Danilovic, V.

Link to this page

Authority KeyName Variants
b1dd059a-fc19-4ce0-b22f-8c0ebdf100da
  • Danilovic, V. (1)
Projects

Author's Bibliography

Biocompatibility of new nanostructural materials based on active silicate systems and hydroxyapatite: in vitro and in vivo study

Petrović, V.; Opacic-Galic, V.; Zivkovic, S.; Nikolić, Biljana; Danilovic, V.; Miletic, V.; Jokanović, Vukoman R.; Mitić-Ćulafić, Dragana

(2015)

TY  - JOUR
AU  - Petrović, V.
AU  - Opacic-Galic, V.
AU  - Zivkovic, S.
AU  - Nikolić, Biljana
AU  - Danilovic, V.
AU  - Miletic, V.
AU  - Jokanović, Vukoman R.
AU  - Mitić-Ćulafić, Dragana
PY  - 2015
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/722
AB  - AimTo evaluate in vitro cytotoxicity and in vivo inflammatory response to new nanostructural materials based on active calcium silicate systems (CS) and hydroxyapatite (HA-CS). MethodologyCytotoxicity of eluates of new nanostructural noncommercial materials CS and HA-CS, and MTA (White MTA, Angelus((R)) Solucoes Odontologicas, Londrina, Brazil) as a control, were tested using the MTT assay on MRC-5 cells. Eluates of set materials were tested in 100% and 50% concentrations, 24h, 7days and 21days post-elution. The pH values were determined for undiluted eluates of set materials. Polyethylene tubes containing the test materials (CS, HA-CS, MTA) were implanted in subcutaneous tissue of Wistar rats. Histopathological examinations were conducted at 7, 15, 30 and 60days after the implantation. Data were statistically analyzed using three-way and one-way anova Tukeys post hoc test as well as Kruskall-Wallis test with Dunns post hoc test at =0.05. ResultsAll materials significantly reduced cell viability; especially when undiluted eluates were used (P LT 0.001). After 24h elution, cell viability was 101.8%, 49.5 +/- 4.2% and 61 +/- 7.4%, for MTA, and HA-CS, respectively. However, CS and HA-CS were significantly less toxic than the control material MTA (P LT 0.05). Cytotoxicity could be at least partially attributed to pH kinetics over time. Dilution of eluates of all tested materials resulted in better cell survival. Histopathological examination indicated similar inflammatory reaction, vascular congestion and connective tissue integrity associated with CS, HA-CS and MTA at each observation period (P GT 0.05). The only significant difference was found for capsule thickness, that is thicker capsule was associated with HA-CS compared to MTA at 60days (P=0.0039). HA-CS induced moderately thick capsules (median score 3, score range 2-3), whereas MTA resulted in thin capsule formation (median score 2, score range 1-3). ConclusionsEvaluation of cytotoxicity and inflammatory response indicated better biocompatibility of CS and HA-CS, in comparison with MTA (White MTA, Angelus((R)) Solucoes Odontologicas, Londrina, Brazil).
T2  - International Endodontic Journal
T1  - Biocompatibility of new nanostructural materials based on active silicate systems and hydroxyapatite: in vitro and in vivo study
VL  - 48
IS  - 10
SP  - 966
EP  - 975
DO  - 10.1111/iej.12391
ER  - 
@article{
author = "Petrović, V. and Opacic-Galic, V. and Zivkovic, S. and Nikolić, Biljana and Danilovic, V. and Miletic, V. and Jokanović, Vukoman R. and Mitić-Ćulafić, Dragana",
year = "2015",
abstract = "AimTo evaluate in vitro cytotoxicity and in vivo inflammatory response to new nanostructural materials based on active calcium silicate systems (CS) and hydroxyapatite (HA-CS). MethodologyCytotoxicity of eluates of new nanostructural noncommercial materials CS and HA-CS, and MTA (White MTA, Angelus((R)) Solucoes Odontologicas, Londrina, Brazil) as a control, were tested using the MTT assay on MRC-5 cells. Eluates of set materials were tested in 100% and 50% concentrations, 24h, 7days and 21days post-elution. The pH values were determined for undiluted eluates of set materials. Polyethylene tubes containing the test materials (CS, HA-CS, MTA) were implanted in subcutaneous tissue of Wistar rats. Histopathological examinations were conducted at 7, 15, 30 and 60days after the implantation. Data were statistically analyzed using three-way and one-way anova Tukeys post hoc test as well as Kruskall-Wallis test with Dunns post hoc test at =0.05. ResultsAll materials significantly reduced cell viability; especially when undiluted eluates were used (P LT 0.001). After 24h elution, cell viability was 101.8%, 49.5 +/- 4.2% and 61 +/- 7.4%, for MTA, and HA-CS, respectively. However, CS and HA-CS were significantly less toxic than the control material MTA (P LT 0.05). Cytotoxicity could be at least partially attributed to pH kinetics over time. Dilution of eluates of all tested materials resulted in better cell survival. Histopathological examination indicated similar inflammatory reaction, vascular congestion and connective tissue integrity associated with CS, HA-CS and MTA at each observation period (P GT 0.05). The only significant difference was found for capsule thickness, that is thicker capsule was associated with HA-CS compared to MTA at 60days (P=0.0039). HA-CS induced moderately thick capsules (median score 3, score range 2-3), whereas MTA resulted in thin capsule formation (median score 2, score range 1-3). ConclusionsEvaluation of cytotoxicity and inflammatory response indicated better biocompatibility of CS and HA-CS, in comparison with MTA (White MTA, Angelus((R)) Solucoes Odontologicas, Londrina, Brazil).",
journal = "International Endodontic Journal",
title = "Biocompatibility of new nanostructural materials based on active silicate systems and hydroxyapatite: in vitro and in vivo study",
volume = "48",
number = "10",
pages = "966-975",
doi = "10.1111/iej.12391"
}
Petrović, V., Opacic-Galic, V., Zivkovic, S., Nikolić, B., Danilovic, V., Miletic, V., Jokanović, V. R.,& Mitić-Ćulafić, D.. (2015). Biocompatibility of new nanostructural materials based on active silicate systems and hydroxyapatite: in vitro and in vivo study. in International Endodontic Journal, 48(10), 966-975.
https://doi.org/10.1111/iej.12391
Petrović V, Opacic-Galic V, Zivkovic S, Nikolić B, Danilovic V, Miletic V, Jokanović VR, Mitić-Ćulafić D. Biocompatibility of new nanostructural materials based on active silicate systems and hydroxyapatite: in vitro and in vivo study. in International Endodontic Journal. 2015;48(10):966-975.
doi:10.1111/iej.12391 .
Petrović, V., Opacic-Galic, V., Zivkovic, S., Nikolić, Biljana, Danilovic, V., Miletic, V., Jokanović, Vukoman R., Mitić-Ćulafić, Dragana, "Biocompatibility of new nanostructural materials based on active silicate systems and hydroxyapatite: in vitro and in vivo study" in International Endodontic Journal, 48, no. 10 (2015):966-975,
https://doi.org/10.1111/iej.12391 . .
22
12
15