de Rango, Patricia

Link to this page

Authority KeyName Variants
c889b7ba-1d52-4589-9d4e-1083a235d43e
  • de Rango, Patricia (2)
Projects

Author's Bibliography

Influence of Defects on the Stability and Hydrogen‐Sorption Behavior of Mg‐Based Hydrides

Grbović-Novaković, Jasmina; Novaković, Nikola; Kurko, Sandra V.; Milošević Govedarović, Sanja S.; Pantić, Tijana; Paskaš Mamula, Bojana; Batalović, Katarina; Radaković, Jana; Rmuš, Jelena; Shelyapina, Marina; Skryabina, Nataliya; de Rango, Patricia; Fruchart, Daniel

(2019)

TY  - JOUR
AU  - Grbović-Novaković, Jasmina
AU  - Novaković, Nikola
AU  - Kurko, Sandra V.
AU  - Milošević Govedarović, Sanja S.
AU  - Pantić, Tijana
AU  - Paskaš Mamula, Bojana
AU  - Batalović, Katarina
AU  - Radaković, Jana
AU  - Rmuš, Jelena
AU  - Shelyapina, Marina
AU  - Skryabina, Nataliya
AU  - de Rango, Patricia
AU  - Fruchart, Daniel
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8161
AB  - This review deals with the destabilization methods for improvement of storage properties of metal hydrides. Both theoretical and experimental approaches were used to point out the influence of various types of defects on structure and stability of hydrides. As a case study, Mg, and Ni based hydrides has been investigated. Theoretical studies, mainly carried out within various implementations of DFT, are a powerful tool to study mostly MgH 2 based materials. By providing an insight on metal-hydrogen bonding that governs both thermodynamics and hydrogen kinetics, they allow us to describe phenomena to which experimental methods have a limited access or do not have it at all: to follow the hydrogen sorption reaction on a specific metal surface and hydrogen induced phase transformations, to describe structure of phase boundaries or to explain the impact of defects or various additives on MgH 2 stability and hydrogen sorption kinetics. In several cases theoretical calculations reveal themselves as being able to predict new properties of materials, including the ways to modify Mg or MgH 2 that would lead to better characteristics in terms of hydrogen storage. The influence of ion irradiation and mechanical milling with and without additives has been discussed. Ion irradiation is the way to introduce a well-defined concentration of defects (Frankel pairs) at the surface and sub-surface layers of a material. Defects at the surface play the main role in sorption reaction since they enhance the dissociation of hydrogen. On the other hand, ball-milling introduce defects through the entire sample volume, refine the structure and thus decrease the path for hydrogen diffusion. Two Severe Plastic Deformation techniques were used to better understand the hydrogenation/dehydrogenation kinetics of Mg- and Mg 2 Ni-based alloys: Equal-Angular-Channel-Pressing and Fast-Forging. Successive ECAP passes leads to refinement of the microstructure of AZ31 ingots and to instalment therein of high densities of defects. Depending on mode, number and temperature of ECAP passes, the H-sorption kinetics have been improved satisfactorily without any additive for mass H-storage applications considering the relative speed of the shaping procedure. A qualitative understanding of the kinetic advanced principles has been built. Fast-Forging was used for a “quasi-instantaneous” synthesis of Mg/Mg 2 Ni-based composites. Hydrogenation of the as-received almost bi-phased materials remains rather slow as generally observed elsewhere, whatever are multiple and different techniques used to deliver the composite alloys. However, our preliminary results suggest that a synergic hydrogenation / dehydrogenation process should assist hydrogen transfers from Mg/Mg 2 Ni on one side to MgH 2 /Mg 2 NiH 4 on the other side via the rather stable a-Mg 2 NiH 0.3 , acting as in-situ catalyser. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
T2  - ChemPhysChem
T1  - Influence of Defects on the Stability and Hydrogen‐Sorption Behavior of Mg‐Based Hydrides
VL  - 20
IS  - 10
SP  - 1216
EP  - 1247
DO  - 10.1002/cphc.201801125
ER  - 
@article{
author = "Grbović-Novaković, Jasmina and Novaković, Nikola and Kurko, Sandra V. and Milošević Govedarović, Sanja S. and Pantić, Tijana and Paskaš Mamula, Bojana and Batalović, Katarina and Radaković, Jana and Rmuš, Jelena and Shelyapina, Marina and Skryabina, Nataliya and de Rango, Patricia and Fruchart, Daniel",
