAPS showed well-resolved signals from all expected elements (Ag, Bi, and I) and allowed estimation of the NP work function to be about 4.5 eV. The ionization energy of Ag3BiI6 NPs was determined to be 6.1 eV that is in good agreement with our calculations based on a hybrid functional approach. The presented method of production of Ag3BiI6 aerosol can prove beneficial for the future development of Ag-Bi-I-based photovoltaic materials, since it allows the deposition of Ag-Bi-I particles on large surface areas of arbitrary shape and roughness.
T2  - The Journal of Physical Chemistry C
T1  - Aerosol Synthesis and Gas-Phase Photoelectron Spectroscopy of Ag-Bi-I Nanosystems
VL  - 124
IS  - 43
SP  - 23930
EP  - 23937
DO  - 10.1021/acs.jpcc.0c06819
ER  - 
@article{
author = "Danilović, Danijela and Božanić, Dušan K. and Dojčilović, Radovan and Vukmirović, Nenad and Sapkota, Pitambar and Vukašinović, Ivana and Đoković, Vladimir and Bozek, John and Nicolas, Christophe and Ptasinska, Sylwia and Milosavljević, Aleksandar R.",
year = "2020",
abstract = "We report on the aerosol generation of ligand-free silver iodobismuthate (Ag-Bi-I) nanoparticles (NPs) and on in situ investigation of their electronic structure using synchrotron radiation soft X-ray aerosol photoelectron spectroscopy (XAPS). The structural and morphological characterizations revealed the aerosol to be composed of spherical rudorffite Ag3BiI6 particles, approximately 100 nm in size. The XAPS showed well-resolved signals from all expected elements (Ag, Bi, and I) and allowed estimation of the NP work function to be about 4.5 eV. The ionization energy of Ag3BiI6 NPs was determined to be 6.1 eV that is in good agreement with our calculations based on a hybrid functional approach. The presented method of production of Ag3BiI6 aerosol can prove beneficial for the future development of Ag-Bi-I-based photovoltaic materials, since it allows the deposition of Ag-Bi-I particles on large surface areas of arbitrary shape and roughness.",
journal = "The Journal of Physical Chemistry C",
title = "Aerosol Synthesis and Gas-Phase Photoelectron Spectroscopy of Ag-Bi-I Nanosystems",
volume = "124",
number = "43",
pages = "23930-23937",
doi = "10.1021/acs.jpcc.0c06819"
}
Danilović, D., Božanić, D. K., Dojčilović, R., Vukmirović, N., Sapkota, P., Vukašinović, I., Đoković, V., Bozek, J., Nicolas, C., Ptasinska, S.,& Milosavljević, A. R.. (2020). Aerosol Synthesis and Gas-Phase Photoelectron Spectroscopy of Ag-Bi-I Nanosystems. in The Journal of Physical Chemistry C, 124(43), 23930-23937.
https://doi.org/10.1021/acs.jpcc.0c06819
Danilović D, Božanić DK, Dojčilović R, Vukmirović N, Sapkota P, Vukašinović I, Đoković V, Bozek J, Nicolas C, Ptasinska S, Milosavljević AR. Aerosol Synthesis and Gas-Phase Photoelectron Spectroscopy of Ag-Bi-I Nanosystems. in The Journal of Physical Chemistry C. 2020;124(43):23930-23937.
doi:10.1021/acs.jpcc.0c06819 .
Danilović, Danijela, Božanić, Dušan K., Dojčilović, Radovan, Vukmirović, Nenad, Sapkota, Pitambar, Vukašinović, Ivana, Đoković, Vladimir, Bozek, John, Nicolas, Christophe, Ptasinska, Sylwia, Milosavljević, Aleksandar R., "Aerosol Synthesis and Gas-Phase Photoelectron Spectroscopy of Ag-Bi-I Nanosystems" in The Journal of Physical Chemistry C, 124, no. 43 (2020):23930-23937,
https://doi.org/10.1021/acs.jpcc.0c06819 . .
1
13
4
12

Electronic Properties of Free-Standing Surfactant-Capped Lead Halide Perovskite Nanocrystals Isolated in Vacuo

