Petringa, Giada

Link to this page

Authority KeyName Variants
orcid::0000-0002-2854-8436
  • Petringa, Giada (5)

Author's Bibliography

Computational approaches in the estimation of radiobiological damage for human-malignant cells irradiated with clinical proton and carbon beams

Đorđević, Miloš; Fattori, Serena; Petringa, Giada; Ristić Fira, Aleksandra; Petrović, Ivan; Cuttone, Giacomo; Cirrone, G.A. Pablo

(2024)

TY  - JOUR
AU  - Đorđević, Miloš
AU  - Fattori, Serena
AU  - Petringa, Giada
AU  - Ristić Fira, Aleksandra
AU  - Petrović, Ivan
AU  - Cuttone, Giacomo
AU  - Cirrone, G.A. Pablo
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12241
AB  - Purpose: The use of Monte Carlo (MC) simulations capable of reproducing radiobiological effects of ionising radiation on human cell lines is of great importance, especially for cases involving protons and heavier ion beams. In the latter, huge uncertainties can arise mainly related to the effects of the secondary particles produced in the beam-tissue interaction. This paper reports on a detailed MC study performed using Geant4-based approach on three cancer cell lines, the HTB-177, CRL-5876 and MCF-7, that were previously irradiated with therapeutic proton and carbon ion beams. Methods: A Geant4-based approach used jointly with analytical calculations has been developed to provide a more realistic estimation of the radiobiological damage produced by proton and carbon beams in tissues, reproducing available data obtained from in vitro cell irradiations. The MC “Hadrontherapy” Geant4 application and the Local Effect Model: LEM I, LEM II and LEM III coupled with the different numerical approaches: RapidRusso (RR) and RapidScholz (RS) were used in the study. Results: Experimental survival curves are compared with those evaluated using the highlighted Geant4 MC-based approach via chi-square statistical analysis, for the combinations of radiobiological models and numerical approaches, as outlined above. Conclusion: This study has presented a comparison of the survival data from MC simulations to experimental survival data for three cancer cell lines. An overall best level of agreement was obtained for the HTB-177 cells.
T2  - Physica Medica
T1  - Computational approaches in the estimation of radiobiological damage for human-malignant cells irradiated with clinical proton and carbon beams
VL  - 117
SP  - 103189
DO  - 10.1016/j.ejmp.2023.103189
ER  - 
@article{
author = "Đorđević, Miloš and Fattori, Serena and Petringa, Giada and Ristić Fira, Aleksandra and Petrović, Ivan and Cuttone, Giacomo and Cirrone, G.A. Pablo",
year = "2024",
abstract = "Purpose: The use of Monte Carlo (MC) simulations capable of reproducing radiobiological effects of ionising radiation on human cell lines is of great importance, especially for cases involving protons and heavier ion beams. In the latter, huge uncertainties can arise mainly related to the effects of the secondary particles produced in the beam-tissue interaction. This paper reports on a detailed MC study performed using Geant4-based approach on three cancer cell lines, the HTB-177, CRL-5876 and MCF-7, that were previously irradiated with therapeutic proton and carbon ion beams. Methods: A Geant4-based approach used jointly with analytical calculations has been developed to provide a more realistic estimation of the radiobiological damage produced by proton and carbon beams in tissues, reproducing available data obtained from in vitro cell irradiations. The MC “Hadrontherapy” Geant4 application and the Local Effect Model: LEM I, LEM II and LEM III coupled with the different numerical approaches: RapidRusso (RR) and RapidScholz (RS) were used in the study. Results: Experimental survival curves are compared with those evaluated using the highlighted Geant4 MC-based approach via chi-square statistical analysis, for the combinations of radiobiological models and numerical approaches, as outlined above. Conclusion: This study has presented a comparison of the survival data from MC simulations to experimental survival data for three cancer cell lines. An overall best level of agreement was obtained for the HTB-177 cells.",
journal = "Physica Medica",
title = "Computational approaches in the estimation of radiobiological damage for human-malignant cells irradiated with clinical proton and carbon beams",
volume = "117",
pages = "103189",
doi = "10.1016/j.ejmp.2023.103189"
}
Đorđević, M., Fattori, S., Petringa, G., Ristić Fira, A., Petrović, I., Cuttone, G.,& Cirrone, G.A. P.. (2024). Computational approaches in the estimation of radiobiological damage for human-malignant cells irradiated with clinical proton and carbon beams. in Physica Medica, 117, 103189.
https://doi.org/10.1016/j.ejmp.2023.103189
Đorđević M, Fattori S, Petringa G, Ristić Fira A, Petrović I, Cuttone G, Cirrone GP. Computational approaches in the estimation of radiobiological damage for human-malignant cells irradiated with clinical proton and carbon beams. in Physica Medica. 2024;117:103189.
doi:10.1016/j.ejmp.2023.103189 .
Đorđević, Miloš, Fattori, Serena, Petringa, Giada, Ristić Fira, Aleksandra, Petrović, Ivan, Cuttone, Giacomo, Cirrone, G.A. Pablo, "Computational approaches in the estimation of radiobiological damage for human-malignant cells irradiated with clinical proton and carbon beams" in Physica Medica, 117 (2024):103189,
https://doi.org/10.1016/j.ejmp.2023.103189 . .
1

