Tovilović-Kovačević, Gordana

Link to this page

Authority KeyName Variants
e2c757cc-a756-4000-875e-26b0e44b9c4d
  • Tovilović-Kovačević, Gordana (2)

Author's Bibliography

Organic-inorganic nanocomposites for biomedical applications

Pergal, Marija; Brkljačić, Jelena; Pešić, Ivan; Dević, Gordana; Dojičinović, Biljana P.; Antić, Bratislav; Tovilović-Kovačević, Gordana

(Niš : RAD Centre, 2023)

TY  - CONF
AU  - Pergal, Marija
AU  - Brkljačić, Jelena
AU  - Pešić, Ivan
AU  - Dević, Gordana
AU  - Dojičinović, Biljana P.
AU  - Antić, Bratislav
AU  - Tovilović-Kovačević, Gordana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12227
AB  - Polyurethane (PU) and PU nanocomposites with good biocompatibility and mechanical properties can be used as the biomedical matrix and tissue engineering biomaterials. Magnetic nanoparticles, especially ferrite nanoparticles have attracted much interest due to their specific physicochemical properties in various areas including magnetic recording, biosensing, catalyst, drug delivery systems, magnetic resonance imaging (MRI) and cancer therapy. Despite all these advantages, the nanoparticle agglomeration reduces the efficiency of the nanoparticles, so the nanoparticle incorporation into an appropriate polymeric matrix to prepare organic-inorganic nanocomposites is a right direction in the current scenario of biomedical nanotechnology. In this study, organic-inorganic PU nanocomposites based on zinc and copper ferrites and with the same composition of PU were prepared. The properties of PU nanocomposites were evaluated by nanoindentation, water contact angle and water absorption measurements. The presence of the nanoferrite nanoparticles affects properties of PU nanocomposites such as bulk morphology, mechanical, and biological properties. The biocompatibility of PU nanocomposites was investigated by MTT assay and cell attachment using endothelial cells. According to the results, the prepared PU nanocomposites with noncytotoxic chemistry could be a potential choice for vascular implants development.
PB  - Niš : RAD Centre
C3  - RAD 2023 : 11th International Conference on Radiation Natural Sciences, Medicine, Engineering, Technology and Ecology : Book of Abstracts
T1  - Organic-inorganic nanocomposites for biomedical applications
SP  - 99
EP  - 99
DO  - 10.21175/rad.abstr.book.2023.19.20
ER  - 
@conference{
author = "Pergal, Marija and Brkljačić, Jelena and Pešić, Ivan and Dević, Gordana and Dojičinović, Biljana P. and Antić, Bratislav and Tovilović-Kovačević, Gordana",
year = "2023",
abstract = "Polyurethane (PU) and PU nanocomposites with good biocompatibility and mechanical properties can be used as the biomedical matrix and tissue engineering biomaterials. Magnetic nanoparticles, especially ferrite nanoparticles have attracted much interest due to their specific physicochemical properties in various areas including magnetic recording, biosensing, catalyst, drug delivery systems, magnetic resonance imaging (MRI) and cancer therapy. Despite all these advantages, the nanoparticle agglomeration reduces the efficiency of the nanoparticles, so the nanoparticle incorporation into an appropriate polymeric matrix to prepare organic-inorganic nanocomposites is a right direction in the current scenario of biomedical nanotechnology. In this study, organic-inorganic PU nanocomposites based on zinc and copper ferrites and with the same composition of PU were prepared. The properties of PU nanocomposites were evaluated by nanoindentation, water contact angle and water absorption measurements. The presence of the nanoferrite nanoparticles affects properties of PU nanocomposites such as bulk morphology, mechanical, and biological properties. The biocompatibility of PU nanocomposites was investigated by MTT assay and cell attachment using endothelial cells. According to the results, the prepared PU nanocomposites with noncytotoxic chemistry could be a potential choice for vascular implants development.",
publisher = "Niš : RAD Centre",
journal = "RAD 2023 : 11th International Conference on Radiation Natural Sciences, Medicine, Engineering, Technology and Ecology : Book of Abstracts",
title = "Organic-inorganic nanocomposites for biomedical applications",
pages = "99-99",
doi = "10.21175/rad.abstr.book.2023.19.20"
}
Pergal, M., Brkljačić, J., Pešić, I., Dević, G., Dojičinović, B. P., Antić, B.,& Tovilović-Kovačević, G.. (2023). Organic-inorganic nanocomposites for biomedical applications. in RAD 2023 : 11th International Conference on Radiation Natural Sciences, Medicine, Engineering, Technology and Ecology : Book of Abstracts
Niš : RAD Centre., 99-99.
https://doi.org/10.21175/rad.abstr.book.2023.19.20
Pergal M, Brkljačić J, Pešić I, Dević G, Dojičinović BP, Antić B, Tovilović-Kovačević G. Organic-inorganic nanocomposites for biomedical applications. in RAD 2023 : 11th International Conference on Radiation Natural Sciences, Medicine, Engineering, Technology and Ecology : Book of Abstracts. 2023;:99-99.
doi:10.21175/rad.abstr.book.2023.19.20 .
Pergal, Marija, Brkljačić, Jelena, Pešić, Ivan, Dević, Gordana, Dojičinović, Biljana P., Antić, Bratislav, Tovilović-Kovačević, Gordana, "Organic-inorganic nanocomposites for biomedical applications" in RAD 2023 : 11th International Conference on Radiation Natural Sciences, Medicine, Engineering, Technology and Ecology : Book of Abstracts (2023):99-99,
https://doi.org/10.21175/rad.abstr.book.2023.19.20 . .