year = "2019",
abstract = "This review deals with the destabilization methods for improvement of storage properties of metal hydrides. Both theoretical and experimental approaches were used to point out the influence of various types of defects on structure and stability of hydrides. As a case study, Mg, and Ni based hydrides has been investigated. Theoretical studies, mainly carried out within various implementations of DFT, are a powerful tool to study mostly MgH 2 based materials. By providing an insight on metal-hydrogen bonding that governs both thermodynamics and hydrogen kinetics, they allow us to describe phenomena to which experimental methods have a limited access or do not have it at all: to follow the hydrogen sorption reaction on a specific metal surface and hydrogen induced phase transformations, to describe structure of phase boundaries or to explain the impact of defects or various additives on MgH 2 stability and hydrogen sorption kinetics. In several cases theoretical calculations reveal themselves as being able to predict new properties of materials, including the ways to modify Mg or MgH 2 that would lead to better characteristics in terms of hydrogen storage. The influence of ion irradiation and mechanical milling with and without additives has been discussed. Ion irradiation is the way to introduce a well-defined concentration of defects (Frankel pairs) at the surface and sub-surface layers of a material. Defects at the surface play the main role in sorption reaction since they enhance the dissociation of hydrogen. On the other hand, ball-milling introduce defects through the entire sample volume, refine the structure and thus decrease the path for hydrogen diffusion. Two Severe Plastic Deformation techniques were used to better understand the hydrogenation/dehydrogenation kinetics of Mg- and Mg 2 Ni-based alloys: Equal-Angular-Channel-Pressing and Fast-Forging. Successive ECAP passes leads to refinement of the microstructure of AZ31 ingots and to instalment therein of high densities of defects. Depending on mode, number and temperature of ECAP passes, the H-sorption kinetics have been improved satisfactorily without any additive for mass H-storage applications considering the relative speed of the shaping procedure. A qualitative understanding of the kinetic advanced principles has been built. Fast-Forging was used for a “quasi-instantaneous” synthesis of Mg/Mg 2 Ni-based composites. Hydrogenation of the as-received almost bi-phased materials remains rather slow as generally observed elsewhere, whatever are multiple and different techniques used to deliver the composite alloys. However, our preliminary results suggest that a synergic hydrogenation / dehydrogenation process should assist hydrogen transfers from Mg/Mg 2 Ni on one side to MgH 2 /Mg 2 NiH 4 on the other side via the rather stable a-Mg 2 NiH 0.3 , acting as in-situ catalyser. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim",
journal = "ChemPhysChem",
title = "Influence of Defects on the Stability and Hydrogen‐Sorption Behavior of Mg‐Based Hydrides",
volume = "20",
number = "10",
pages = "1216-1247",
doi = "10.1002/cphc.201801125"
}
Grbović-Novaković, J., Novaković, N., Kurko, S. V., Milošević Govedarović, S. S., Pantić, T., Paskaš Mamula, B., Batalović, K., Radaković, J., Rmuš, J., Shelyapina, M., Skryabina, N., de Rango, P.,& Fruchart, D.. (2019). Influence of Defects on the Stability and Hydrogen‐Sorption Behavior of Mg‐Based Hydrides. in ChemPhysChem, 20(10), 1216-1247.
https://doi.org/10.1002/cphc.201801125
Grbović-Novaković J, Novaković N, Kurko SV, Milošević Govedarović SS, Pantić T, Paskaš Mamula B, Batalović K, Radaković J, Rmuš J, Shelyapina M, Skryabina N, de Rango P, Fruchart D. Influence of Defects on the Stability and Hydrogen‐Sorption Behavior of Mg‐Based Hydrides. in ChemPhysChem. 2019;20(10):1216-1247.
doi:10.1002/cphc.201801125 .
Grbović-Novaković, Jasmina, Novaković, Nikola, Kurko, Sandra V., Milošević Govedarović, Sanja S., Pantić, Tijana, Paskaš Mamula, Bojana, Batalović, Katarina, Radaković, Jana, Rmuš, Jelena, Shelyapina, Marina, Skryabina, Nataliya, de Rango, Patricia, Fruchart, Daniel, "Influence of Defects on the Stability and Hydrogen‐Sorption Behavior of Mg‐Based Hydrides" in ChemPhysChem, 20, no. 10 (2019):1216-1247,
https://doi.org/10.1002/cphc.201801125 . .
1
25
7
22