4He dose- and track-averaged linear energy transfer: Monte Carlo algorithms and experimental verification

Fattori, Serena; Petringa, Giada; Agosteo, Stefano; Bortot, Davide; Conte, Valeria; Cuttone, Giacomo; Di Fini, Andrea; Farokhi, Fatemeh; Mazzucconi, Davide; Pandola, Luciano; Petrović, Ivan M.; Ristić-Fira, Aleksandra; Rosenfeld, Anatoly; Weber, Uli; Cirrone, Giuseppe Pablo

(2022)

TY  - JOUR
AU  - Fattori, Serena
AU  - Petringa, Giada
AU  - Agosteo, Stefano
AU  - Bortot, Davide
AU  - Conte, Valeria
AU  - Cuttone, Giacomo
AU  - Di Fini, Andrea
AU  - Farokhi, Fatemeh
AU  - Mazzucconi, Davide
AU  - Pandola, Luciano
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
AU  - Rosenfeld, Anatoly
AU  - Weber, Uli
AU  - Cirrone, Giuseppe Pablo
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10393
AB  - In the present hadrontherapy scenario, there is a growing interest in exploring the capabilities of different ion species other than protons and carbons. The possibility of using different ions paves the way for new radiotherapy approaches, such as the multi-ions treatment, where radiation could vary according to target volume, shape, depth and histologic characteristics of the tumor. For these reasons, in this paper, the study and understanding of biological-relevant quantities was extended for the case of 4He ion. Approach. Geant4 Monte Carlo based algorithms for dose- and track-averaged LET (Linear Energy Transfer) calculations, were validated for 4He ions and for the case of a mixed field characterised by the presence of secondary ions from both target and projectile fragmentation. The simulated dose and track averaged LETs were compared with the corresponding dose and frequency mean values of the lineal energy, and , derived from experimental microdosimetric spectra. Two microdosimetric experimental campaigns were carried out at the Italian eye proton therapy facility of the Laboratori Nazionali del Sud of Istituto Nazionale di Fisica Nucleare (INFN-LNS, Catania, I) using two different microdosimeters: the MicroPlus probe and the nano-TEPC (Tissue Equivalent Proportional Counter). Main results. A good agreement of and with and experimentally measured with both microdosimetric detectors MicroPlus and nano-TEPC in two configurations: full energy and modulated 4He ion beam, was found. Significance. The results of this study certify the use of a very effective tool for the precise calculation of LET, given by a Monte Carlo approach which has the advantage of allowing detailed simulation and tracking of nuclear interactions, even in complex clinical scenarios.
T2  - Physics in Medicine & Biology
T1  - 4He dose- and track-averaged linear energy transfer: Monte Carlo algorithms and experimental verification
VL  - 67
IS  - 16
SP  - 165003
DO  - 10.1088/1361-6560/ac776f
ER  - 
@article{
author = "Fattori, Serena and Petringa, Giada and Agosteo, Stefano and Bortot, Davide and Conte, Valeria and Cuttone, Giacomo and Di Fini, Andrea and Farokhi, Fatemeh and Mazzucconi, Davide and Pandola, Luciano and Petrović, Ivan M. and Ristić-Fira, Aleksandra and Rosenfeld, Anatoly and Weber, Uli and Cirrone, Giuseppe Pablo",
year = "2022",
