Kleinova, Angela

Link to this page

Authority KeyName Variants
fd4e742d-8138-4ca9-86d0-e4f32d1964cf
  • Kleinova, Angela (7)
Projects
Thin films of single wall carbon nanotubes and graphene for electronic application Slovak Academy of Sciences
VEGA [2/0093/16] bilateral project Serbia-Slovakia [SK-SRB-2016-0038]
Multilateral scientific and technological cooperation in the Danube region [DS021] Vedecka grantova agentura MSVVaS SR a SAV (VEGA) [2/0093/16]
[APVV-15-0641] bilateral project Serbia-Slovakia (SK-SRB-2016-0038)
Bilateral project Serbia-Slovakia (SK-SRB-2016-0038) Czech Science Foundation (17-05095S)
Czech Science Foundation [17-05095S] European Union under REA (609427)
Grant Agency of the Czech Republic [17-05095S] SASPRO - Mobility Programme of Slovak Academy of Sciences: Supportive Fund for Excellent Scientists
Size-, shape- and structure- dependent properties of nanoparticles and nanocomposites Studying signal transduction pathways and epigenetic mechanisms that control human SOX genes expression: further insight into their roles in cell fate determination and differentiation
Multiscale structuring of polymer nanocomposites and functional materials based on different precursors multilateral scientific and technological cooperation in the Danube region [DS021]
Multilateral scientific and technological cooperation in the Danube region (DS-2016-021) People Programme (Marie Curie Actions) European Union's Seventh Framework Programme [REA Grant 609427]
People Programme (Marie Curie Actions) European Union's Seventh Framework Programme under REA [609427] People Programme (Marie Curie Actions) European Union's Seventh Framework Programme under REA (No. 609427)
SASPRO Programme (No. 1237/02/02-b) SASPRO Programme project (1237/02/02-b)
SASPRO Programme project [1237/02/02-b] SASPRO Programme [Project 1237/02/02-b]
SASPRO Programme Project [1237/02/02-b] STSM grant from the COST Action [CA16217]

Author's Bibliography

Gamma ray assisted modification of carbon quantum dot/polyurethane nanocomposites: structural, mechanical and photocatalytic study

Budimir, Milica; Marković, Zoran M.; Jovanović, Dragana J.; Vujisić, Miloš Lj.; Mičušik, Matej; Danko, Martin; Kleinova, Angela; Švajdlenkova, Helena; Špitalsky, Zdenko; Todorović-Marković, Biljana

(2019)

TY  - JOUR
AU  - Budimir, Milica
AU  - Marković, Zoran M.
AU  - Jovanović, Dragana J.
AU  - Vujisić, Miloš Lj.
AU  - Mičušik, Matej
AU  - Danko, Martin
AU  - Kleinova, Angela
AU  - Švajdlenkova, Helena
AU  - Špitalsky, Zdenko
AU  - Todorović-Marković, Biljana
PY  - 2019
UR  - http://xlink.rsc.org/?DOI=C9RA00500E
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8086
AB  - In recent years, water pollution and contamination had become a major threat to the ecosystem. However, the use of nanostructured materials has been proven as a very promising approach in the treatment of polluted water. The present study reports the results of the gamma ray-assisted modification of hydrophobic carbon quantum dot (hCQD)/polyurethane nanocomposites for photocatalytic degradation of organic dyes. Different characterization methods were applied to investigate the influence of the different doses of gamma irradiation (1, 10 and 200 kGy) on the physical and chemical properties of nanocomposites (morphology, chemical content, mechanical properties, wettability, and potential for singlet oxygen generation). Surface morphology and mechanical properties analyses showed that gamma rays induced insignificant changes in the structure of nanocomposites, but the potential for singlet oxygen generation increased significantly. Here we also explore, in detail, the photocatalytic properties of gamma-ray modified hCQDs/polyurethane nanocomposites. UV-vis analysis showed that the removal efficiency of the rose bengal dye reached up to 97% for the nanocomposite irradiated with the dose of 200 kGy.