Influence of Defects on the Stability and Hydrogen‐Sorption Behavior of Mg‐Based Hydrides

Grbović-Novaković, Jasmina; Novaković, Nikola; Kurko, Sandra V.; Milošević Govedarović, Sanja S.; Pantić, Tijana; Paskaš Mamula, Bojana; Batalović, Katarina; Radaković, Jana; Rmuš, Jelena; Shelyapina, Marina; Skryabina, Nataliya; de Rango, Patricia; Fruchart, Daniel

(2019)

TY  - JOUR
AU  - Grbović-Novaković, Jasmina
AU  - Novaković, Nikola
AU  - Kurko, Sandra V.
AU  - Milošević Govedarović, Sanja S.
AU  - Pantić, Tijana
AU  - Paskaš Mamula, Bojana
AU  - Batalović, Katarina
AU  - Radaković, Jana
AU  - Rmuš, Jelena
AU  - Shelyapina, Marina
AU  - Skryabina, Nataliya
AU  - de Rango, Patricia
AU  - Fruchart, Daniel
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8169
AB  - This review deals with the destabilization methods for improvement of storage properties of metal hydrides. Both theoretical and experimental approaches were used to point out the influence of various types of defects on structure and stability of hydrides. As a case study, Mg, and Ni based hydrides has been investigated. Theoretical studies, mainly carried out within various implementations of DFT, are a powerful tool to study mostly MgH 2 based materials. By providing an insight on metal-hydrogen bonding that governs both thermodynamics and hydrogen kinetics, they allow us to describe phenomena to which experimental methods have a limited access or do not have it at all: to follow the hydrogen sorption reaction on a specific metal surface and hydrogen induced phase transformations, to describe structure of phase boundaries or to explain the impact of defects or various additives on MgH 2 stability and hydrogen sorption kinetics. In several cases theoretical calculations reveal themselves as being able to predict new properties of materials, including the ways to modify Mg or MgH 2 that would lead to better characteristics in terms of hydrogen storage. The influence of ion irradiation and mechanical milling with and without additives has been discussed. Ion irradiation is the way to introduce a well-defined concentration of defects (Frankel pairs) at the surface and sub-surface layers of a material. Defects at the surface play the main role in sorption reaction since they enhance the dissociation of hydrogen. On the other hand, ball-milling introduce defects through the entire sample volume, refine the structure and thus decrease the path for hydrogen diffusion. Two Severe Plastic Deformation techniques were used to better understand the hydrogenation/dehydrogenation kinetics of Mg- and Mg 2 Ni-based alloys: Equal-Angular-Channel-Pressing and Fast-Forging. Successive ECAP passes leads to refinement of the microstructure of AZ31 ingots and to instalment therein of high densities of defects. Depending on mode, number and temperature of ECAP passes, the H-sorption kinetics have been improved satisfactorily without any additive for mass H-storage applications considering the relative speed of the shaping procedure. A qualitative understanding of the kinetic advanced principles has been built. Fast-Forging was used for a “quasi-instantaneous” synthesis of Mg/Mg 2 Ni-based composites. Hydrogenation of the as-received almost bi-phased materials remains rather slow as generally observed elsewhere, whatever are multiple and different techniques used to deliver the composite alloys. However, our preliminary results suggest that a synergic hydrogenation / dehydrogenation process should assist hydrogen transfers from Mg/Mg 2 Ni on one side to MgH 2 /Mg 2 NiH 4 on the other side via the rather stable a-Mg 2 NiH 0.3 , acting as in-situ catalyser. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
T2  - ChemPhysChem
T1  - Influence of Defects on the Stability and Hydrogen‐Sorption Behavior of Mg‐Based Hydrides
VL  - 20
IS  - 10
SP  - 1216
EP  - 1247
DO  - 10.1002/cphc.201801125
ER  - 
@article{
author = "Grbović-Novaković, Jasmina and Novaković, Nikola and Kurko, Sandra V. and Milošević Govedarović, Sanja S. and Pantić, Tijana and Paskaš Mamula, Bojana and Batalović, Katarina and Radaković, Jana and Rmuš, Jelena and Shelyapina, Marina and Skryabina, Nataliya and de Rango, Patricia and Fruchart, Daniel",
year = "2019",