abstract = "In the present hadrontherapy scenario, there is a growing interest in exploring the capabilities of different ion species other than protons and carbons. The possibility of using different ions paves the way for new radiotherapy approaches, such as the multi-ions treatment, where radiation could vary according to target volume, shape, depth and histologic characteristics of the tumor. For these reasons, in this paper, the study and understanding of biological-relevant quantities was extended for the case of 4He ion. Approach. Geant4 Monte Carlo based algorithms for dose- and track-averaged LET (Linear Energy Transfer) calculations, were validated for 4He ions and for the case of a mixed field characterised by the presence of secondary ions from both target and projectile fragmentation. The simulated dose and track averaged LETs were compared with the corresponding dose and frequency mean values of the lineal energy, and , derived from experimental microdosimetric spectra. Two microdosimetric experimental campaigns were carried out at the Italian eye proton therapy facility of the Laboratori Nazionali del Sud of Istituto Nazionale di Fisica Nucleare (INFN-LNS, Catania, I) using two different microdosimeters: the MicroPlus probe and the nano-TEPC (Tissue Equivalent Proportional Counter). Main results. A good agreement of and with and experimentally measured with both microdosimetric detectors MicroPlus and nano-TEPC in two configurations: full energy and modulated 4He ion beam, was found. Significance. The results of this study certify the use of a very effective tool for the precise calculation of LET, given by a Monte Carlo approach which has the advantage of allowing detailed simulation and tracking of nuclear interactions, even in complex clinical scenarios.",
journal = "Physics in Medicine & Biology",
title = "4He dose- and track-averaged linear energy transfer: Monte Carlo algorithms and experimental verification",
volume = "67",
number = "16",
pages = "165003",
doi = "10.1088/1361-6560/ac776f"
}
Fattori, S., Petringa, G., Agosteo, S., Bortot, D., Conte, V., Cuttone, G., Di Fini, A., Farokhi, F., Mazzucconi, D., Pandola, L., Petrović, I. M., Ristić-Fira, A., Rosenfeld, A., Weber, U.,& Cirrone, G. P.. (2022). 4He dose- and track-averaged linear energy transfer: Monte Carlo algorithms and experimental verification. in Physics in Medicine & Biology, 67(16), 165003.
https://doi.org/10.1088/1361-6560/ac776f
Fattori S, Petringa G, Agosteo S, Bortot D, Conte V, Cuttone G, Di Fini A, Farokhi F, Mazzucconi D, Pandola L, Petrović IM, Ristić-Fira A, Rosenfeld A, Weber U, Cirrone GP. 4He dose- and track-averaged linear energy transfer: Monte Carlo algorithms and experimental verification. in Physics in Medicine & Biology. 2022;67(16):165003.
doi:10.1088/1361-6560/ac776f .
Fattori, Serena, Petringa, Giada, Agosteo, Stefano, Bortot, Davide, Conte, Valeria, Cuttone, Giacomo, Di Fini, Andrea, Farokhi, Fatemeh, Mazzucconi, Davide, Pandola, Luciano, Petrović, Ivan M., Ristić-Fira, Aleksandra, Rosenfeld, Anatoly, Weber, Uli, Cirrone, Giuseppe Pablo, "4He dose- and track-averaged linear energy transfer: Monte Carlo algorithms and experimental verification" in Physics in Medicine & Biology, 67, no. 16 (2022):165003,
https://doi.org/10.1088/1361-6560/ac776f . .
2
1

4He dose- and track-averaged linear energy transfer: Monte Carlo algorithms and experimental verification

