Férová, Marta

Link to this page

Authority KeyName Variants
b9826e90-5f39-4da9-b595-6b508341a746
  • Férová, Marta (2)

Author's Bibliography

The photocatalytic ability of visible-light-responsive interfacial charge transfer complex between TiO2 and Tiron

Lazić, Vesna; Sredojević, Dušan; Ćirić, Aleksandar; Nedeljković, Jovan; Zelenková, Gabriela; Férová, Marta; Zelenka, Tomáš; Chavhan, Madhav Prabhakar; Slovák, Václav

(2024)

TY  - JOUR
AU  - Lazić, Vesna
AU  - Sredojević, Dušan
AU  - Ćirić, Aleksandar
AU  - Nedeljković, Jovan
AU  - Zelenková, Gabriela
AU  - Férová, Marta
AU  - Zelenka, Tomáš
AU  - Chavhan, Madhav Prabhakar
AU  - Slovák, Václav
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12392
AB  - The surface modification of commercial TiO2 powder with catecholate-type ligand Tiron (TIR) leads to the formation of the interfacial charge transfer complex (ICT) absorbing in the visible spectral range. The estimated band gap energy of the ICT complex (Eg = 2.2 eV) by density functional theory (DFT) calculations agrees with experimental measurements. The surface-modified TiO2 with TIR has enhanced sorption capacity towards Pb2+ ions compared to the pristine one due to the presence of free sulfonate groups. Our attempt to reduce Pb2+ ions to metallic form failed. The TiO2-based ICT complex with TIR can serve as an efficient sorbent to remove Pb2+ ions from the solution without the ability to recover them in metallic form in a photo-driven catalytic process. The photocatalytic ability of the ICT complex to induce oxidation reactions is significantly improved since the complete degradation of organic dye methyl orange occurs under exclusive excitations with visible light photons.
T2  - Journal of Photochemistry and Photobiology A: Chemistry
T1  - The photocatalytic ability of visible-light-responsive interfacial charge transfer complex between TiO2 and Tiron
VL  - 449
SP  - 115394
DO  - 10.1016/j.jphotochem.2023.115394
ER  - 
@article{
author = "Lazić, Vesna and Sredojević, Dušan and Ćirić, Aleksandar and Nedeljković, Jovan and Zelenková, Gabriela and Férová, Marta and Zelenka, Tomáš and Chavhan, Madhav Prabhakar and Slovák, Václav",
year = "2024",
abstract = "The surface modification of commercial TiO2 powder with catecholate-type ligand Tiron (TIR) leads to the formation of the interfacial charge transfer complex (ICT) absorbing in the visible spectral range. The estimated band gap energy of the ICT complex (Eg = 2.2 eV) by density functional theory (DFT) calculations agrees with experimental measurements. The surface-modified TiO2 with TIR has enhanced sorption capacity towards Pb2+ ions compared to the pristine one due to the presence of free sulfonate groups. Our attempt to reduce Pb2+ ions to metallic form failed. The TiO2-based ICT complex with TIR can serve as an efficient sorbent to remove Pb2+ ions from the solution without the ability to recover them in metallic form in a photo-driven catalytic process. The photocatalytic ability of the ICT complex to induce oxidation reactions is significantly improved since the complete degradation of organic dye methyl orange occurs under exclusive excitations with visible light photons.",
journal = "Journal of Photochemistry and Photobiology A: Chemistry",
title = "The photocatalytic ability of visible-light-responsive interfacial charge transfer complex between TiO2 and Tiron",
volume = "449",
pages = "115394",
doi = "10.1016/j.jphotochem.2023.115394"
}
Lazić, V., Sredojević, D., Ćirić, A., Nedeljković, J., Zelenková, G., Férová, M., Zelenka, T., Chavhan, M. P.,& Slovák, V.. (2024). The photocatalytic ability of visible-light-responsive interfacial charge transfer complex between TiO2 and Tiron. in Journal of Photochemistry and Photobiology A: Chemistry, 449, 115394.
https://doi.org/10.1016/j.jphotochem.2023.115394
Lazić V, Sredojević D, Ćirić A, Nedeljković J, Zelenková G, Férová M, Zelenka T, Chavhan MP, Slovák V. The photocatalytic ability of visible-light-responsive interfacial charge transfer complex between TiO2 and Tiron. in Journal of Photochemistry and Photobiology A: Chemistry. 2024;449:115394.
doi:10.1016/j.jphotochem.2023.115394 .
Lazić, Vesna, Sredojević, Dušan, Ćirić, Aleksandar, Nedeljković, Jovan, Zelenková, Gabriela, Férová, Marta, Zelenka, Tomáš, Chavhan, Madhav Prabhakar, Slovák, Václav, "The photocatalytic ability of visible-light-responsive interfacial charge transfer complex between TiO2 and Tiron" in Journal of Photochemistry and Photobiology A: Chemistry, 449 (2024):115394,
https://doi.org/10.1016/j.jphotochem.2023.115394 . .

