Šaponjić, Zoran

Link to this page

Authority KeyName Variants
orcid::0000-0001-7848-6715
  • Šaponjić, Zoran (113)
  • Šaponjić, Z.V. (1)
Projects
Size-, shape- and structure- dependent properties of nanoparticles and nanocomposites Materials of Reduced Dimensions for Efficient Light Harvesting and Energy conversion
Mechanistic studies of the reactions of transition metal ion complexes with biologically relevant molecules Electroconducting and redox-active polymers and oligomers: synthesis, structure, properties and applications
Synthesis and characterization of novel functional polymers and polymeric nanocomposites Photonics of micro and nano structured materials
Sinteza i karakterizacija nanočestica i nanokompozita Development of Methods of Monitoring and Removal of Biologically Actives Substances Aimed at Improving the Quality of the Environment
The development of efficient chemical-engineering processes based on the transport phenomena research and process intensification principles Chemical and structural designing of nanomaterials for application in medicine and tissue engineering
Nanostructured multifunctional materials and nanocomposites MPNS COST Action [MP1106]
ANCSI [PN1647/2016], CNCS-UEFISCDI [PN-PN-II-ID-PCE-2011-3-0922], COST Action [MP1106] bilateral German-Serbian project - German Academic Exchange Office (Deutscher Akademischer Austauschdienst, DAAD)
Bilateral project Republic of Serbia-People's Republic of China [451-00-478/2018-09/16] COST Action [CM 1101]
COST Action [MP1106] Danube Region Strategies multilateral project -Danube meets Omics [DS 052]
European network action COST Action Smart and Green Interfaces - from Single Bubbles and Drops to Industrial, Environmental and Biomedical Applications [MP1106], COST Action Colloidal Aspects of Nanoscience for Innovative Processes and Materials [CM1101] German-Serbian bilateral project, German Academic Exchange Office (Deutscher Akademischer Austauschdienst, DAAD)
STRENTEX - ERA Chair for emerging technologies and innovative research in Stretchable and Textile Electronics Graphitic and Inorganic Low-dimensional Nanostructures
Effects of laser radiation and plasma on novel materials in their synthesis, modification, and analysis Functionalization, characterization and application of cellulose and cellulose derivatives
Radiosensitivity of human genome Biomarkers in neurodegenerative and malignant processes
Cellular and molecular basis of malignant and cardiovascular diseases-clinical implications Nanostructured Functional and Composite Materials in Catalytic and Sorption Processes
Ministry of Research and Innovation in the frame of Nucleu programme [PN1647/2016] Ministry of Research and Innovation in the frame of Nucleu programme [PN-III-P2-2.1-PED-2016-0420]

Author's Bibliography

Biocompatibility of TiO2 prolate nanospheroids as a potential photosenzitizer in therapy of cancer

Matijević, Milica; Nakarada, Đura; Liang, Xinyue; Korićanac, Lela; Rajsiglova, Lenka; Vannucci, Luca; Nešić, Maja D.; Vranješ, Mila; Mojović, Miloš D.; Mi, Lan; Estrela-Lopis, Irina; Böttner, Julia; Šaponjić, Zoran; Petković, Marijana; Stepić, Milutin

(2020)