T2  - RSC Advances
T1  - Gamma ray assisted modification of carbon quantum dot/polyurethane nanocomposites: structural, mechanical and photocatalytic study
VL  - 9
IS  - 11
SP  - 6278
EP  - 6286
DO  - 10.1039/C9RA00500E
ER  - 
@article{
author = "Budimir, Milica and Marković, Zoran M. and Jovanović, Dragana J. and Vujisić, Miloš Lj. and Mičušik, Matej and Danko, Martin and Kleinova, Angela and Švajdlenkova, Helena and Špitalsky, Zdenko and Todorović-Marković, Biljana",
year = "2019",
abstract = "In recent years, water pollution and contamination had become a major threat to the ecosystem. However, the use of nanostructured materials has been proven as a very promising approach in the treatment of polluted water. The present study reports the results of the gamma ray-assisted modification of hydrophobic carbon quantum dot (hCQD)/polyurethane nanocomposites for photocatalytic degradation of organic dyes. Different characterization methods were applied to investigate the influence of the different doses of gamma irradiation (1, 10 and 200 kGy) on the physical and chemical properties of nanocomposites (morphology, chemical content, mechanical properties, wettability, and potential for singlet oxygen generation). Surface morphology and mechanical properties analyses showed that gamma rays induced insignificant changes in the structure of nanocomposites, but the potential for singlet oxygen generation increased significantly. Here we also explore, in detail, the photocatalytic properties of gamma-ray modified hCQDs/polyurethane nanocomposites. UV-vis analysis showed that the removal efficiency of the rose bengal dye reached up to 97% for the nanocomposite irradiated with the dose of 200 kGy.",
journal = "RSC Advances",
title = "Gamma ray assisted modification of carbon quantum dot/polyurethane nanocomposites: structural, mechanical and photocatalytic study",
volume = "9",
number = "11",
pages = "6278-6286",
doi = "10.1039/C9RA00500E"
}
Budimir, M., Marković, Z. M., Jovanović, D. J., Vujisić, M. Lj., Mičušik, M., Danko, M., Kleinova, A., Švajdlenkova, H., Špitalsky, Z.,& Todorović-Marković, B.. (2019). Gamma ray assisted modification of carbon quantum dot/polyurethane nanocomposites: structural, mechanical and photocatalytic study. in RSC Advances, 9(11), 6278-6286.
https://doi.org/10.1039/C9RA00500E
Budimir M, Marković ZM, Jovanović DJ, Vujisić ML, Mičušik M, Danko M, Kleinova A, Švajdlenkova H, Špitalsky Z, Todorović-Marković B. Gamma ray assisted modification of carbon quantum dot/polyurethane nanocomposites: structural, mechanical and photocatalytic study. in RSC Advances. 2019;9(11):6278-6286.
doi:10.1039/C9RA00500E .
Budimir, Milica, Marković, Zoran M., Jovanović, Dragana J., Vujisić, Miloš Lj., Mičušik, Matej, Danko, Martin, Kleinova, Angela, Švajdlenkova, Helena, Špitalsky, Zdenko, Todorović-Marković, Biljana, "Gamma ray assisted modification of carbon quantum dot/polyurethane nanocomposites: structural, mechanical and photocatalytic study" in RSC Advances, 9, no. 11 (2019):6278-6286,
https://doi.org/10.1039/C9RA00500E . .
1
10
8
12