Milosavljević, Aleksandar R.; Božanić, Dušan K.; Sadhu, Subha; Vukmirović, Nenad; Dojčilović, Radovan; Sapkota, Pitambar; Huang, Weixin; Bozek, John D.; Nicolas, Christophe; Nahon, Laurent; Ptasinska, Sylwia

(2018)

TY  - JOUR
AU  - Milosavljević, Aleksandar R.
AU  - Božanić, Dušan K.
AU  - Sadhu, Subha
AU  - Vukmirović, Nenad
AU  - Dojčilović, Radovan
AU  - Sapkota, Pitambar
AU  - Huang, Weixin
AU  - Bozek, John D.
AU  - Nicolas, Christophe
AU  - Nahon, Laurent
AU  - Ptasinska, Sylwia
PY  - 2018
UR  - http://pubs.acs.org/doi/10.1021/acs.jpclett.8b01466
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7915
AB  - We report an investigation of lead halide perovskite CH3NH3PbBr3 nanocrystals and associated ligand molecules by combining several different state-of-the-art experimental techniques, including synchrotron radiation-based XPS and VUV PES of free-standing nanocrystals isolated in vacuum. By using this novel approach for perovskite materials, we could directly obtain complete band alignment to vacuum of both CH3NH3PbBr3 nanocrystals and the ligands widely used in their preparation. We discuss the possible influence of the ligand molecules to apparent perovskite properties, and we compare the electronic properties of nanocrystals to those of bulk material. The experimental results were supported by DFT calculations.
T2  - Journal of Physical Chemistry Letters
T1  - Electronic Properties of Free-Standing Surfactant-Capped Lead Halide Perovskite Nanocrystals Isolated in Vacuo
VL  - 9
IS  - 13
SP  - 3604
EP  - 3611
DO  - 10.1021/acs.jpclett.8b01466
ER  - 
@article{
author = "Milosavljević, Aleksandar R. and Božanić, Dušan K. and Sadhu, Subha and Vukmirović, Nenad and Dojčilović, Radovan and Sapkota, Pitambar and Huang, Weixin and Bozek, John D. and Nicolas, Christophe and Nahon, Laurent and Ptasinska, Sylwia",
year = "2018",
abstract = "We report an investigation of lead halide perovskite CH3NH3PbBr3 nanocrystals and associated ligand molecules by combining several different state-of-the-art experimental techniques, including synchrotron radiation-based XPS and VUV PES of free-standing nanocrystals isolated in vacuum. By using this novel approach for perovskite materials, we could directly obtain complete band alignment to vacuum of both CH3NH3PbBr3 nanocrystals and the ligands widely used in their preparation. We discuss the possible influence of the ligand molecules to apparent perovskite properties, and we compare the electronic properties of nanocrystals to those of bulk material. The experimental results were supported by DFT calculations.",
journal = "Journal of Physical Chemistry Letters",
title = "Electronic Properties of Free-Standing Surfactant-Capped Lead Halide Perovskite Nanocrystals Isolated in Vacuo",
volume = "9",
number = "13",
pages = "3604-3611",
doi = "10.1021/acs.jpclett.8b01466"
}
Milosavljević, A. R., Božanić, D. K., Sadhu, S., Vukmirović, N., Dojčilović, R., Sapkota, P., Huang, W., Bozek, J. D., Nicolas, C., Nahon, L.,& Ptasinska, S.. (2018). Electronic Properties of Free-Standing Surfactant-Capped Lead Halide Perovskite Nanocrystals Isolated in Vacuo. in Journal of Physical Chemistry Letters, 9(13), 3604-3611.
https://doi.org/10.1021/acs.jpclett.8b01466
Milosavljević AR, Božanić DK, Sadhu S, Vukmirović N, Dojčilović R, Sapkota P, Huang W, Bozek JD, Nicolas C, Nahon L, Ptasinska S. Electronic Properties of Free-Standing Surfactant-Capped Lead Halide Perovskite Nanocrystals Isolated in Vacuo. in Journal of Physical Chemistry Letters. 2018;9(13):3604-3611.
doi:10.1021/acs.jpclett.8b01466 .
Milosavljević, Aleksandar R., Božanić, Dušan K., Sadhu, Subha, Vukmirović, Nenad, Dojčilović, Radovan, Sapkota, Pitambar, Huang, Weixin, Bozek, John D., Nicolas, Christophe, Nahon, Laurent, Ptasinska, Sylwia, "Electronic Properties of Free-Standing Surfactant-Capped Lead Halide Perovskite Nanocrystals Isolated in Vacuo" in Journal of Physical Chemistry Letters, 9, no. 13 (2018):3604-3611,
https://doi.org/10.1021/acs.jpclett.8b01466 . .
1
18
10
18