TY  - JOUR
AU  - Matijević, Milica
AU  - Nakarada, Đura
AU  - Liang, Xinyue
AU  - Korićanac, Lela
AU  - Rajsiglova, Lenka
AU  - Vannucci, Luca
AU  - Nešić, Maja D.
AU  - Vranješ, Mila
AU  - Mojović, Miloš D.
AU  - Mi, Lan
AU  - Estrela-Lopis, Irina
AU  - Böttner, Julia
AU  - Šaponjić, Zoran
AU  - Petković, Marijana
AU  - Stepić, Milutin
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9058
AB  - TiO2 prolatenanospheroids (PNSs) may be photosensitizers (PSs), which act by catalyzation of hydroxyl radical (∙OH) formation upon light illumination. ∙OH might, in turn, contribute to killing of cancer cells. On the other hand, there is great concern about toxicity in the dark of TiO2 nanoparticles in general. In this work, we have investigated the biocompatibility of TiO2 PNSs of the anatase crystal form (length between 100 and 300 nm and width 50 nm) in the dark with immune cells and light-induced cytotoxicity on several cancer cell lines. The effects of the treatment of different cell lines with several concentrations of TiO2 PNSs suspensions showed the specifics of cells’ viability and the intracellular localization. The results of in vitro studies obtained by cytotoxicity assays adjusted to individual cell lines’ metabolism point towards the biocompatibility of TiO2 PNSs at low and moderate concentrations in the dark, which neither kill the cells, nor induce activation of the immune system cells. Laser scanning confocal microscopy revealed that PNSs are taken up by cells, and insight into the intracellular distribution was obtained in this study.
T2  - Journal of Nanoparticle Research
T1  - Biocompatibility of TiO2 prolate nanospheroids as a potential photosenzitizer in therapy of cancer
VL  - 22
IS  - 7
SP  - 175
DO  - 10.1007/s11051-020-04899-3
ER  - 
@article{
author = "Matijević, Milica and Nakarada, Đura and Liang, Xinyue and Korićanac, Lela and Rajsiglova, Lenka and Vannucci, Luca and Nešić, Maja D. and Vranješ, Mila and Mojović, Miloš D. and Mi, Lan and Estrela-Lopis, Irina and Böttner, Julia and Šaponjić, Zoran and Petković, Marijana and Stepić, Milutin",
year = "2020",
abstract = "TiO2 prolatenanospheroids (PNSs) may be photosensitizers (PSs), which act by catalyzation of hydroxyl radical (∙OH) formation upon light illumination. ∙OH might, in turn, contribute to killing of cancer cells. On the other hand, there is great concern about toxicity in the dark of TiO2 nanoparticles in general. In this work, we have investigated the biocompatibility of TiO2 PNSs of the anatase crystal form (length between 100 and 300 nm and width 50 nm) in the dark with immune cells and light-induced cytotoxicity on several cancer cell lines. The effects of the treatment of different cell lines with several concentrations of TiO2 PNSs suspensions showed the specifics of cells’ viability and the intracellular localization. The results of in vitro studies obtained by cytotoxicity assays adjusted to individual cell lines’ metabolism point towards the biocompatibility of TiO2 PNSs at low and moderate concentrations in the dark, which neither kill the cells, nor induce activation of the immune system cells. Laser scanning confocal microscopy revealed that PNSs are taken up by cells, and insight into the intracellular distribution was obtained in this study.",
journal = "Journal of Nanoparticle Research",
title = "Biocompatibility of TiO2 prolate nanospheroids as a potential photosenzitizer in therapy of cancer",
volume = "22",
number = "7",
pages = "175",
doi = "10.1007/s11051-020-04899-3"
}
Matijević, M., Nakarada, Đ., Liang, X., Korićanac, L., Rajsiglova, L., Vannucci, L., Nešić, M. D., Vranješ, M., Mojović, M. D., Mi, L., Estrela-Lopis, I., Böttner, J., Šaponjić, Z., Petković, M.,& Stepić, M.. (2020). Biocompatibility of TiO2 prolate nanospheroids as a potential photosenzitizer in therapy of cancer. in Journal of Nanoparticle Research, 22(7), 175.
https://doi.org/10.1007/s11051-020-04899-3
Matijević M, Nakarada Đ, Liang X, Korićanac L, Rajsiglova L, Vannucci L, Nešić MD, Vranješ M, Mojović MD, Mi L, Estrela-Lopis I, Böttner J, Šaponjić Z, Petković M, Stepić M. Biocompatibility of TiO2 prolate nanospheroids as a potential photosenzitizer in therapy of cancer. in Journal of Nanoparticle Research. 2020;22(7):175.
doi:10.1007/s11051-020-04899-3 .
Matijević, Milica, Nakarada, Đura, Liang, Xinyue, Korićanac, Lela, Rajsiglova, Lenka, Vannucci, Luca, Nešić, Maja D., Vranješ, Mila, Mojović, Miloš D., Mi, Lan, Estrela-Lopis, Irina, Böttner, Julia, Šaponjić, Zoran, Petković, Marijana, Stepić, Milutin, "Biocompatibility of TiO2 prolate nanospheroids as a potential photosenzitizer in therapy of cancer" in Journal of Nanoparticle Research, 22, no. 7 (2020):175,
https://doi.org/10.1007/s11051-020-04899-3 . .
1
1
1