Fattori, Serena; Petringa, Giada; Agosteo, Stefano; Bortot, Davide; Conte, Valeria; Cuttone, Giacomo; Di Fini, Andrea; Farokhi, Fatemeh; Mazzucconi, Davide; Pandola, Luciano; Petrović, Ivan M.; Ristić-Fira, Aleksandra; Rosenfeld, Anatoly; Weber, Uli; Cirrone, Giuseppe Pablo

(2022)

TY  - JOUR
AU  - Fattori, Serena
AU  - Petringa, Giada
AU  - Agosteo, Stefano
AU  - Bortot, Davide
AU  - Conte, Valeria
AU  - Cuttone, Giacomo
AU  - Di Fini, Andrea
AU  - Farokhi, Fatemeh
AU  - Mazzucconi, Davide
AU  - Pandola, Luciano
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
AU  - Rosenfeld, Anatoly
AU  - Weber, Uli
AU  - Cirrone, Giuseppe Pablo
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10586
AB  - In the present hadrontherapy scenario, there is a growing interest in exploring the capabilities of different ion species other than protons and carbons. The possibility of using different ions paves the way for new radiotherapy approaches, such as the multi-ions treatment, where radiation could vary according to target volume, shape, depth and histologic characteristics of the tumor. For these reasons, in this paper, the study and understanding of biological-relevant quantities was extended for the case of 4He ion. Approach. Geant4 Monte Carlo based algorithms for dose- and track-averaged LET (Linear Energy Transfer) calculations, were validated for 4He ions and for the case of a mixed field characterised by the presence of secondary ions from both target and projectile fragmentation. The simulated dose and track averaged LETs were compared with the corresponding dose and frequency mean values of the lineal energy, and , derived from experimental microdosimetric spectra. Two microdosimetric experimental campaigns were carried out at the Italian eye proton therapy facility of the Laboratori Nazionali del Sud of Istituto Nazionale di Fisica Nucleare (INFN-LNS, Catania, I) using two different microdosimeters: the MicroPlus probe and the nano-TEPC (Tissue Equivalent Proportional Counter). Main results. A good agreement of and with and experimentally measured with both microdosimetric detectors MicroPlus and nano-TEPC in two configurations: full energy and modulated 4He ion beam, was found. Significance. The results of this study certify the use of a very effective tool for the precise calculation of LET, given by a Monte Carlo approach which has the advantage of allowing detailed simulation and tracking of nuclear interactions, even in complex clinical scenarios.
T2  - Physics in Medicine & Biology
T1  - 4He dose- and track-averaged linear energy transfer: Monte Carlo algorithms and experimental verification
VL  - 67
IS  - 16
SP  - 165003
DO  - 10.1088/1361-6560/ac776f
ER  - 
@article{
author = "Fattori, Serena and Petringa, Giada and Agosteo, Stefano and Bortot, Davide and Conte, Valeria and Cuttone, Giacomo and Di Fini, Andrea and Farokhi, Fatemeh and Mazzucconi, Davide and Pandola, Luciano and Petrović, Ivan M. and Ristić-Fira, Aleksandra and Rosenfeld, Anatoly and Weber, Uli and Cirrone, Giuseppe Pablo",
year = "2022",