Electron transmission through a steel capillary

Maljković, Jelena B.; Borka, Duško; Ranković, Miloš Lj.; Marinković, Bratislav P.; Milosavljević, Aleksandar R.; Lemell, Christoph; Tokesi, Karoly

(2018)

TY  - JOUR
AU  - Maljković, Jelena B.
AU  - Borka, Duško
AU  - Ranković, Miloš Lj.
AU  - Marinković, Bratislav P.
AU  - Milosavljević, Aleksandar R.
AU  - Lemell, Christoph
AU  - Tokesi, Karoly
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7656
AB  - The transmission of low-energy electrons through a macroscopic steel capillary has been investigated both experimentally and theoretically. The length of the steel capillary was L = 19.5 mm and the inner diameter was d = 0.9 mm. The kinetic energy distribution of electrons transmitted through the steel capillary was recorded for a tilt angle of psi = 2.6 degrees of the incident electron beam with respect to the capillary axis. Accompanying simulations based on classical transport theory reproduce the experimental data to a high degree of agreement. Transmission for other tilt angles has also been simulated to investigate the influence of the tilt angle on the guiding efficiency.
T2  - Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms
T1  - Electron transmission through a steel capillary
VL  - 423
SP  - 87
EP  - 91
DO  - 10.1016/j.nimb.2018.03.020
ER  - 
@article{
author = "Maljković, Jelena B. and Borka, Duško and Ranković, Miloš Lj. and Marinković, Bratislav P. and Milosavljević, Aleksandar R. and Lemell, Christoph and Tokesi, Karoly",
year = "2018",
abstract = "The transmission of low-energy electrons through a macroscopic steel capillary has been investigated both experimentally and theoretically. The length of the steel capillary was L = 19.5 mm and the inner diameter was d = 0.9 mm. The kinetic energy distribution of electrons transmitted through the steel capillary was recorded for a tilt angle of psi = 2.6 degrees of the incident electron beam with respect to the capillary axis. Accompanying simulations based on classical transport theory reproduce the experimental data to a high degree of agreement. Transmission for other tilt angles has also been simulated to investigate the influence of the tilt angle on the guiding efficiency.",
journal = "Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms",
title = "Electron transmission through a steel capillary",
volume = "423",
pages = "87-91",
doi = "10.1016/j.nimb.2018.03.020"
}
Maljković, J. B., Borka, D., Ranković, M. Lj., Marinković, B. P., Milosavljević, A. R., Lemell, C.,& Tokesi, K.. (2018). Electron transmission through a steel capillary. in Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms, 423, 87-91.
https://doi.org/10.1016/j.nimb.2018.03.020
Maljković JB, Borka D, Ranković ML, Marinković BP, Milosavljević AR, Lemell C, Tokesi K. Electron transmission through a steel capillary. in Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms. 2018;423:87-91.
doi:10.1016/j.nimb.2018.03.020 .
Maljković, Jelena B., Borka, Duško, Ranković, Miloš Lj., Marinković, Bratislav P., Milosavljević, Aleksandar R., Lemell, Christoph, Tokesi, Karoly, "Electron transmission through a steel capillary" in Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms, 423 (2018):87-91,
https://doi.org/10.1016/j.nimb.2018.03.020 . .
1
1
1

A fluorescent nanoprobe for single bacterium tracking: functionalization of silver nanoparticles with tryptophan to probe the nanoparticle accumulation with single cell resolution

Dojčilović, Radovan; Pajović, Jelena D.; Božanić, Dušan K.; Vodnik, Vesna; Dimitrijević-Branković, Suzana I.; Milosavljević, Aleksandar R.; Kascakova, S.; Refregiers, M.; Đoković, Vladimir

(2016)