Graphene quantum dot antioxidant and proautophagic actions protect SH-SY5Y neuroblastoma cells from oxidative stress-mediated apoptotic death

Krunić, Matija; Ristić, Biljana; Bošnjak, Mihajlo; Paunović, Verica; Tovilović-Kovačević, Gordana; Zogović, Nevena; Mirčić, Aleksandar; Marković, Zoran; Todorović-Marković, Biljana; Jovanović, Svetlana P.; Kleut, Duška; Mojović, Miloš; Nakarada, Đura; Marković, Olivera; Vuković, Irena; Harhaji-Trajković, Ljubica; Trajković, Vladimir S.

(2021)

TY  - JOUR
AU  - Krunić, Matija
AU  - Ristić, Biljana
AU  - Bošnjak, Mihajlo
AU  - Paunović, Verica
AU  - Tovilović-Kovačević, Gordana
AU  - Zogović, Nevena
AU  - Mirčić, Aleksandar
AU  - Marković, Zoran
AU  - Todorović-Marković, Biljana
AU  - Jovanović, Svetlana P.
AU  - Kleut, Duška
AU  - Mojović, Miloš
AU  - Nakarada, Đura
AU  - Marković, Olivera
AU  - Vuković, Irena
AU  - Harhaji-Trajković, Ljubica
AU  - Trajković, Vladimir S.
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9980
AB  - We investigated the ability of graphene quantum dot (GQD) nanoparticles to protect SH-SY5Y human neuroblastoma cells from oxidative/nitrosative stress induced by iron-nitrosyl complex sodium nitroprusside (SNP).GQD reduced SNP cytotoxicity by preventing mitochondrial depolarization, caspase-2 activation, and subsequent apoptotic death. Although GQD diminished the levels of nitric oxide (NO) in SNP-exposed cells, NO scavengers displayed only a slight protective effect, suggesting that NO quenching was not the main protective mechanism of GQD. GQD also reduced SNP-triggered increase in the intracellular levels of hydroxyl radical (•OH), superoxide anion (O2•- ), and lipid peroxidation. Nonselective antioxidants, •OH scavenging, and iron chelators, but not superoxide dismutase, mimicked GQD cytoprotective activity, indicating that GQD protect cells by neutralizing •OH generated in the presence of SNP-released iron. Cellular internalization of GQD was required for optimal protection, since a removal of extracellular GQD by extensive washing only partly diminished their protective effect. Moreover, GQD cooperated with SNP to induce autophagy, as confirmed by the inhibition of autophagylimiting Akt/PRAS40/mTOR signaling and increase in autophagy gene transcription, protein levels of proautophagic beclin-1 and LC3-II, formation of autophagic vesicles, and degradation of autophagic target p62. The antioxidant activity of GQD was not involved in autophagy induction, as antioxidants N-acetylcysteine and dimethyl sulfoxide failed to stimulate autophagy in SNP-exposed cells. Pharmacological inhibitors of early (wortmannin, 3-methyladenine) or late stages of autophagy (NH4Cl) efficiently reduced the protective effect of GQD. Therefore, the ability of GQD to prevent the in vitro neurotoxicity of SNP depends on both •OH/NO scavenging and induction of cytoprotective autophagy.
T2  - Free Radical Biology and Medicine
T1  - Graphene quantum dot antioxidant and proautophagic actions protect SH-SY5Y neuroblastoma cells from oxidative stress-mediated apoptotic death
VL  - 177
SP  - 167
EP  - 180
DO  - 10.1016/j.freeradbiomed.2021.10.025
ER  - 
@article{
author = "Krunić, Matija and Ristić, Biljana and Bošnjak, Mihajlo and Paunović, Verica and Tovilović-Kovačević, Gordana and Zogović, Nevena and Mirčić, Aleksandar and Marković, Zoran and Todorović-Marković, Biljana and Jovanović, Svetlana P. and Kleut, Duška and Mojović, Miloš and Nakarada, Đura and Marković, Olivera and Vuković, Irena and Harhaji-Trajković, Ljubica and Trajković, Vladimir S.",
year = "2021",