A Textile-Based Microfluidic Platform for the Detection of Cytostatic Drug Concentration in Sweat Samples

Stojanović, Goran M.; Radetić, Maja M.; Šaponjić, Zoran; Radoičić, Marija B.; Radovanović, Milan R.; Popović, Željko V.; Vukmirović, Saša N.

(2020)

TY  - JOUR
AU  - Stojanović, Goran M.
AU  - Radetić, Maja M.
AU  - Šaponjić, Zoran
AU  - Radoičić, Marija B.
AU  - Radovanović, Milan R.
AU  - Popović, Željko V.
AU  - Vukmirović, Saša N.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9067
AB  - This work presents a new multilayered microfluidic platform, manufactured using a rapid and cost-effective xurography technique, for the detection of drug concentrations in sweat. Textile fabrics made of cotton and polyester were used as a component of the platform, and they were positioned in the middle of the microfluidic device. In order to obtain a highly conductive textile, the fabrics were in situ coated with different amounts of polyaniline and titanium dioxide nanocomposite. This portable microfluidic platform comprises at least three layers of optically transparent and flexible PVC foils which were stacked one on top of the other. Electrical contacts were provided from the edge of the textile material when a microfluidic variable resistor was actually created. The platform was tested in plain artificial sweat and in artificial sweat with a dissolved cytostatic test drug, cyclophosphamide, of different concentrations. The proposed microfluidic device decreased in resistance when the sweat was applied. In addition, it could successfully detect different concentrations of cytostatic medication in the sweat, which could make it a very useful tool for simple, reliable, and fast diagnostics.
T2  - Applied Sciences
T1  - A Textile-Based Microfluidic Platform for the Detection of Cytostatic Drug Concentration in Sweat Samples
VL  - 10
IS  - 12
SP  - 4392
DO  - 10.3390/app10124392
ER  - 
@article{
author = "Stojanović, Goran M. and Radetić, Maja M. and Šaponjić, Zoran and Radoičić, Marija B. and Radovanović, Milan R. and Popović, Željko V. and Vukmirović, Saša N.",
year = "2020",
abstract = "This work presents a new multilayered microfluidic platform, manufactured using a rapid and cost-effective xurography technique, for the detection of drug concentrations in sweat. Textile fabrics made of cotton and polyester were used as a component of the platform, and they were positioned in the middle of the microfluidic device. In order to obtain a highly conductive textile, the fabrics were in situ coated with different amounts of polyaniline and titanium dioxide nanocomposite. This portable microfluidic platform comprises at least three layers of optically transparent and flexible PVC foils which were stacked one on top of the other. Electrical contacts were provided from the edge of the textile material when a microfluidic variable resistor was actually created. The platform was tested in plain artificial sweat and in artificial sweat with a dissolved cytostatic test drug, cyclophosphamide, of different concentrations. The proposed microfluidic device decreased in resistance when the sweat was applied. In addition, it could successfully detect different concentrations of cytostatic medication in the sweat, which could make it a very useful tool for simple, reliable, and fast diagnostics.",
journal = "Applied Sciences",
title = "A Textile-Based Microfluidic Platform for the Detection of Cytostatic Drug Concentration in Sweat Samples",
volume = "10",
number = "12",
pages = "4392",
doi = "10.3390/app10124392"
}
Stojanović, G. M., Radetić, M. M., Šaponjić, Z., Radoičić, M. B., Radovanović, M. R., Popović, Ž. V.,& Vukmirović, S. N.. (2020). A Textile-Based Microfluidic Platform for the Detection of Cytostatic Drug Concentration in Sweat Samples. in Applied Sciences, 10(12), 4392.
https://doi.org/10.3390/app10124392
Stojanović GM, Radetić MM, Šaponjić Z, Radoičić MB, Radovanović MR, Popović ŽV, Vukmirović SN. A Textile-Based Microfluidic Platform for the Detection of Cytostatic Drug Concentration in Sweat Samples. in Applied Sciences. 2020;10(12):4392.
doi:10.3390/app10124392 .
Stojanović, Goran M., Radetić, Maja M., Šaponjić, Zoran, Radoičić, Marija B., Radovanović, Milan R., Popović, Željko V., Vukmirović, Saša N., "A Textile-Based Microfluidic Platform for the Detection of Cytostatic Drug Concentration in Sweat Samples" in Applied Sciences, 10, no. 12 (2020):4392,
https://doi.org/10.3390/app10124392 . .
1
1