Graphene oxide size and structure pro-oxidant and antioxidant activity and photoinduced cytotoxicity relation on three cancer cell lines

Marković, Zoran M.; Jovanović, Svetlana P.; Mašković, Pavle Z.; Mojsin, Marija; Stevanović, Milena J.; Danko, Martin; Mičušik, Matej; Jovanović, Dragana J.; Kleinova, Angela; Špitalsky, Zdeno; Pavlović, Vladimir B.; Todorović-Marković, Biljana

(2019)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Jovanović, Svetlana P.
AU  - Mašković, Pavle Z.
AU  - Mojsin, Marija
AU  - Stevanović, Milena J.
AU  - Danko, Martin
AU  - Mičušik, Matej
AU  - Jovanović, Dragana J.
AU  - Kleinova, Angela
AU  - Špitalsky, Zdeno
AU  - Pavlović, Vladimir B.
AU  - Todorović-Marković, Biljana
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8591
AB  - Photoactive materials called photosensitizers can be used for treatment of different types of cancer in combination with light source. In this paper, we have investigated pro-oxidant and antioxidant potentials of four graphene based nanomaterials (graphene oxide-GO, graphene quantum dots-GQDs, carbon quantum dots-CQDs and N-doped carbon quantum dots-N-CQDs) depending on the presence/absence of visible light source. Structural and optical properties of these materials and their potentials for reactive oxygen species generation/quenching are investigated by applying different microscopy and spectroscopy techniques (transmission electron microscopy, FTIR, UV–Vis, photoluminescence, electron paramagnetic resonance). Results show that all types of quantum dots has pro-oxidant and antioxidant potentials whereas GO demonstrated only moderate antioxidant effect. The best free radical scavenger is CQDs sample in the absence of light. CQDs are the best singlet oxygen generator under blue light irradiation as well. To check photo-cytotoxicity of these materials, photo-cytotoxic concentrations of the GO, GQDs, CQDs and N-CQDs were determined for three cellular lines: human rhabdomyosarcoma (RD), cell line derived from human cervix carcinoma Hep2c (HeLa) and fibroblast cell line from murine (L2OB). Cytotoxicity test has indicated that all samples are much less photocytotoxic than cis-diamminedichloroplatinum (cis-DPP). The production method and doping of quantum dots affect the photodynamic activity of tested samples very much.
T2  - Journal of Photochemistry and Photobiology B: Biology
T1  - Graphene oxide size and structure pro-oxidant and antioxidant activity and photoinduced cytotoxicity relation on three cancer cell lines
VL  - 200
SP  - 111647
DO  - 10.1016/j.jphotobiol.2019.111647
ER  - 
@article{
author = "Marković, Zoran M. and Jovanović, Svetlana P. and Mašković, Pavle Z. and Mojsin, Marija and Stevanović, Milena J. and Danko, Martin and Mičušik, Matej and Jovanović, Dragana J. and Kleinova, Angela and Špitalsky, Zdeno and Pavlović, Vladimir B. and Todorović-Marković, Biljana",
year = "2019",
abstract = "Photoactive materials called photosensitizers can be used for treatment of different types of cancer in combination with light source. In this paper, we have investigated pro-oxidant and antioxidant potentials of four graphene based nanomaterials (graphene oxide-GO, graphene quantum dots-GQDs, carbon quantum dots-CQDs and N-doped carbon quantum dots-N-CQDs) depending on the presence/absence of visible light source. Structural and optical properties of these materials and their potentials for reactive oxygen species generation/quenching are investigated by applying different microscopy and spectroscopy techniques (transmission electron microscopy, FTIR, UV–Vis, photoluminescence, electron paramagnetic resonance). Results show that all types of quantum dots has pro-oxidant and antioxidant potentials whereas GO demonstrated only moderate antioxidant effect. The best free radical scavenger is CQDs sample in the absence of light. CQDs are the best singlet oxygen generator under blue light irradiation as well. To check photo-cytotoxicity of these materials, photo-cytotoxic concentrations of the GO, GQDs, CQDs and N-CQDs were determined for three cellular lines: human rhabdomyosarcoma (RD), cell line derived from human cervix carcinoma Hep2c (HeLa) and fibroblast cell line from murine (L2OB). Cytotoxicity test has indicated that all samples are much less photocytotoxic than cis-diamminedichloroplatinum (cis-DPP). The production method and doping of quantum dots affect the photodynamic activity of tested samples very much.",
journal = "Journal of Photochemistry and Photobiology B: Biology",
title = "Graphene oxide size and structure pro-oxidant and antioxidant activity and photoinduced cytotoxicity relation on three cancer cell lines",
volume = "200",
pages = "111647",
doi = "10.1016/j.jphotobiol.2019.111647"
}
Marković, Z. M., Jovanović, S. P., Mašković, P. Z., Mojsin, M., Stevanović, M. J., Danko, M., Mičušik, M., Jovanović, D. J., Kleinova, A., Špitalsky, Z., Pavlović, V. B.,& Todorović-Marković, B.. (2019). Graphene oxide size and structure pro-oxidant and antioxidant activity and photoinduced cytotoxicity relation on three cancer cell lines. in Journal of Photochemistry and Photobiology B: Biology, 200, 111647.
https://doi.org/10.1016/j.jphotobiol.2019.111647
Marković ZM, Jovanović SP, Mašković PZ, Mojsin M, Stevanović MJ, Danko M, Mičušik M, Jovanović DJ, Kleinova A, Špitalsky Z, Pavlović VB, Todorović-Marković B. Graphene oxide size and structure pro-oxidant and antioxidant activity and photoinduced cytotoxicity relation on three cancer cell lines. in Journal of Photochemistry and Photobiology B: Biology. 2019;200:111647.
doi:10.1016/j.jphotobiol.2019.111647 .
Marković, Zoran M., Jovanović, Svetlana P., Mašković, Pavle Z., Mojsin, Marija, Stevanović, Milena J., Danko, Martin, Mičušik, Matej, Jovanović, Dragana J., Kleinova, Angela, Špitalsky, Zdeno, Pavlović, Vladimir B., Todorović-Marković, Biljana, "Graphene oxide size and structure pro-oxidant and antioxidant activity and photoinduced cytotoxicity relation on three cancer cell lines" in Journal of Photochemistry and Photobiology B: Biology, 200 (2019):111647,
https://doi.org/10.1016/j.jphotobiol.2019.111647 . .
38
10
38

Structural, mechanical, and antibacterial features of curcumin/polyurethane nanocomposites

Marković, Zoran M.; Kováčová, Mária; Mičušik, Matej; Danko, Martin; Švajdlenkova, Helena; Kleinova, Angela; Humpoliček, Petr; Lehocky, Marian; Todorović-Marković, Biljana; Špitalsky, Zdeno