abstract = "We investigated the ability of graphene quantum dot (GQD) nanoparticles to protect SH-SY5Y human neuroblastoma cells from oxidative/nitrosative stress induced by iron-nitrosyl complex sodium nitroprusside (SNP).GQD reduced SNP cytotoxicity by preventing mitochondrial depolarization, caspase-2 activation, and subsequent apoptotic death. Although GQD diminished the levels of nitric oxide (NO) in SNP-exposed cells, NO scavengers displayed only a slight protective effect, suggesting that NO quenching was not the main protective mechanism of GQD. GQD also reduced SNP-triggered increase in the intracellular levels of hydroxyl radical (•OH), superoxide anion (O2•- ), and lipid peroxidation. Nonselective antioxidants, •OH scavenging, and iron chelators, but not superoxide dismutase, mimicked GQD cytoprotective activity, indicating that GQD protect cells by neutralizing •OH generated in the presence of SNP-released iron. Cellular internalization of GQD was required for optimal protection, since a removal of extracellular GQD by extensive washing only partly diminished their protective effect. Moreover, GQD cooperated with SNP to induce autophagy, as confirmed by the inhibition of autophagylimiting Akt/PRAS40/mTOR signaling and increase in autophagy gene transcription, protein levels of proautophagic beclin-1 and LC3-II, formation of autophagic vesicles, and degradation of autophagic target p62. The antioxidant activity of GQD was not involved in autophagy induction, as antioxidants N-acetylcysteine and dimethyl sulfoxide failed to stimulate autophagy in SNP-exposed cells. Pharmacological inhibitors of early (wortmannin, 3-methyladenine) or late stages of autophagy (NH4Cl) efficiently reduced the protective effect of GQD. Therefore, the ability of GQD to prevent the in vitro neurotoxicity of SNP depends on both •OH/NO scavenging and induction of cytoprotective autophagy.",
journal = "Free Radical Biology and Medicine",
title = "Graphene quantum dot antioxidant and proautophagic actions protect SH-SY5Y neuroblastoma cells from oxidative stress-mediated apoptotic death",
volume = "177",
pages = "167-180",
doi = "10.1016/j.freeradbiomed.2021.10.025"
}
Krunić, M., Ristić, B., Bošnjak, M., Paunović, V., Tovilović-Kovačević, G., Zogović, N., Mirčić, A., Marković, Z., Todorović-Marković, B., Jovanović, S. P., Kleut, D., Mojović, M., Nakarada, Đ., Marković, O., Vuković, I., Harhaji-Trajković, L.,& Trajković, V. S.. (2021). Graphene quantum dot antioxidant and proautophagic actions protect SH-SY5Y neuroblastoma cells from oxidative stress-mediated apoptotic death. in Free Radical Biology and Medicine, 177, 167-180.
https://doi.org/10.1016/j.freeradbiomed.2021.10.025
Krunić M, Ristić B, Bošnjak M, Paunović V, Tovilović-Kovačević G, Zogović N, Mirčić A, Marković Z, Todorović-Marković B, Jovanović SP, Kleut D, Mojović M, Nakarada Đ, Marković O, Vuković I, Harhaji-Trajković L, Trajković VS. Graphene quantum dot antioxidant and proautophagic actions protect SH-SY5Y neuroblastoma cells from oxidative stress-mediated apoptotic death. in Free Radical Biology and Medicine. 2021;177:167-180.
doi:10.1016/j.freeradbiomed.2021.10.025 .
Krunić, Matija, Ristić, Biljana, Bošnjak, Mihajlo, Paunović, Verica, Tovilović-Kovačević, Gordana, Zogović, Nevena, Mirčić, Aleksandar, Marković, Zoran, Todorović-Marković, Biljana, Jovanović, Svetlana P., Kleut, Duška, Mojović, Miloš, Nakarada, Đura, Marković, Olivera, Vuković, Irena, Harhaji-Trajković, Ljubica, Trajković, Vladimir S., "Graphene quantum dot antioxidant and proautophagic actions protect SH-SY5Y neuroblastoma cells from oxidative stress-mediated apoptotic death" in Free Radical Biology and Medicine, 177 (2021):167-180,
https://doi.org/10.1016/j.freeradbiomed.2021.10.025 . .
8
6