Ronning, Carsten

Link to this page

Authority KeyName Variants
85df4b0d-d45b-403d-b74f-8702c9921099
  • Ronning, Carsten (2)
Projects

Author's Bibliography

Structure-dependent optical properties of Au/Ag irradiated TiN thin films

Popović, Maja; Novaković, Mirjana M.; Vaňa, Dušan; Ronning, Carsten; Jugović, Dragana; Rajić, Vladimir; Noga, Pavol

(2023)

TY  - JOUR
AU  - Popović, Maja
AU  - Novaković, Mirjana M.
AU  - Vaňa, Dušan
AU  - Ronning, Carsten
AU  - Jugović, Dragana
AU  - Rajić, Vladimir
AU  - Noga, Pavol
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10746
AB  - Titanium nitride (TiN) is an attractive alternative for modern and future photonic applications, as its optical properties can be engineered over a wide spectral range. In this study, we have used sequential implantation of gold and silver ions with varying ion fluence, as well as subsequent annealing, in order to modify the optical and plasmonic properties of TiN thin films and correlated this to their structural properties. Our investigations show that the columnar structure of the TiN films is partially destroyed upon implantation, but metallic Au and Ag nanoparticles are formed. The irradiation further induces a reduction of the lattice constant as well as changes the TiN stoichiometry and grain size. From the optical point of view, the implanted films possess less metallicity with increasing Ag fluence and losses several times lower than the as-deposited film, which can be correlated with the deficiency of nitrogen and additional defects. Subsequent annealing partially recovered the destroyed columnar structure, and the films become more metallic where the optical losses are much smaller in comparison to the as-implanted situation, being comparable to those of pure Au and Ag. In this way, by varying the implantation fluence of silver ions properly while keeping the gold fluence constant, we were able to optimize experimental parameters in such a way to ensure the formation of TiN with desirable optical performances.
T2  - Optical Materials
T1  - Structure-dependent optical properties of Au/Ag irradiated TiN thin films
VL  - 138
SP  - 113684
DO  - 10.1016/j.optmat.2023.113684
UR  - https://hdl.handle.net/21.15107/rcub_dais_14289
ER  - 
@article{
author = "Popović, Maja and Novaković, Mirjana M. and Vaňa, Dušan and Ronning, Carsten and Jugović, Dragana and Rajić, Vladimir and Noga, Pavol",
year = "2023",
abstract = "Titanium nitride (TiN) is an attractive alternative for modern and future photonic applications, as its optical properties can be engineered over a wide spectral range. In this study, we have used sequential implantation of gold and silver ions with varying ion fluence, as well as subsequent annealing, in order to modify the optical and plasmonic properties of TiN thin films and correlated this to their structural properties. Our investigations show that the columnar structure of the TiN films is partially destroyed upon implantation, but metallic Au and Ag nanoparticles are formed. The irradiation further induces a reduction of the lattice constant as well as changes the TiN stoichiometry and grain size. From the optical point of view, the implanted films possess less metallicity with increasing Ag fluence and losses several times lower than the as-deposited film, which can be correlated with the deficiency of nitrogen and additional defects. Subsequent annealing partially recovered the destroyed columnar structure, and the films become more metallic where the optical losses are much smaller in comparison to the as-implanted situation, being comparable to those of pure Au and Ag. In this way, by varying the implantation fluence of silver ions properly while keeping the gold fluence constant, we were able to optimize experimental parameters in such a way to ensure the formation of TiN with desirable optical performances.",
journal = "Optical Materials",
title = "Structure-dependent optical properties of Au/Ag irradiated TiN thin films",
volume = "138",
pages = "113684",
doi = "10.1016/j.optmat.2023.113684",
url = "https://hdl.handle.net/21.15107/rcub_dais_14289"
}
Popović, M., Novaković, M. M., Vaňa, D., Ronning, C., Jugović, D., Rajić, V.,& Noga, P.. (2023). Structure-dependent optical properties of Au/Ag irradiated TiN thin films. in Optical Materials, 138, 113684.
https://doi.org/10.1016/j.optmat.2023.113684
https://hdl.handle.net/21.15107/rcub_dais_14289
Popović M, Novaković MM, Vaňa D, Ronning C, Jugović D, Rajić V, Noga P. Structure-dependent optical properties of Au/Ag irradiated TiN thin films. in Optical Materials. 2023;138:113684.
doi:10.1016/j.optmat.2023.113684
https://hdl.handle.net/21.15107/rcub_dais_14289 .
Popović, Maja, Novaković, Mirjana M., Vaňa, Dušan, Ronning, Carsten, Jugović, Dragana, Rajić, Vladimir, Noga, Pavol, "Structure-dependent optical properties of Au/Ag irradiated TiN thin films" in Optical Materials, 138 (2023):113684,
https://doi.org/10.1016/j.optmat.2023.113684 .,
https://hdl.handle.net/21.15107/rcub_dais_14289 .
1
1