(2019)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Kováčová, Mária
AU  - Mičušik, Matej
AU  - Danko, Martin
AU  - Švajdlenkova, Helena
AU  - Kleinova, Angela
AU  - Humpoliček, Petr
AU  - Lehocky, Marian
AU  - Todorović-Marković, Biljana
AU  - Špitalsky, Zdeno
PY  - 2019
UR  - http://doi.wiley.com/10.1002/app.47283
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8445
AB  - Various types of bacteria inhabit many surfaces thus causing problems which can have very strong impact on human health. Here we present a study of photophysical, mechanical, and antibacterial properties of curcumin/polyurethane nanocomposites prepared by swell-encapsulation-shrink method. The prepared nanocomposites have been characterized for degree of swelling, surface morphology, mechanical properties, chemical contents, photoluminescence, hydrophobicity, potentials for singlet oxygen generation, and antibacterial activity. Dynamic mechanical analysis has shown slight changes of glass temperature of curcumin/polyurethane nanocomposites due to blue light irradiation. It was found that nanocomposites have very strong photoluminescence, become photoactive upon blue light irradiation at 470 nm and generate singlet oxygen. Conducted antibacterial tests have shown very strong activity of these nanocomposites especially toward Escherichia coli. These bacteria strains have been eliminated completely only after 1 h irradiation by blue light. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 47283. © 2018 Wiley Periodicals, Inc.
T2  - Journal of Applied Polymer Science
T1  - Structural, mechanical, and antibacterial features of curcumin/polyurethane nanocomposites
VL  - 136
IS  - 13
SP  - 47283
DO  - 10.1002/app.47283
ER  - 
@article{
author = "Marković, Zoran M. and Kováčová, Mária and Mičušik, Matej and Danko, Martin and Švajdlenkova, Helena and Kleinova, Angela and Humpoliček, Petr and Lehocky, Marian and Todorović-Marković, Biljana and Špitalsky, Zdeno",
year = "2019",
abstract = "Various types of bacteria inhabit many surfaces thus causing problems which can have very strong impact on human health. Here we present a study of photophysical, mechanical, and antibacterial properties of curcumin/polyurethane nanocomposites prepared by swell-encapsulation-shrink method. The prepared nanocomposites have been characterized for degree of swelling, surface morphology, mechanical properties, chemical contents, photoluminescence, hydrophobicity, potentials for singlet oxygen generation, and antibacterial activity. Dynamic mechanical analysis has shown slight changes of glass temperature of curcumin/polyurethane nanocomposites due to blue light irradiation. It was found that nanocomposites have very strong photoluminescence, become photoactive upon blue light irradiation at 470 nm and generate singlet oxygen. Conducted antibacterial tests have shown very strong activity of these nanocomposites especially toward Escherichia coli. These bacteria strains have been eliminated completely only after 1 h irradiation by blue light. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 47283. © 2018 Wiley Periodicals, Inc.",
journal = "Journal of Applied Polymer Science",
title = "Structural, mechanical, and antibacterial features of curcumin/polyurethane nanocomposites",
volume = "136",
number = "13",
pages = "47283",
doi = "10.1002/app.47283"
}
Marković, Z. M., Kováčová, M., Mičušik, M., Danko, M., Švajdlenkova, H., Kleinova, A., Humpoliček, P., Lehocky, M., Todorović-Marković, B.,& Špitalsky, Z.. (2019). Structural, mechanical, and antibacterial features of curcumin/polyurethane nanocomposites. in Journal of Applied Polymer Science, 136(13), 47283.
https://doi.org/10.1002/app.47283
Marković ZM, Kováčová M, Mičušik M, Danko M, Švajdlenkova H, Kleinova A, Humpoliček P, Lehocky M, Todorović-Marković B, Špitalsky Z. Structural, mechanical, and antibacterial features of curcumin/polyurethane nanocomposites. in Journal of Applied Polymer Science. 2019;136(13):47283.
doi:10.1002/app.47283 .
Marković, Zoran M., Kováčová, Mária, Mičušik, Matej, Danko, Martin, Švajdlenkova, Helena, Kleinova, Angela, Humpoliček, Petr, Lehocky, Marian, Todorović-Marković, Biljana, Špitalsky, Zdeno, "Structural, mechanical, and antibacterial features of curcumin/polyurethane nanocomposites" in Journal of Applied Polymer Science, 136, no. 13 (2019):47283,
https://doi.org/10.1002/app.47283 . .
20
10
22

Simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) nanocomposite films with enhanced electrical conductivity and hydrophobicity

Kepić, Dejan P.; Ristić, Ivan S.; Marinović-Cincović, Milena; Peruško, Davor; Špitalsky, Zdenko; Pavlović, Vladimir B.; Budimir, Milica; Šiffalovič, Peter; Dramićanin, Miroslav; Mičušik, Matej; Kleinova, Angela; Janigova, Ivica; Marković, Zoran M.; Todorović-Marković, Biljana

(2018)