Hydrothermal synthesis of Mn2+ doped titanate nanotubes: Investigation of their structure and room temperature ferromagnetic behavior

Vranješ, Mila; Kuljanin-Jakovljević, Jadranka Ž.; Milošević, Milica V.; Ćirić-Marjanović, Gordana N.; Stoiljković, Milovan; Konstantinović, Zorica; Pavlović, Vladimir B.; Milivojević, Dušan; Šaponjić, Zoran

(2019)

TY  - JOUR
AU  - Vranješ, Mila
AU  - Kuljanin-Jakovljević, Jadranka Ž.
AU  - Milošević, Milica V.
AU  - Ćirić-Marjanović, Gordana N.
AU  - Stoiljković, Milovan
AU  - Konstantinović, Zorica
AU  - Pavlović, Vladimir B.
AU  - Milivojević, Dušan
AU  - Šaponjić, Zoran
PY  - 2019
UR  - https://linkinghub.elsevier.com/retrieve/pii/S1293255818312226
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8358
AB  - Hydrothermal synthesis of Mn2+ doped titanate nanotubes (TNTs), which exhibited room temperature ferromagnetism (RTFM), is reported. Dispersions of 1 and 5 at.% Mn2+ doped anatase TiO2 nanocrystals were used as precursors. Size and shape of Mn2+ doped TNTs and precursor nanocrystals were studied by transmission electron microscopy (TEM). The relatively uniform size distribution of transverse dimension of nanotubes of about 10 nm was observed while their lengths varied up to few hundred nanometers. The X-Ray Diffraction (XRD) analysis and Raman spectroscopy of resultant powder confirmed the hydrogen dititanate (H2Ti2O5 x H2O) crystal phase of Mn2+ doped TNTs with the presence of small amount of sodium titanates. Electron paramagnetic resonance (EPR) experiments were performed to probe the local atomic and electronic structure of Mn in the nanotubes. Room temperature ferromagnetic ordering with saturation magnetic moment (Ms) in the range of 0.6–1.5 μB per Mn atom was observed. © 2019 Elsevier Masson SAS
T2  - Solid State Sciences
T1  - Hydrothermal synthesis of Mn2+ doped titanate nanotubes: Investigation of their structure and room temperature ferromagnetic behavior
VL  - 94
SP  - 155
EP  - 161
DO  - 10.1016/j.solidstatesciences.2019.06.008
ER  - 
@article{
author = "Vranješ, Mila and Kuljanin-Jakovljević, Jadranka Ž. and Milošević, Milica V. and Ćirić-Marjanović, Gordana N. and Stoiljković, Milovan and Konstantinović, Zorica and Pavlović, Vladimir B. and Milivojević, Dušan and Šaponjić, Zoran",
year = "2019",
abstract = "Hydrothermal synthesis of Mn2+ doped titanate nanotubes (TNTs), which exhibited room temperature ferromagnetism (RTFM), is reported. Dispersions of 1 and 5 at.% Mn2+ doped anatase TiO2 nanocrystals were used as precursors. Size and shape of Mn2+ doped TNTs and precursor nanocrystals were studied by transmission electron microscopy (TEM). The relatively uniform size distribution of transverse dimension of nanotubes of about 10 nm was observed while their lengths varied up to few hundred nanometers. The X-Ray Diffraction (XRD) analysis and Raman spectroscopy of resultant powder confirmed the hydrogen dititanate (H2Ti2O5 x H2O) crystal phase of Mn2+ doped TNTs with the presence of small amount of sodium titanates. Electron paramagnetic resonance (EPR) experiments were performed to probe the local atomic and electronic structure of Mn in the nanotubes. Room temperature ferromagnetic ordering with saturation magnetic moment (Ms) in the range of 0.6–1.5 μB per Mn atom was observed. © 2019 Elsevier Masson SAS",
journal = "Solid State Sciences",
title = "Hydrothermal synthesis of Mn2+ doped titanate nanotubes: Investigation of their structure and room temperature ferromagnetic behavior",
volume = "94",
pages = "155-161",
doi = "10.1016/j.solidstatesciences.2019.06.008"
}
Vranješ, M., Kuljanin-Jakovljević, J. Ž., Milošević, M. V., Ćirić-Marjanović, G. N., Stoiljković, M., Konstantinović, Z., Pavlović, V. B., Milivojević, D.,& Šaponjić, Z.. (2019). Hydrothermal synthesis of Mn2+ doped titanate nanotubes: Investigation of their structure and room temperature ferromagnetic behavior. in Solid State Sciences, 94, 155-161.
https://doi.org/10.1016/j.solidstatesciences.2019.06.008
Vranješ M, Kuljanin-Jakovljević JŽ, Milošević MV, Ćirić-Marjanović GN, Stoiljković M, Konstantinović Z, Pavlović VB, Milivojević D, Šaponjić Z. Hydrothermal synthesis of Mn2+ doped titanate nanotubes: Investigation of their structure and room temperature ferromagnetic behavior. in Solid State Sciences. 2019;94:155-161.
doi:10.1016/j.solidstatesciences.2019.06.008 .
Vranješ, Mila, Kuljanin-Jakovljević, Jadranka Ž., Milošević, Milica V., Ćirić-Marjanović, Gordana N., Stoiljković, Milovan, Konstantinović, Zorica, Pavlović, Vladimir B., Milivojević, Dušan, Šaponjić, Zoran, "Hydrothermal synthesis of Mn2+ doped titanate nanotubes: Investigation of their structure and room temperature ferromagnetic behavior" in Solid State Sciences, 94 (2019):155-161,
https://doi.org/10.1016/j.solidstatesciences.2019.06.008 . .
6
5
6