abstract = "In the present hadrontherapy scenario, there is a growing interest in exploring the capabilities of different ion species other than protons and carbons. The possibility of using different ions paves the way for new radiotherapy approaches, such as the multi-ions treatment, where radiation could vary according to target volume, shape, depth and histologic characteristics of the tumor. For these reasons, in this paper, the study and understanding of biological-relevant quantities was extended for the case of 4He ion. Approach. Geant4 Monte Carlo based algorithms for dose- and track-averaged LET (Linear Energy Transfer) calculations, were validated for 4He ions and for the case of a mixed field characterised by the presence of secondary ions from both target and projectile fragmentation. The simulated dose and track averaged LETs were compared with the corresponding dose and frequency mean values of the lineal energy, and , derived from experimental microdosimetric spectra. Two microdosimetric experimental campaigns were carried out at the Italian eye proton therapy facility of the Laboratori Nazionali del Sud of Istituto Nazionale di Fisica Nucleare (INFN-LNS, Catania, I) using two different microdosimeters: the MicroPlus probe and the nano-TEPC (Tissue Equivalent Proportional Counter). Main results. A good agreement of and with and experimentally measured with both microdosimetric detectors MicroPlus and nano-TEPC in two configurations: full energy and modulated 4He ion beam, was found. Significance. The results of this study certify the use of a very effective tool for the precise calculation of LET, given by a Monte Carlo approach which has the advantage of allowing detailed simulation and tracking of nuclear interactions, even in complex clinical scenarios.",
journal = "Physics in Medicine & Biology",
title = "4He dose- and track-averaged linear energy transfer: Monte Carlo algorithms and experimental verification",
volume = "67",
number = "16",
pages = "165003",
doi = "10.1088/1361-6560/ac776f"
}
Fattori, S., Petringa, G., Agosteo, S., Bortot, D., Conte, V., Cuttone, G., Di Fini, A., Farokhi, F., Mazzucconi, D., Pandola, L., Petrović, I. M., Ristić-Fira, A., Rosenfeld, A., Weber, U.,& Cirrone, G. P.. (2022). 4He dose- and track-averaged linear energy transfer: Monte Carlo algorithms and experimental verification. in Physics in Medicine & Biology, 67(16), 165003.
https://doi.org/10.1088/1361-6560/ac776f
Fattori S, Petringa G, Agosteo S, Bortot D, Conte V, Cuttone G, Di Fini A, Farokhi F, Mazzucconi D, Pandola L, Petrović IM, Ristić-Fira A, Rosenfeld A, Weber U, Cirrone GP. 4He dose- and track-averaged linear energy transfer: Monte Carlo algorithms and experimental verification. in Physics in Medicine & Biology. 2022;67(16):165003.
doi:10.1088/1361-6560/ac776f .
Fattori, Serena, Petringa, Giada, Agosteo, Stefano, Bortot, Davide, Conte, Valeria, Cuttone, Giacomo, Di Fini, Andrea, Farokhi, Fatemeh, Mazzucconi, Davide, Pandola, Luciano, Petrović, Ivan M., Ristić-Fira, Aleksandra, Rosenfeld, Anatoly, Weber, Uli, Cirrone, Giuseppe Pablo, "4He dose- and track-averaged linear energy transfer: Monte Carlo algorithms and experimental verification" in Physics in Medicine & Biology, 67, no. 16 (2022):165003,
https://doi.org/10.1088/1361-6560/ac776f . .
2
1