TY  - JOUR
AU  - Kepić, Dejan P.
AU  - Ristić, Ivan S.
AU  - Marinović-Cincović, Milena
AU  - Peruško, Davor
AU  - Špitalsky, Zdenko
AU  - Pavlović, Vladimir B.
AU  - Budimir, Milica
AU  - Šiffalovič, Peter
AU  - Dramićanin, Miroslav
AU  - Mičušik, Matej
AU  - Kleinova, Angela
AU  - Janigova, Ivica
AU  - Marković, Zoran M.
AU  - Todorović-Marković, Biljana
PY  - 2018
UR  - http://doi.wiley.com/10.1002/pi.5620
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7796
AB  - This paper reports a simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) (SBS) nanocomposite films employing a vacuum filtration method. Graphene is exfoliated well by an electrochemical procedure and homogeneously dispersed in the polymer matrix. The prepared nanocomposite films were characterized by XRD, Fourier transform IR (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, AFM and SEM. Morphological studies showed that graphene formed a smooth coating over the surface of SBS. The increase in graphene concentration induces the wrinkling of graphene sheets at the composite surface which causes a further increase in surface roughness. The FTIR, Raman and XPS spectra of graphene/SBS nanocomposite films indicate the strong interactions between graphene and the polymer matrix. According to the XRD patterns, introducing SBS into graphene did not modify the graphene structure additionally, i.e. the crystal lattice parameters do not depend on SBS content in graphene/SBS nanocomposite films. The graphene/SBS nanocomposite films also exhibited better hydrophobicity due to the increased surface roughness and lower sheet resistivity (reduced 10 times) compared to exfoliated graphene.
T2  - Polymer International
T1  - Simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) nanocomposite films with enhanced electrical conductivity and hydrophobicity
VL  - 67
IS  - 8
SP  - 1118
EP  - 1127
DO  - 10.1002/pi.5620
ER  - 
@article{
author = "Kepić, Dejan P. and Ristić, Ivan S. and Marinović-Cincović, Milena and Peruško, Davor and Špitalsky, Zdenko and Pavlović, Vladimir B. and Budimir, Milica and Šiffalovič, Peter and Dramićanin, Miroslav and Mičušik, Matej and Kleinova, Angela and Janigova, Ivica and Marković, Zoran M. and Todorović-Marković, Biljana",
year = "2018",
abstract = "This paper reports a simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) (SBS) nanocomposite films employing a vacuum filtration method. Graphene is exfoliated well by an electrochemical procedure and homogeneously dispersed in the polymer matrix. The prepared nanocomposite films were characterized by XRD, Fourier transform IR (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, AFM and SEM. Morphological studies showed that graphene formed a smooth coating over the surface of SBS. The increase in graphene concentration induces the wrinkling of graphene sheets at the composite surface which causes a further increase in surface roughness. The FTIR, Raman and XPS spectra of graphene/SBS nanocomposite films indicate the strong interactions between graphene and the polymer matrix. According to the XRD patterns, introducing SBS into graphene did not modify the graphene structure additionally, i.e. the crystal lattice parameters do not depend on SBS content in graphene/SBS nanocomposite films. The graphene/SBS nanocomposite films also exhibited better hydrophobicity due to the increased surface roughness and lower sheet resistivity (reduced 10 times) compared to exfoliated graphene.",
journal = "Polymer International",
title = "Simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) nanocomposite films with enhanced electrical conductivity and hydrophobicity",
volume = "67",
number = "8",
pages = "1118-1127",
doi = "10.1002/pi.5620"
}
Kepić, D. P., Ristić, I. S., Marinović-Cincović, M., Peruško, D., Špitalsky, Z., Pavlović, V. B., Budimir, M., Šiffalovič, P., Dramićanin, M., Mičušik, M., Kleinova, A., Janigova, I., Marković, Z. M.,& Todorović-Marković, B.. (2018). Simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) nanocomposite films with enhanced electrical conductivity and hydrophobicity. in Polymer International, 67(8), 1118-1127.
https://doi.org/10.1002/pi.5620
Kepić DP, Ristić IS, Marinović-Cincović M, Peruško D, Špitalsky Z, Pavlović VB, Budimir M, Šiffalovič P, Dramićanin M, Mičušik M, Kleinova A, Janigova I, Marković ZM, Todorović-Marković B. Simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) nanocomposite films with enhanced electrical conductivity and hydrophobicity. in Polymer International. 2018;67(8):1118-1127.
doi:10.1002/pi.5620 .
Kepić, Dejan P., Ristić, Ivan S., Marinović-Cincović, Milena, Peruško, Davor, Špitalsky, Zdenko, Pavlović, Vladimir B., Budimir, Milica, Šiffalovič, Peter, Dramićanin, Miroslav, Mičušik, Matej, Kleinova, Angela, Janigova, Ivica, Marković, Zoran M., Todorović-Marković, Biljana, "Simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) nanocomposite films with enhanced electrical conductivity and hydrophobicity" in Polymer International, 67, no. 8 (2018):1118-1127,
https://doi.org/10.1002/pi.5620 . .
5
3
5

Antibacterial and Antibiofouling Properties of Light Triggered Fluorescent Hydrophobic Carbon Quantum Dots Langmuir–Blodgett Thin Films

Stanković, Nenad K.; Bodik, Michal; Šiffalovič, Peter; Kotlar, Mario; Mičušik, Matej; Špitalsky, Zdenko; Danko, Martin; Milivojević, Dušan; Kleinova, Angela; Kubat, Pavel; Capakova, Zdenka; Humpoliček, Petr; Lehocky, Marian; Todorović-Marković, Biljana; Marković, Zoran M.

(2018)