Light controllable TiO2-Ru nanocomposite system encapsulated in phospholipid unilamellar vesicles for anti-cancer photodynamic therapy

Matijević, Milica; Nešić, Maja A.; Stepić, Milutin; Radoičić, Marija B.; Šaponjić, Zoran; Petković, Marijana

(2018)

TY  - JOUR
AU  - Matijević, Milica
AU  - Nešić, Maja A.
AU  - Stepić, Milutin
AU  - Radoičić, Marija B.
AU  - Šaponjić, Zoran
AU  - Petković, Marijana
PY  - 2018
UR  - http://link.springer.com/10.1007/s11082-018-1495-z
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7697
AB  - Photodynamic therapy implies a combined use of a photosensitizing medicament and low-intensity light to cause selective damage to the target tissue—tumor. As potential medicament, we use Ru(II)(dcbpy)2Cl2complex, and in order to achieve better photosensitization properties, the Ru complex was attached to the nano carrier—TiO2nanoparticles. Additionally, this nanocomposite system was encapsulated in the phospholipid vesicles, which could be classified as small unilamellar vesicles, based on the technique of production. The complex-release tests were performed under light illumination, at pH 5, characteristic for tumor cells` interior and compared with the release pattern at pH 7, characteristic for the serum, i.e. physiological solution.
T2  - Optical and Quantum Electronics
T1  - Light controllable TiO2-Ru nanocomposite system encapsulated in phospholipid unilamellar vesicles for anti-cancer photodynamic therapy
VL  - 50
IS  - 6
SP  - 232
DO  - 10.1007/s11082-018-1495-z
ER  - 
@article{
author = "Matijević, Milica and Nešić, Maja A. and Stepić, Milutin and Radoičić, Marija B. and Šaponjić, Zoran and Petković, Marijana",
year = "2018",
abstract = "Photodynamic therapy implies a combined use of a photosensitizing medicament and low-intensity light to cause selective damage to the target tissue—tumor. As potential medicament, we use Ru(II)(dcbpy)2Cl2complex, and in order to achieve better photosensitization properties, the Ru complex was attached to the nano carrier—TiO2nanoparticles. Additionally, this nanocomposite system was encapsulated in the phospholipid vesicles, which could be classified as small unilamellar vesicles, based on the technique of production. The complex-release tests were performed under light illumination, at pH 5, characteristic for tumor cells` interior and compared with the release pattern at pH 7, characteristic for the serum, i.e. physiological solution.",
journal = "Optical and Quantum Electronics",
title = "Light controllable TiO2-Ru nanocomposite system encapsulated in phospholipid unilamellar vesicles for anti-cancer photodynamic therapy",
volume = "50",
number = "6",
pages = "232",
doi = "10.1007/s11082-018-1495-z"
}