TY  - JOUR
AU  - Dojčilović, Radovan
AU  - Pajović, Jelena D.
AU  - Božanić, Dušan K.
AU  - Vodnik, Vesna
AU  - Dimitrijević-Branković, Suzana I.
AU  - Milosavljević, Aleksandar R.
AU  - Kascakova, S.
AU  - Refregiers, M.
AU  - Đoković, Vladimir
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/971
AB  - The investigation of the interaction of silver nanoparticles and live bacteria cells is of particular importance for understanding and controlling their bactericidal properties. In this study, the process of internalization of silver nanoparticles in Escherichia coli cells was followed by means of synchrotron excitation deep ultraviolet (DUV) fluorescence imaging. Antimicrobial nanostructures that can absorb and emit light in the UV region were prepared by functionalization of silver nanoparticles with tryptophan amino acid and used as environmentally sensitive fluorescent probes. The nanostructures were characterized by morphological (TEM) and spectroscopic methods (UV-vis, FTIR, XPS, and photoluminescence). The TEM images and the analyses of the UV-vis spectra suggested that the addition of tryptophan led to the formation of hybrid nanostructures with pronounced eccentricity and larger sizes with respect to that of the initial silver nanoparticles. The DUV imaging showed that it was possible to distinguish the fluorescent signal pertaining to silver-tryptophan nanostructures from the autofluorescence of the bacteria. The spatial resolution of the fluorescence images was 154 nm which was sufficient to perform analyses of the accumulation of the nanostructures within a single bacterium. The DUV imaging results imply that the tryptophan-functionalized silver nanoparticles interact with cell membranes via insertion of the amino acid into the phospholipid bilayer and enter the cells.
T2  - Analyst
T1  - A fluorescent nanoprobe for single bacterium tracking: functionalization of silver nanoparticles with tryptophan to probe the nanoparticle accumulation with single cell resolution
VL  - 141
IS  - 6
SP  - 1988
EP  - 1996
DO  - 10.1039/c5an02358k
ER  - 
@article{
author = "Dojčilović, Radovan and Pajović, Jelena D. and Božanić, Dušan K. and Vodnik, Vesna and Dimitrijević-Branković, Suzana I. and Milosavljević, Aleksandar R. and Kascakova, S. and Refregiers, M. and Đoković, Vladimir",
year = "2016",
abstract = "The investigation of the interaction of silver nanoparticles and live bacteria cells is of particular importance for understanding and controlling their bactericidal properties. In this study, the process of internalization of silver nanoparticles in Escherichia coli cells was followed by means of synchrotron excitation deep ultraviolet (DUV) fluorescence imaging. Antimicrobial nanostructures that can absorb and emit light in the UV region were prepared by functionalization of silver nanoparticles with tryptophan amino acid and used as environmentally sensitive fluorescent probes. The nanostructures were characterized by morphological (TEM) and spectroscopic methods (UV-vis, FTIR, XPS, and photoluminescence). The TEM images and the analyses of the UV-vis spectra suggested that the addition of tryptophan led to the formation of hybrid nanostructures with pronounced eccentricity and larger sizes with respect to that of the initial silver nanoparticles. The DUV imaging showed that it was possible to distinguish the fluorescent signal pertaining to silver-tryptophan nanostructures from the autofluorescence of the bacteria. The spatial resolution of the fluorescence images was 154 nm which was sufficient to perform analyses of the accumulation of the nanostructures within a single bacterium. The DUV imaging results imply that the tryptophan-functionalized silver nanoparticles interact with cell membranes via insertion of the amino acid into the phospholipid bilayer and enter the cells.",
journal = "Analyst",
title = "A fluorescent nanoprobe for single bacterium tracking: functionalization of silver nanoparticles with tryptophan to probe the nanoparticle accumulation with single cell resolution",
volume = "141",
number = "6",
pages = "1988-1996",
doi = "10.1039/c5an02358k"
}
Dojčilović, R., Pajović, J. D., Božanić, D. K., Vodnik, V., Dimitrijević-Branković, S. I., Milosavljević, A. R., Kascakova, S., Refregiers, M.,& Đoković, V.. (2016). A fluorescent nanoprobe for single bacterium tracking: functionalization of silver nanoparticles with tryptophan to probe the nanoparticle accumulation with single cell resolution. in Analyst, 141(6), 1988-1996.
https://doi.org/10.1039/c5an02358k
Dojčilović R, Pajović JD, Božanić DK, Vodnik V, Dimitrijević-Branković SI, Milosavljević AR, Kascakova S, Refregiers M, Đoković V. A fluorescent nanoprobe for single bacterium tracking: functionalization of silver nanoparticles with tryptophan to probe the nanoparticle accumulation with single cell resolution. in Analyst. 2016;141(6):1988-1996.
doi:10.1039/c5an02358k .
Dojčilović, Radovan, Pajović, Jelena D., Božanić, Dušan K., Vodnik, Vesna, Dimitrijević-Branković, Suzana I., Milosavljević, Aleksandar R., Kascakova, S., Refregiers, M., Đoković, Vladimir, "A fluorescent nanoprobe for single bacterium tracking: functionalization of silver nanoparticles with tryptophan to probe the nanoparticle accumulation with single cell resolution" in Analyst, 141, no. 6 (2016):1988-1996,
https://doi.org/10.1039/c5an02358k . .
13
9
13