DNA double-strand breaks in cancer cells as a function of proton linear energy transfer and its variation in time

Keta, Otilija D.; Petković, Vladana; Cirrone, Pablo; Petringa, Giada; Cuttone, Giacomo; Sakata, Dousatsu; Shin, Wook-Geun; Incerti, Sebastien; Petrović, Ivan M.; Ristić-Fira, Aleksandra

(2021)

TY  - JOUR
AU  - Keta, Otilija D.
AU  - Petković, Vladana
AU  - Cirrone, Pablo
AU  - Petringa, Giada
AU  - Cuttone, Giacomo
AU  - Sakata, Dousatsu
AU  - Shin, Wook-Geun
AU  - Incerti, Sebastien
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9875
AB  - Purpose The complex relationship between linear energy transfer (LET) and cellular response to radiation is not yet fully elucidated. To better characterize DNA damage after irradiations with therapeutic protons, we monitored formation and disappearance of DNA double-strand breaks (DNA DSB) as a function of LET and time. Comparisons with conventional γ-rays and high LET carbon ions were also performed.Materials and Methods In the present work, we performed immunofluorescence-based assay to determine the amount of DNA DSB induced by different LET values along the 62 MeV therapeutic proton Spread out Bragg peak (SOBP) in three cancer cell lines, i.e. HTB140 melanoma, MCF-7 breast adenocarcinoma and HTB177 non-small lung cancer cells. Time dependence of foci formation was followed as well. To determine irradiation positions, corresponding to the desired LET values, numerical simulations were carried out using Geant4 toolkit. We compared γ-H2AX foci persistence after irradiations with protons to that of γ-rays and carbon ions.Results With the rise of LET values along the therapeutic proton SOBP, the increase of γ-H2AX foci number is detected in the three cell lines up to the distal end of the SOBP, while there is a decrease on its distal fall-off part. With the prolonged incubation time, the number of foci gradually drops tending to attain the residual level. For the maximum number of DNA DSB, irradiation with protons attain higher level than that of γ-rays. Carbon ions produce more DNA DSB than protons but not substantially. The number of residual foci produced by γ-rays is significantly lower than that of protons and particularly carbon ions. Carbon ions do not produce considerably higher number of foci than protons, as it could be expected due to their physical properties.Conclusions In situ visualization of γ-H2AX foci reveal creation of more lesions in the three cell lines by clinically relevant proton SOBP than γ-rays. The lack of significant differences in the number of γ-H2AX foci between the proton and carbon ion-irradiated samples suggests an increased complexity of DNA lesions and slower repair kinetics after carbon ions compared to protons. For all three irradiation types, there is no major difference between the three cell lines shortly after irradiations, while later on, the formation of residual foci starts to express the inherent nature of tested cells, therefore increasing discrepancy between them.
T2  - International Journal of Radiation Biology
T1  - DNA double-strand breaks in cancer cells as a function of proton linear energy transfer and its variation in time
VL  - 97
IS  - 9
SP  - 1229
EP  - 1240
DO  - 10.1080/09553002.2021.1948140
ER  - 
@article{
author = "Keta, Otilija D. and Petković, Vladana and Cirrone, Pablo and Petringa, Giada and Cuttone, Giacomo and Sakata, Dousatsu and Shin, Wook-Geun and Incerti, Sebastien and Petrović, Ivan M. and Ristić-Fira, Aleksandra",
year = "2021",