Low optical losses in plasmonic TiN thin films implanted with silver and gold

Novaković, Mirjana M.; Popović, Maja; Noga, Pavol; Vana, Dušan; Ronning, Carsten

(2022)

TY  - JOUR
AU  - Novaković, Mirjana M.
AU  - Popović, Maja
AU  - Noga, Pavol
AU  - Vana, Dušan
AU  - Ronning, Carsten
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10106
AB  - Titanium-nitride (TiN) is known as a very promising plasmonic material, which offers many advantages compared to conventional metals commonly used in practical devices. Despite many improvements, TiN still suffers from high losses in the near-infrared (NIR) spectral region, making it less suitable for real-life applications. In this study, we have investigated the effects of pure silver implanted as well as silver/gold co-implanted TiN thin films on their optical properties, which we analyzed by spectroscopic ellipsometry. We demonstrate that the presence of silver and gold drastically changes both the real and imaginary part of the dielectric function. The implanted films exhibit optical losses several times lower compared to as-deposited TiN. The changes are in particular more pronounced for the samples with Au/Ag co-implantations, reaching nearly the same optical values as those of pure gold and being only slightly larger than that of silver. Thus, such an optical tuning of TiN opens new horizons and provide high potential for its implementation into plasmonic applications.
T2  - Optical Materials
T1  - Low optical losses in plasmonic TiN thin films implanted with silver and gold
VL  - 123
SP  - 111936
DO  - 10.1016/j.optmat.2021.111936
ER  - 
@article{
author = "Novaković, Mirjana M. and Popović, Maja and Noga, Pavol and Vana, Dušan and Ronning, Carsten",
year = "2022",
abstract = "Titanium-nitride (TiN) is known as a very promising plasmonic material, which offers many advantages compared to conventional metals commonly used in practical devices. Despite many improvements, TiN still suffers from high losses in the near-infrared (NIR) spectral region, making it less suitable for real-life applications. In this study, we have investigated the effects of pure silver implanted as well as silver/gold co-implanted TiN thin films on their optical properties, which we analyzed by spectroscopic ellipsometry. We demonstrate that the presence of silver and gold drastically changes both the real and imaginary part of the dielectric function. The implanted films exhibit optical losses several times lower compared to as-deposited TiN. The changes are in particular more pronounced for the samples with Au/Ag co-implantations, reaching nearly the same optical values as those of pure gold and being only slightly larger than that of silver. Thus, such an optical tuning of TiN opens new horizons and provide high potential for its implementation into plasmonic applications.",
journal = "Optical Materials",
title = "Low optical losses in plasmonic TiN thin films implanted with silver and gold",
volume = "123",
pages = "111936",
doi = "10.1016/j.optmat.2021.111936"
}
Novaković, M. M., Popović, M., Noga, P., Vana, D.,& Ronning, C.. (2022). Low optical losses in plasmonic TiN thin films implanted with silver and gold. in Optical Materials, 123, 111936.
https://doi.org/10.1016/j.optmat.2021.111936
Novaković MM, Popović M, Noga P, Vana D, Ronning C. Low optical losses in plasmonic TiN thin films implanted with silver and gold. in Optical Materials. 2022;123:111936.
doi:10.1016/j.optmat.2021.111936 .
Novaković, Mirjana M., Popović, Maja, Noga, Pavol, Vana, Dušan, Ronning, Carsten, "Low optical losses in plasmonic TiN thin films implanted with silver and gold" in Optical Materials, 123 (2022):111936,
https://doi.org/10.1016/j.optmat.2021.111936 . .
2
3
2