Interfacial charge transfer complexes between ZnO and benzene derivatives: Characterization and photocatalytic hydrogen production

Dukić, Miljana; Sredojević, Dušan; Férová, Marta; Slovak, Vaclav; Lončarević, Davor; Dostanić, Jasmina; Šalipur, Hristina; Lazić, Vesna; Nedeljković, Jovan

(2024)

TY  - JOUR
AU  - Dukić, Miljana
AU  - Sredojević, Dušan
AU  - Férová, Marta
AU  - Slovak, Vaclav
AU  - Lončarević, Davor
AU  - Dostanić, Jasmina
AU  - Šalipur, Hristina
AU  - Lazić, Vesna
AU  - Nedeljković, Jovan
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12989
AB  - The interfacial charge transfer (ICT) complex formation is a simple procedure to bring optical absorption of widebandgap oxide materials in the visible spectral range, crucial for enhancing their use in photo-driven reactions. The optical absorption of the prepared ICT complexes between ZnO and five different colorless benzene derivatives is red-shifted compared to pristine ZnO nanopowder. The density functional theory (DFT) calculations provided realistic energy level alignment in hybrid systems. Also, the DFT-calculated infrared spectra support the binding structures derived based on experimental measurements of free and adsorbed ligands onto ZnO surfaces. The photocatalytic performance of prepared hybrids was evaluated using photocatalytic hydrogen generation in the water-splitting reaction. The ZnO nanopowders modified with catechol and caffeic acid have over 50% higher hydrogen production rate than pristine ZnO, displaying steady hydrogen production under long-run working conditions.
T2  - International Journal of Hydrogen Energy
T1  - Interfacial charge transfer complexes between ZnO and benzene derivatives: Characterization and photocatalytic hydrogen production
VL  - 62
SP  - 628
EP  - 636
DO  - 10.1016/j.ijhydene.2024.03.075
ER  - 
@article{
author = "Dukić, Miljana and Sredojević, Dušan and Férová, Marta and Slovak, Vaclav and Lončarević, Davor and Dostanić, Jasmina and Šalipur, Hristina and Lazić, Vesna and Nedeljković, Jovan",
year = "2024",
abstract = "The interfacial charge transfer (ICT) complex formation is a simple procedure to bring optical absorption of widebandgap oxide materials in the visible spectral range, crucial for enhancing their use in photo-driven reactions. The optical absorption of the prepared ICT complexes between ZnO and five different colorless benzene derivatives is red-shifted compared to pristine ZnO nanopowder. The density functional theory (DFT) calculations provided realistic energy level alignment in hybrid systems. Also, the DFT-calculated infrared spectra support the binding structures derived based on experimental measurements of free and adsorbed ligands onto ZnO surfaces. The photocatalytic performance of prepared hybrids was evaluated using photocatalytic hydrogen generation in the water-splitting reaction. The ZnO nanopowders modified with catechol and caffeic acid have over 50% higher hydrogen production rate than pristine ZnO, displaying steady hydrogen production under long-run working conditions.",
journal = "International Journal of Hydrogen Energy",
title = "Interfacial charge transfer complexes between ZnO and benzene derivatives: Characterization and photocatalytic hydrogen production",
volume = "62",
pages = "628-636",
doi = "10.1016/j.ijhydene.2024.03.075"
}
Dukić, M., Sredojević, D., Férová, M., Slovak, V., Lončarević, D., Dostanić, J., Šalipur, H., Lazić, V.,& Nedeljković, J.. (2024). Interfacial charge transfer complexes between ZnO and benzene derivatives: Characterization and photocatalytic hydrogen production. in International Journal of Hydrogen Energy, 62, 628-636.
https://doi.org/10.1016/j.ijhydene.2024.03.075
Dukić M, Sredojević D, Férová M, Slovak V, Lončarević D, Dostanić J, Šalipur H, Lazić V, Nedeljković J. Interfacial charge transfer complexes between ZnO and benzene derivatives: Characterization and photocatalytic hydrogen production. in International Journal of Hydrogen Energy. 2024;62:628-636.
doi:10.1016/j.ijhydene.2024.03.075 .
Dukić, Miljana, Sredojević, Dušan, Férová, Marta, Slovak, Vaclav, Lončarević, Davor, Dostanić, Jasmina, Šalipur, Hristina, Lazić, Vesna, Nedeljković, Jovan, "Interfacial charge transfer complexes between ZnO and benzene derivatives: Characterization and photocatalytic hydrogen production" in International Journal of Hydrogen Energy, 62 (2024):628-636,
https://doi.org/10.1016/j.ijhydene.2024.03.075 . .