TY  - JOUR
AU  - Stanković, Nenad K.
AU  - Bodik, Michal
AU  - Šiffalovič, Peter
AU  - Kotlar, Mario
AU  - Mičušik, Matej
AU  - Špitalsky, Zdenko
AU  - Danko, Martin
AU  - Milivojević, Dušan
AU  - Kleinova, Angela
AU  - Kubat, Pavel
AU  - Capakova, Zdenka
AU  - Humpoliček, Petr
AU  - Lehocky, Marian
AU  - Todorović-Marković, Biljana
AU  - Marković, Zoran M.
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7653
AB  - Inimitable properties of carbon quantum dots as well as a cheap production contribute to their possible application in biomedicine especially as antibacterial and antibiofouling coatings. Fluorescent hydrophobic carbon quantum dots are synthesized by bottom-up condensation method and used for deposition of uniform and homogeneous Langmuir-Blodgett thin films on different substrates. It is found that this kind of quantum dots generates singlet oxygen under blue light irradiation. Antibacterial and antibiofouling testing on four different bacteria strains (Escherichia coli, Staphylococcus aureus, Bacillus cereus, and Pseudomonas aeruginosa) reveals enhanced antibacterial and antibiofouling activity of hydrophobic carbon dots thin films under blue light irradiation. Moreover, hydrophobic quantum dots show noncytotoxic effect on mouse fibroblast cell line. These properties enable potential usage of hydrophobic carbon quantum dots thin films as excellent antibacterial and antibiofouling coatings for different biomedical applications.
T2  - ACS Sustainable Chemistry and Engineering
T1  - Antibacterial and Antibiofouling Properties of Light Triggered Fluorescent Hydrophobic Carbon Quantum Dots Langmuir–Blodgett Thin Films
VL  - 6
IS  - 3
SP  - 4154
EP  - 4163
DO  - 10.1021/acssuschemeng.7b04566
ER  - 
@article{
author = "Stanković, Nenad K. and Bodik, Michal and Šiffalovič, Peter and Kotlar, Mario and Mičušik, Matej and Špitalsky, Zdenko and Danko, Martin and Milivojević, Dušan and Kleinova, Angela and Kubat, Pavel and Capakova, Zdenka and Humpoliček, Petr and Lehocky, Marian and Todorović-Marković, Biljana and Marković, Zoran M.",
year = "2018",
abstract = "Inimitable properties of carbon quantum dots as well as a cheap production contribute to their possible application in biomedicine especially as antibacterial and antibiofouling coatings. Fluorescent hydrophobic carbon quantum dots are synthesized by bottom-up condensation method and used for deposition of uniform and homogeneous Langmuir-Blodgett thin films on different substrates. It is found that this kind of quantum dots generates singlet oxygen under blue light irradiation. Antibacterial and antibiofouling testing on four different bacteria strains (Escherichia coli, Staphylococcus aureus, Bacillus cereus, and Pseudomonas aeruginosa) reveals enhanced antibacterial and antibiofouling activity of hydrophobic carbon dots thin films under blue light irradiation. Moreover, hydrophobic quantum dots show noncytotoxic effect on mouse fibroblast cell line. These properties enable potential usage of hydrophobic carbon quantum dots thin films as excellent antibacterial and antibiofouling coatings for different biomedical applications.",
journal = "ACS Sustainable Chemistry and Engineering",
title = "Antibacterial and Antibiofouling Properties of Light Triggered Fluorescent Hydrophobic Carbon Quantum Dots Langmuir–Blodgett Thin Films",
volume = "6",
number = "3",
pages = "4154-4163",
doi = "10.1021/acssuschemeng.7b04566"
}
Stanković, N. K., Bodik, M., Šiffalovič, P., Kotlar, M., Mičušik, M., Špitalsky, Z., Danko, M., Milivojević, D., Kleinova, A., Kubat, P., Capakova, Z., Humpoliček, P., Lehocky, M., Todorović-Marković, B.,& Marković, Z. M.. (2018). Antibacterial and Antibiofouling Properties of Light Triggered Fluorescent Hydrophobic Carbon Quantum Dots Langmuir–Blodgett Thin Films. in ACS Sustainable Chemistry and Engineering, 6(3), 4154-4163.
https://doi.org/10.1021/acssuschemeng.7b04566
Stanković NK, Bodik M, Šiffalovič P, Kotlar M, Mičušik M, Špitalsky Z, Danko M, Milivojević D, Kleinova A, Kubat P, Capakova Z, Humpoliček P, Lehocky M, Todorović-Marković B, Marković ZM. Antibacterial and Antibiofouling Properties of Light Triggered Fluorescent Hydrophobic Carbon Quantum Dots Langmuir–Blodgett Thin Films. in ACS Sustainable Chemistry and Engineering. 2018;6(3):4154-4163.
doi:10.1021/acssuschemeng.7b04566 .
Stanković, Nenad K., Bodik, Michal, Šiffalovič, Peter, Kotlar, Mario, Mičušik, Matej, Špitalsky, Zdenko, Danko, Martin, Milivojević, Dušan, Kleinova, Angela, Kubat, Pavel, Capakova, Zdenka, Humpoliček, Petr, Lehocky, Marian, Todorović-Marković, Biljana, Marković, Zoran M., "Antibacterial and Antibiofouling Properties of Light Triggered Fluorescent Hydrophobic Carbon Quantum Dots Langmuir–Blodgett Thin Films" in ACS Sustainable Chemistry and Engineering, 6, no. 3 (2018):4154-4163,
https://doi.org/10.1021/acssuschemeng.7b04566 . .
105
57
96

Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria

Marković, Zoran M.; Jovanović, Svetlana P.; Mašković, Pavle Z.; Danko, Martin; Mičušik, Matej; Pavlović, Vladimir B.; Milivojević, Dušan; Kleinova, Angela; Špitalsky, Zdenko; Todorović-Marković, Biljana