abstract = "This review deals with the destabilization methods for improvement of storage properties of metal hydrides. Both theoretical and experimental approaches were used to point out the influence of various types of defects on structure and stability of hydrides. As a case study, Mg, and Ni based hydrides has been investigated. Theoretical studies, mainly carried out within various implementations of DFT, are a powerful tool to study mostly MgH 2 based materials. By providing an insight on metal-hydrogen bonding that governs both thermodynamics and hydrogen kinetics, they allow us to describe phenomena to which experimental methods have a limited access or do not have it at all: to follow the hydrogen sorption reaction on a specific metal surface and hydrogen induced phase transformations, to describe structure of phase boundaries or to explain the impact of defects or various additives on MgH 2 stability and hydrogen sorption kinetics. In several cases theoretical calculations reveal themselves as being able to predict new properties of materials, including the ways to modify Mg or MgH 2 that would lead to better characteristics in terms of hydrogen storage. The influence of ion irradiation and mechanical milling with and without additives has been discussed. Ion irradiation is the way to introduce a well-defined concentration of defects (Frankel pairs) at the surface and sub-surface layers of a material. Defects at the surface play the main role in sorption reaction since they enhance the dissociation of hydrogen. On the other hand, ball-milling introduce defects through the entire sample volume, refine the structure and thus decrease the path for hydrogen diffusion. Two Severe Plastic Deformation techniques were used to better understand the hydrogenation/dehydrogenation kinetics of Mg- and Mg 2 Ni-based alloys: Equal-Angular-Channel-Pressing and Fast-Forging. Successive ECAP passes leads to refinement of the microstructure of AZ31 ingots and to instalment therein of high densities of defects. Depending on mode, number and temperature of ECAP passes, the H-sorption kinetics have been improved satisfactorily without any additive for mass H-storage applications considering the relative speed of the shaping procedure. A qualitative understanding of the kinetic advanced principles has been built. Fast-Forging was used for a “quasi-instantaneous” synthesis of Mg/Mg 2 Ni-based composites. Hydrogenation of the as-received almost bi-phased materials remains rather slow as generally observed elsewhere, whatever are multiple and different techniques used to deliver the composite alloys. However, our preliminary results suggest that a synergic hydrogenation / dehydrogenation process should assist hydrogen transfers from Mg/Mg 2 Ni on one side to MgH 2 /Mg 2 NiH 4 on the other side via the rather stable a-Mg 2 NiH 0.3 , acting as in-situ catalyser. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim",
journal = "ChemPhysChem",
title = "Influence of Defects on the Stability and Hydrogen‐Sorption Behavior of Mg‐Based Hydrides",
volume = "20",
number = "10",
pages = "1216-1247",
doi = "10.1002/cphc.201801125"
}
Grbović-Novaković, J., Novaković, N., Kurko, S. V., Milošević Govedarović, S. S., Pantić, T., Paskaš Mamula, B., Batalović, K., Radaković, J., Rmuš, J., Shelyapina, M., Skryabina, N., de Rango, P.,& Fruchart, D.. (2019). Influence of Defects on the Stability and Hydrogen‐Sorption Behavior of Mg‐Based Hydrides. in ChemPhysChem, 20(10), 1216-1247.
https://doi.org/10.1002/cphc.201801125
Grbović-Novaković J, Novaković N, Kurko SV, Milošević Govedarović SS, Pantić T, Paskaš Mamula B, Batalović K, Radaković J, Rmuš J, Shelyapina M, Skryabina N, de Rango P, Fruchart D. Influence of Defects on the Stability and Hydrogen‐Sorption Behavior of Mg‐Based Hydrides. in ChemPhysChem. 2019;20(10):1216-1247.
doi:10.1002/cphc.201801125 .
Grbović-Novaković, Jasmina, Novaković, Nikola, Kurko, Sandra V., Milošević Govedarović, Sanja S., Pantić, Tijana, Paskaš Mamula, Bojana, Batalović, Katarina, Radaković, Jana, Rmuš, Jelena, Shelyapina, Marina, Skryabina, Nataliya, de Rango, Patricia, Fruchart, Daniel, "Influence of Defects on the Stability and Hydrogen‐Sorption Behavior of Mg‐Based Hydrides" in ChemPhysChem, 20, no. 10 (2019):1216-1247,
https://doi.org/10.1002/cphc.201801125 . .
1
25
7
20