abstract = "Purpose The complex relationship between linear energy transfer (LET) and cellular response to radiation is not yet fully elucidated. To better characterize DNA damage after irradiations with therapeutic protons, we monitored formation and disappearance of DNA double-strand breaks (DNA DSB) as a function of LET and time. Comparisons with conventional γ-rays and high LET carbon ions were also performed.Materials and Methods In the present work, we performed immunofluorescence-based assay to determine the amount of DNA DSB induced by different LET values along the 62 MeV therapeutic proton Spread out Bragg peak (SOBP) in three cancer cell lines, i.e. HTB140 melanoma, MCF-7 breast adenocarcinoma and HTB177 non-small lung cancer cells. Time dependence of foci formation was followed as well. To determine irradiation positions, corresponding to the desired LET values, numerical simulations were carried out using Geant4 toolkit. We compared γ-H2AX foci persistence after irradiations with protons to that of γ-rays and carbon ions.Results With the rise of LET values along the therapeutic proton SOBP, the increase of γ-H2AX foci number is detected in the three cell lines up to the distal end of the SOBP, while there is a decrease on its distal fall-off part. With the prolonged incubation time, the number of foci gradually drops tending to attain the residual level. For the maximum number of DNA DSB, irradiation with protons attain higher level than that of γ-rays. Carbon ions produce more DNA DSB than protons but not substantially. The number of residual foci produced by γ-rays is significantly lower than that of protons and particularly carbon ions. Carbon ions do not produce considerably higher number of foci than protons, as it could be expected due to their physical properties.Conclusions In situ visualization of γ-H2AX foci reveal creation of more lesions in the three cell lines by clinically relevant proton SOBP than γ-rays. The lack of significant differences in the number of γ-H2AX foci between the proton and carbon ion-irradiated samples suggests an increased complexity of DNA lesions and slower repair kinetics after carbon ions compared to protons. For all three irradiation types, there is no major difference between the three cell lines shortly after irradiations, while later on, the formation of residual foci starts to express the inherent nature of tested cells, therefore increasing discrepancy between them.",
journal = "International Journal of Radiation Biology",
title = "DNA double-strand breaks in cancer cells as a function of proton linear energy transfer and its variation in time",
volume = "97",
number = "9",
pages = "1229-1240",
doi = "10.1080/09553002.2021.1948140"
}
Keta, O. D., Petković, V., Cirrone, P., Petringa, G., Cuttone, G., Sakata, D., Shin, W., Incerti, S., Petrović, I. M.,& Ristić-Fira, A.. (2021). DNA double-strand breaks in cancer cells as a function of proton linear energy transfer and its variation in time. in International Journal of Radiation Biology, 97(9), 1229-1240.
https://doi.org/10.1080/09553002.2021.1948140
Keta OD, Petković V, Cirrone P, Petringa G, Cuttone G, Sakata D, Shin W, Incerti S, Petrović IM, Ristić-Fira A. DNA double-strand breaks in cancer cells as a function of proton linear energy transfer and its variation in time. in International Journal of Radiation Biology. 2021;97(9):1229-1240.
doi:10.1080/09553002.2021.1948140 .
Keta, Otilija D., Petković, Vladana, Cirrone, Pablo, Petringa, Giada, Cuttone, Giacomo, Sakata, Dousatsu, Shin, Wook-Geun, Incerti, Sebastien, Petrović, Ivan M., Ristić-Fira, Aleksandra, "DNA double-strand breaks in cancer cells as a function of proton linear energy transfer and its variation in time" in International Journal of Radiation Biology, 97, no. 9 (2021):1229-1240,
https://doi.org/10.1080/09553002.2021.1948140 . .
4
10
1
8