(2018)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Jovanović, Svetlana P.
AU  - Mašković, Pavle Z.
AU  - Danko, Martin
AU  - Mičušik, Matej
AU  - Pavlović, Vladimir B.
AU  - Milivojević, Dušan
AU  - Kleinova, Angela
AU  - Špitalsky, Zdenko
AU  - Todorović-Marković, Biljana
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7880
AB  - Due to controversial reports concerning antibacterial activity of different graphene based materials it is very important to investigate their antibacterial action on a wide range of Gram-positive and Gram-negative bacteria. In this paper we have investigated the structure induced phototoxic antibacterial activity of four types of graphene based materials: graphene oxide (GO), graphene quantum dots (GQDs), carbon quantum dots (CQDs) and nitrogen doped carbon quantum dots (N-CQDs). Antibacterial activity was tested on 19 types of bacteria. It is found that nanometer-size CQDs and N-CQDs are the most potent agents whereas micrometer-size GO has very poor antibacterial activity. Electron paramagnetic resonance measurements confirmed photodynamic production of singlet oxygen for all types of used quantum dots. Detailed analysis has shown that N-CQDs are an excellent photodynamic antibacterial agent for treatment of bacterial infections induced by Enterobacter aerogenes (E. aerogenes), Proteus mirabilis (P. mirabilis), Staphylococcus saprophyticus (S. saprophyticus), Listeria monocytogenes (L. monocytogenes), Salmonella typhimurium (S. typhimurium) and Klebsiella pneumoniae.
T2  - RSC Advances
T1  - Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria
VL  - 8
IS  - 55
SP  - 31337
EP  - 31347
DO  - 10.1039/C8RA04664F
ER  - 
@article{
author = "Marković, Zoran M. and Jovanović, Svetlana P. and Mašković, Pavle Z. and Danko, Martin and Mičušik, Matej and Pavlović, Vladimir B. and Milivojević, Dušan and Kleinova, Angela and Špitalsky, Zdenko and Todorović-Marković, Biljana",
year = "2018",
abstract = "Due to controversial reports concerning antibacterial activity of different graphene based materials it is very important to investigate their antibacterial action on a wide range of Gram-positive and Gram-negative bacteria. In this paper we have investigated the structure induced phototoxic antibacterial activity of four types of graphene based materials: graphene oxide (GO), graphene quantum dots (GQDs), carbon quantum dots (CQDs) and nitrogen doped carbon quantum dots (N-CQDs). Antibacterial activity was tested on 19 types of bacteria. It is found that nanometer-size CQDs and N-CQDs are the most potent agents whereas micrometer-size GO has very poor antibacterial activity. Electron paramagnetic resonance measurements confirmed photodynamic production of singlet oxygen for all types of used quantum dots. Detailed analysis has shown that N-CQDs are an excellent photodynamic antibacterial agent for treatment of bacterial infections induced by Enterobacter aerogenes (E. aerogenes), Proteus mirabilis (P. mirabilis), Staphylococcus saprophyticus (S. saprophyticus), Listeria monocytogenes (L. monocytogenes), Salmonella typhimurium (S. typhimurium) and Klebsiella pneumoniae.",
journal = "RSC Advances",
title = "Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria",
volume = "8",
number = "55",
pages = "31337-31347",
doi = "10.1039/C8RA04664F"
}
Marković, Z. M., Jovanović, S. P., Mašković, P. Z., Danko, M., Mičušik, M., Pavlović, V. B., Milivojević, D., Kleinova, A., Špitalsky, Z.,& Todorović-Marković, B.. (2018). Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria. in RSC Advances, 8(55), 31337-31347.
https://doi.org/10.1039/C8RA04664F
Marković ZM, Jovanović SP, Mašković PZ, Danko M, Mičušik M, Pavlović VB, Milivojević D, Kleinova A, Špitalsky Z, Todorović-Marković B. Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria. in RSC Advances. 2018;8(55):31337-31347.
doi:10.1039/C8RA04664F .
Marković, Zoran M., Jovanović, Svetlana P., Mašković, Pavle Z., Danko, Martin, Mičušik, Matej, Pavlović, Vladimir B., Milivojević, Dušan, Kleinova, Angela, Špitalsky, Zdenko, Todorović-Marković, Biljana, "Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria" in RSC Advances, 8, no. 55 (2018):31337-31347,
https://doi.org/10.1039/C8RA04664F . .
1
68
25
66

Carbon Quantum Dots Modified Polyurethane Nanocomposite as Effective Photocatalytic and Antibacterial Agents

Kovačova, Maria; Marković, Zoran M.; Humpoliček, Petr; Mičušik, Matej; Švajdlenkova, Helena; Kleinova, Angela; Danko, Martin; Kubat, Pavel; Vajdak, Jan; Capakova, Zdenka; Lehocky, Marian; Munster, Lukaš; Todorović-Marković, Biljana; Špitalsky, Zdenko

(2018)