Tryptophan-functionalized gold nanoparticles for deep UV imaging of microbial cells

Pajović, Jelena D.; Dojčilović, Radovan; Božanić, Dušan K.; Kaščakova, Slavka; Refregiers, Matthieu; Dimitrijević-Branković, Suzana I.; Vodnik, Vesna; Milosavljević, Aleksandar R.; Piscopiello, Emanuela; Luyt, Adriaan S.; Đoković, Vladimir

(Elsevier, 2015)

TY  - JOUR
AU  - Pajović, Jelena D.
AU  - Dojčilović, Radovan
AU  - Božanić, Dušan K.
AU  - Kaščakova, Slavka
AU  - Refregiers, Matthieu
AU  - Dimitrijević-Branković, Suzana I.
AU  - Vodnik, Vesna
AU  - Milosavljević, Aleksandar R.
AU  - Piscopiello, Emanuela
AU  - Luyt, Adriaan S.
AU  - Đoković, Vladimir
PY  - 2015
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/875
AB  - Biocompatible fluorescent nanostructures were prepared by a functionalization of gold nanoparticles with the amino acid tryptophan. The gold-tryptophan bioconjugates were investigated by TEM and HRTEM and various spectroscopy methods (XPS, FTIR, UV-vis and photoluminescence). It was found that the gold nanoparticles, initially 8 nm in diameter, aggregate in the presence of the amino acid. From the XPS and FTIR spectroscopy results, it was concluded that the tryptophan gold interactions mainly take place via indole and carboxyl groups. Although the indole group is involved in the interaction with the gold surfaces, the tryptophan-gold hybrids showed strong fluorescence due to the presence of multilayers of tryptophan. Deep ultra violet (DUV) imaging performed at the SOLEIL synchrotron showed that It is possible to detect these hybrid nanostructures within Escherichia coli cells. (c) 2015 Elsevier B.V. All rights reserved.
PB  - Elsevier
T2  - Colloids and Surfaces. B: Biointerfaces
T1  - Tryptophan-functionalized gold nanoparticles for deep UV imaging of microbial cells
VL  - 135
SP  - 742
EP  - 750
DO  - 10.1016/j.colsurfb.2015.08.050
ER  - 
@article{
author = "Pajović, Jelena D. and Dojčilović, Radovan and Božanić, Dušan K. and Kaščakova, Slavka and Refregiers, Matthieu and Dimitrijević-Branković, Suzana I. and Vodnik, Vesna and Milosavljević, Aleksandar R. and Piscopiello, Emanuela and Luyt, Adriaan S. and Đoković, Vladimir",
year = "2015",
abstract = "Biocompatible fluorescent nanostructures were prepared by a functionalization of gold nanoparticles with the amino acid tryptophan. The gold-tryptophan bioconjugates were investigated by TEM and HRTEM and various spectroscopy methods (XPS, FTIR, UV-vis and photoluminescence). It was found that the gold nanoparticles, initially 8 nm in diameter, aggregate in the presence of the amino acid. From the XPS and FTIR spectroscopy results, it was concluded that the tryptophan gold interactions mainly take place via indole and carboxyl groups. Although the indole group is involved in the interaction with the gold surfaces, the tryptophan-gold hybrids showed strong fluorescence due to the presence of multilayers of tryptophan. Deep ultra violet (DUV) imaging performed at the SOLEIL synchrotron showed that It is possible to detect these hybrid nanostructures within Escherichia coli cells. (c) 2015 Elsevier B.V. All rights reserved.",
publisher = "Elsevier",
journal = "Colloids and Surfaces. B: Biointerfaces",
title = "Tryptophan-functionalized gold nanoparticles for deep UV imaging of microbial cells",
volume = "135",
pages = "742-750",
doi = "10.1016/j.colsurfb.2015.08.050"
}
Pajović, J. D., Dojčilović, R., Božanić, D. K., Kaščakova, S., Refregiers, M., Dimitrijević-Branković, S. I., Vodnik, V., Milosavljević, A. R., Piscopiello, E., Luyt, A. S.,& Đoković, V.. (2015). Tryptophan-functionalized gold nanoparticles for deep UV imaging of microbial cells. in Colloids and Surfaces. B: Biointerfaces
Elsevier., 135, 742-750.
https://doi.org/10.1016/j.colsurfb.2015.08.050
Pajović JD, Dojčilović R, Božanić DK, Kaščakova S, Refregiers M, Dimitrijević-Branković SI, Vodnik V, Milosavljević AR, Piscopiello E, Luyt AS, Đoković V. Tryptophan-functionalized gold nanoparticles for deep UV imaging of microbial cells. in Colloids and Surfaces. B: Biointerfaces. 2015;135:742-750.
doi:10.1016/j.colsurfb.2015.08.050 .
Pajović, Jelena D., Dojčilović, Radovan, Božanić, Dušan K., Kaščakova, Slavka, Refregiers, Matthieu, Dimitrijević-Branković, Suzana I., Vodnik, Vesna, Milosavljević, Aleksandar R., Piscopiello, Emanuela, Luyt, Adriaan S., Đoković, Vladimir, "Tryptophan-functionalized gold nanoparticles for deep UV imaging of microbial cells" in Colloids and Surfaces. B: Biointerfaces, 135 (2015):742-750,
https://doi.org/10.1016/j.colsurfb.2015.08.050 . .
36
26
37