Radiobiological Outcomes, Microdosimetric Evaluations and Monte Carlo Predictions in Eye Proton Therapy

Petringa, Giada; Calvaruso, Marco; Conte, Valeria; Bláha, Pavel; Bravatà, Valentina; Cammarata, Francesco Paolo; Cuttone, Giacomo; Forte, Giusi Irma; Keta, Otilija D.; Manti, Lorenzo; Minafra, Luigi; Petković, Vladana; Petrović, Ivan M.; Richiusa, Selene; Ristić-Fira, Aleksandra; Russo, Giorgio; Cirrone, Giuseppe Antonio Pablo

(2021)

TY  - JOUR
AU  - Petringa, Giada
AU  - Calvaruso, Marco
AU  - Conte, Valeria
AU  - Bláha, Pavel
AU  - Bravatà, Valentina
AU  - Cammarata, Francesco Paolo
AU  - Cuttone, Giacomo
AU  - Forte, Giusi Irma
AU  - Keta, Otilija D.
AU  - Manti, Lorenzo
AU  - Minafra, Luigi
AU  - Petković, Vladana
AU  - Petrović, Ivan M.
AU  - Richiusa, Selene
AU  - Ristić-Fira, Aleksandra
AU  - Russo, Giorgio
AU  - Cirrone, Giuseppe Antonio Pablo
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9958
AB  - CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) was the first Italian protontherapy facility dedicated to the treatment of ocular neoplastic pathologies. It is in operation at the LNS Laboratories of the Italian Institute for Nuclear Physics (INFN-LNS) and to date, 500 patients have been successfully treated. Even though proton therapy has demonstrated success in clinical settings, there is still a need for more accurate models because they are crucial for the estimation of clinically relevant RBE values. Since RBE can vary depending on several physical and biological parameters, there is a clear need for more experimental data to generate predictions. Establishing a database of cell survival experiments is therefore useful to accurately predict the effects of irradiations on both cancerous and normal tissue. The main aim of this work was to compare RBE values obtained from in-vitro experimental data with predictions made by the LEM II (Local Effect Model), Monte Carlo approaches, and semi-empirical models based on LET experimental measurements. For this purpose, the 92.1 uveal melanoma and ARPE-19 cells derived from normal retinal pigmented epithelium were selected and irradiated in the middle of clinical SOBP of the CATANA proton therapy facility. The remarkable results show the potentiality of using microdosimetric spectrum, Monte Carlo simulations and LEM model to predict not only the RBE but also the survival curves.
T2  - Applied Sciences
T1  - Radiobiological Outcomes, Microdosimetric Evaluations and Monte Carlo Predictions in Eye Proton Therapy
VL  - 11
IS  - 19
SP  - 8822
DO  - 10.3390/app11198822
ER  - 
@article{
author = "Petringa, Giada and Calvaruso, Marco and Conte, Valeria and Bláha, Pavel and Bravatà, Valentina and Cammarata, Francesco Paolo and Cuttone, Giacomo and Forte, Giusi Irma and Keta, Otilija D. and Manti, Lorenzo and Minafra, Luigi and Petković, Vladana and Petrović, Ivan M. and Richiusa, Selene and Ristić-Fira, Aleksandra and Russo, Giorgio and Cirrone, Giuseppe Antonio Pablo",
year = "2021",
abstract = "CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) was the first Italian protontherapy facility dedicated to the treatment of ocular neoplastic pathologies. It is in operation at the LNS Laboratories of the Italian Institute for Nuclear Physics (INFN-LNS) and to date, 500 patients have been successfully treated. Even though proton therapy has demonstrated success in clinical settings, there is still a need for more accurate models because they are crucial for the estimation of clinically relevant RBE values. Since RBE can vary depending on several physical and biological parameters, there is a clear need for more experimental data to generate predictions. Establishing a database of cell survival experiments is therefore useful to accurately predict the effects of irradiations on both cancerous and normal tissue. The main aim of this work was to compare RBE values obtained from in-vitro experimental data with predictions made by the LEM II (Local Effect Model), Monte Carlo approaches, and semi-empirical models based on LET experimental measurements. For this purpose, the 92.1 uveal melanoma and ARPE-19 cells derived from normal retinal pigmented epithelium were selected and irradiated in the middle of clinical SOBP of the CATANA proton therapy facility. The remarkable results show the potentiality of using microdosimetric spectrum, Monte Carlo simulations and LEM model to predict not only the RBE but also the survival curves.",
journal = "Applied Sciences",
title = "Radiobiological Outcomes, Microdosimetric Evaluations and Monte Carlo Predictions in Eye Proton Therapy",
volume = "11",
number = "19",
pages = "8822",
doi = "10.3390/app11198822"
}
Petringa, G., Calvaruso, M., Conte, V., Bláha, P., Bravatà, V., Cammarata, F. P., Cuttone, G., Forte, G. I., Keta, O. D., Manti, L., Minafra, L., Petković, V., Petrović, I. M., Richiusa, S., Ristić-Fira, A., Russo, G.,& Cirrone, G. A. P.. (2021). Radiobiological Outcomes, Microdosimetric Evaluations and Monte Carlo Predictions in Eye Proton Therapy. in Applied Sciences, 11(19), 8822.
https://doi.org/10.3390/app11198822
Petringa G, Calvaruso M, Conte V, Bláha P, Bravatà V, Cammarata FP, Cuttone G, Forte GI, Keta OD, Manti L, Minafra L, Petković V, Petrović IM, Richiusa S, Ristić-Fira A, Russo G, Cirrone GAP. Radiobiological Outcomes, Microdosimetric Evaluations and Monte Carlo Predictions in Eye Proton Therapy. in Applied Sciences. 2021;11(19):8822.
doi:10.3390/app11198822 .
Petringa, Giada, Calvaruso, Marco, Conte, Valeria, Bláha, Pavel, Bravatà, Valentina, Cammarata, Francesco Paolo, Cuttone, Giacomo, Forte, Giusi Irma, Keta, Otilija D., Manti, Lorenzo, Minafra, Luigi, Petković, Vladana, Petrović, Ivan M., Richiusa, Selene, Ristić-Fira, Aleksandra, Russo, Giorgio, Cirrone, Giuseppe Antonio Pablo, "Radiobiological Outcomes, Microdosimetric Evaluations and Monte Carlo Predictions in Eye Proton Therapy" in Applied Sciences, 11, no. 19 (2021):8822,
https://doi.org/10.3390/app11198822 . .
1
2
1
2