TY  - JOUR
AU  - Kovačova, Maria
AU  - Marković, Zoran M.
AU  - Humpoliček, Petr
AU  - Mičušik, Matej
AU  - Švajdlenkova, Helena
AU  - Kleinova, Angela
AU  - Danko, Martin
AU  - Kubat, Pavel
AU  - Vajdak, Jan
AU  - Capakova, Zdenka
AU  - Lehocky, Marian
AU  - Munster, Lukaš
AU  - Todorović-Marković, Biljana
AU  - Špitalsky, Zdenko
PY  - 2018
UR  - http://pubs.acs.org/doi/10.1021/acsbiomaterials.8b00582
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8064
AB  - Development of new types of antibacterial coatings or nanocomposites is of great importance due to widespread multidrug-resistant infections including bacterial infections. Herein, we investigated biocompatibility as well as structural, photocatalytic, and antibacterial properties of photoactive hydrophobic carbon quantum dots/polyurethane nanocomposite. The swell-encapsulation-shrink method was applied for production of these nanocomposites. Hydrophobic carbon quantum dots/polyurethane nanocomposites were found to be highly effective generator of singlet oxygen upon irradiation by low-power blue light. Analysis of conducted antibacterial tests on Staphyloccocus aureus and Escherichia coli showed 5-log bactericidal effect of these nanocomposites within 60 min of irradiation. Very powerful degradation of dye (rose bengal) was observed within 180 min of blue light irradiation of the nanocomposites. Biocompatibility studies revealed that nanocomposites were not cytotoxic against mouse embryonic fibroblast cell line, whereas they showed moderate cytotoxicity toward adenocarcinomic human epithelial cell line. Minor hemolytic effect of these nanocomposites toward red blood cells was revealed.
T2  - ACS Biomaterials Science and Engineering
T1  - Carbon Quantum Dots Modified Polyurethane Nanocomposite as Effective Photocatalytic and Antibacterial Agents
VL  - 4
IS  - 12
SP  - 3983
EP  - 3993
DO  - 10.1021/acsbiomaterials.8b00582
ER  - 
@article{
author = "Kovačova, Maria and Marković, Zoran M. and Humpoliček, Petr and Mičušik, Matej and Švajdlenkova, Helena and Kleinova, Angela and Danko, Martin and Kubat, Pavel and Vajdak, Jan and Capakova, Zdenka and Lehocky, Marian and Munster, Lukaš and Todorović-Marković, Biljana and Špitalsky, Zdenko",
year = "2018",
abstract = "Development of new types of antibacterial coatings or nanocomposites is of great importance due to widespread multidrug-resistant infections including bacterial infections. Herein, we investigated biocompatibility as well as structural, photocatalytic, and antibacterial properties of photoactive hydrophobic carbon quantum dots/polyurethane nanocomposite. The swell-encapsulation-shrink method was applied for production of these nanocomposites. Hydrophobic carbon quantum dots/polyurethane nanocomposites were found to be highly effective generator of singlet oxygen upon irradiation by low-power blue light. Analysis of conducted antibacterial tests on Staphyloccocus aureus and Escherichia coli showed 5-log bactericidal effect of these nanocomposites within 60 min of irradiation. Very powerful degradation of dye (rose bengal) was observed within 180 min of blue light irradiation of the nanocomposites. Biocompatibility studies revealed that nanocomposites were not cytotoxic against mouse embryonic fibroblast cell line, whereas they showed moderate cytotoxicity toward adenocarcinomic human epithelial cell line. Minor hemolytic effect of these nanocomposites toward red blood cells was revealed.",
journal = "ACS Biomaterials Science and Engineering",
title = "Carbon Quantum Dots Modified Polyurethane Nanocomposite as Effective Photocatalytic and Antibacterial Agents",
volume = "4",
number = "12",
pages = "3983-3993",
doi = "10.1021/acsbiomaterials.8b00582"
}
Kovačova, M., Marković, Z. M., Humpoliček, P., Mičušik, M., Švajdlenkova, H., Kleinova, A., Danko, M., Kubat, P., Vajdak, J., Capakova, Z., Lehocky, M., Munster, L., Todorović-Marković, B.,& Špitalsky, Z.. (2018). Carbon Quantum Dots Modified Polyurethane Nanocomposite as Effective Photocatalytic and Antibacterial Agents. in ACS Biomaterials Science and Engineering, 4(12), 3983-3993.
https://doi.org/10.1021/acsbiomaterials.8b00582
Kovačova M, Marković ZM, Humpoliček P, Mičušik M, Švajdlenkova H, Kleinova A, Danko M, Kubat P, Vajdak J, Capakova Z, Lehocky M, Munster L, Todorović-Marković B, Špitalsky Z. Carbon Quantum Dots Modified Polyurethane Nanocomposite as Effective Photocatalytic and Antibacterial Agents. in ACS Biomaterials Science and Engineering. 2018;4(12):3983-3993.
doi:10.1021/acsbiomaterials.8b00582 .
Kovačova, Maria, Marković, Zoran M., Humpoliček, Petr, Mičušik, Matej, Švajdlenkova, Helena, Kleinova, Angela, Danko, Martin, Kubat, Pavel, Vajdak, Jan, Capakova, Zdenka, Lehocky, Marian, Munster, Lukaš, Todorović-Marković, Biljana, Špitalsky, Zdenko, "Carbon Quantum Dots Modified Polyurethane Nanocomposite as Effective Photocatalytic and Antibacterial Agents" in ACS Biomaterials Science and Engineering, 4, no. 12 (2018):3983-3993,
https://doi.org/10.1021/acsbiomaterials.8b00582 . .
3
108
56
102