Study of electron transmission through a metallic capillary

Milosavljević, Aleksandar R.; Ranković, Miloš Lj.; Borka, Duško; Maljković, Jelena B.; Bereczky, R. J.; Marinković, Bratislav P.; Tokesi, Karoly

(2015)

TY  - CONF
AU  - Milosavljević, Aleksandar R.
AU  - Ranković, Miloš Lj.
AU  - Borka, Duško
AU  - Maljković, Jelena B.
AU  - Bereczky, R. J.
AU  - Marinković, Bratislav P.
AU  - Tokesi, Karoly
PY  - 2015
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7089
AB  - In this work we study the transmission of charged particles through a single cylindrically shaped metallic capillary of microscopic dimensions with a large aspect ratio. We used electrons as projectiles. Our results suggest the existence of guiding of the electron beam by a metallic capillary.
C3  - Journal of Physics: Conference Series
T1  - Study of electron transmission through a metallic capillary
VL  - 635
DO  - 10.1088/1742-6596/635/6/062011
ER  - 
@conference{
author = "Milosavljević, Aleksandar R. and Ranković, Miloš Lj. and Borka, Duško and Maljković, Jelena B. and Bereczky, R. J. and Marinković, Bratislav P. and Tokesi, Karoly",
year = "2015",
abstract = "In this work we study the transmission of charged particles through a single cylindrically shaped metallic capillary of microscopic dimensions with a large aspect ratio. We used electrons as projectiles. Our results suggest the existence of guiding of the electron beam by a metallic capillary.",
journal = "Journal of Physics: Conference Series",
title = "Study of electron transmission through a metallic capillary",
volume = "635",
doi = "10.1088/1742-6596/635/6/062011"
}
Milosavljević, A. R., Ranković, M. Lj., Borka, D., Maljković, J. B., Bereczky, R. J., Marinković, B. P.,& Tokesi, K.. (2015). Study of electron transmission through a metallic capillary. in Journal of Physics: Conference Series, 635.
https://doi.org/10.1088/1742-6596/635/6/062011
Milosavljević AR, Ranković ML, Borka D, Maljković JB, Bereczky RJ, Marinković BP, Tokesi K. Study of electron transmission through a metallic capillary. in Journal of Physics: Conference Series. 2015;635.
doi:10.1088/1742-6596/635/6/062011 .
Milosavljević, Aleksandar R., Ranković, Miloš Lj., Borka, Duško, Maljković, Jelena B., Bereczky, R. J., Marinković, Bratislav P., Tokesi, Karoly, "Study of electron transmission through a metallic capillary" in Journal of Physics: Conference Series, 635 (2015),
https://doi.org/10.1088/1742-6596/635/6/062011 . .

Study of electron transmission through a platinum tube

Milosavljević, Aleksandar R.; Ranković, Miloš Lj.; Borka, Duško; Maljković, Jelena B.; Bereczky, R. J.; Marinković, Bratislav P.; Tokesi, Karoly

(2015)

TY  - JOUR
AU  - Milosavljević, Aleksandar R.
AU  - Ranković, Miloš Lj.
AU  - Borka, Duško
AU  - Maljković, Jelena B.
AU  - Bereczky, R. J.
AU  - Marinković, Bratislav P.
AU  - Tokesi, Karoly
PY  - 2015
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/609
AB  - We have measured 200 eV electron transmission through a single platinum tube of a diameter of 3.3 mm. We find that the transmission of electrons can be detected even at large tilt angles, where the tube is not transparent geometrically. The transmission drops down exponentially with increasing the tilt angle. The energy spectrum of detected electrons behind the tube contain contributions at lower energies due to both inelastic scattering and secondary electron emission. The spectrum is qualitatively in good agreement with the calculations performed for the flat Pt surface in order to understand and model the electron interaction processes that define the transmission and the energy spectrum at the exit. (C) 2014 Elsevier B.V. All rights reserved.
T2  - Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms
T1  - Study of electron transmission through a platinum tube
VL  - 354
SP  - 86
EP  - 89
DO  - 10.1016/j.nimb.2014.11.087
ER  - 
@article{
author = "Milosavljević, Aleksandar R. and Ranković, Miloš Lj. and Borka, Duško and Maljković, Jelena B. and Bereczky, R. J. and Marinković, Bratislav P. and Tokesi, Karoly",
year = "2015",
abstract = "We have measured 200 eV electron transmission through a single platinum tube of a diameter of 3.3 mm. We find that the transmission of electrons can be detected even at large tilt angles, where the tube is not transparent geometrically. The transmission drops down exponentially with increasing the tilt angle. The energy spectrum of detected electrons behind the tube contain contributions at lower energies due to both inelastic scattering and secondary electron emission. The spectrum is qualitatively in good agreement with the calculations performed for the flat Pt surface in order to understand and model the electron interaction processes that define the transmission and the energy spectrum at the exit. (C) 2014 Elsevier B.V. All rights reserved.",
journal = "Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms",
title = "Study of electron transmission through a platinum tube",
volume = "354",
pages = "86-89",
doi = "10.1016/j.nimb.2014.11.087"
}
Milosavljević, A. R., Ranković, M. Lj., Borka, D., Maljković, J. B., Bereczky, R. J., Marinković, B. P.,& Tokesi, K.. (2015). Study of electron transmission through a platinum tube. in Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms, 354, 86-89.
https://doi.org/10.1016/j.nimb.2014.11.087
Milosavljević AR, Ranković ML, Borka D, Maljković JB, Bereczky RJ, Marinković BP, Tokesi K. Study of electron transmission through a platinum tube. in Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms. 2015;354:86-89.
doi:10.1016/j.nimb.2014.11.087 .
Milosavljević, Aleksandar R., Ranković, Miloš Lj., Borka, Duško, Maljković, Jelena B., Bereczky, R. J., Marinković, Bratislav P., Tokesi, Karoly, "Study of electron transmission through a platinum tube" in Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms, 354 (2015):86-89,
https://doi.org/10.1016/j.nimb.2014.11.087 . .
4
5
5