Matijević, M., Nešić, M. A., Stepić, M., Radoičić, M. B., Šaponjić, Z.,& Petković, M.. (2018). Light controllable TiO2-Ru nanocomposite system encapsulated in phospholipid unilamellar vesicles for anti-cancer photodynamic therapy. in Optical and Quantum Electronics, 50(6), 232.
https://doi.org/10.1007/s11082-018-1495-z
Matijević M, Nešić MA, Stepić M, Radoičić MB, Šaponjić Z, Petković M. Light controllable TiO2-Ru nanocomposite system encapsulated in phospholipid unilamellar vesicles for anti-cancer photodynamic therapy. in Optical and Quantum Electronics. 2018;50(6):232.
doi:10.1007/s11082-018-1495-z .
Matijević, Milica, Nešić, Maja A., Stepić, Milutin, Radoičić, Marija B., Šaponjić, Zoran, Petković, Marijana, "Light controllable TiO2-Ru nanocomposite system encapsulated in phospholipid unilamellar vesicles for anti-cancer photodynamic therapy" in Optical and Quantum Electronics, 50, no. 6 (2018):232,
https://doi.org/10.1007/s11082-018-1495-z . .
2
1
1

Inorganic Nanoparticles In Biology: Drug Carriers And Auxiliary Tools In Bioimaging And Bioanalytics

Matijević, Milica; Popović, Iva A.; Stepić, Milutin; Nešić, Maja D.; Radoičić, Marija B.; Stanković, Maja; Šaponjić, Zoran; Petković, Marijana

(2018)

TY  - JOUR
AU  - Matijević, Milica
AU  - Popović, Iva A.
AU  - Stepić, Milutin
AU  - Nešić, Maja D.
AU  - Radoičić, Marija B.
AU  - Stanković, Maja
AU  - Šaponjić, Zoran
AU  - Petković, Marijana
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9062
AB  - Among various nano-scaled materials composed from a spectrum of chemical compounds, inorganic nanoparticles are very attractive due to their physico-chemical properties, as well as their availability, simplicity, possibility of modifications, stability and biocompatibility. They are, on the one hand, an useful tool in advanced analytical chemistry, in particular for studying of biologically-relevant processes, but also important as functional parts of the systems designed for controlled and targeted delivery of medicaments for treatment of a variety of diseases and for imaging. So far, thousands of compounds and systems have been developed for the above-mentioned purposes, but there are only a few reviews dealing with these topics. The aim of this review is, thus, to summarize recent applications of nano-structured inorganic materials in the field of drug delivery, bioimaging and bioanalytics, and to give a prospective from the standpoint of biology-related applications.
T2  - Biologica Nyssana
T1  - Inorganic Nanoparticles In Biology: Drug Carriers And Auxiliary Tools In Bioimaging And Bioanalytics
VL  - 9
IS  - 1
SP  - 1
EP  - 19
DO  - 10.5281/zenodo.1470841
ER  - 
@article{
author = "Matijević, Milica and Popović, Iva A. and Stepić, Milutin and Nešić, Maja D. and Radoičić, Marija B. and Stanković, Maja and Šaponjić, Zoran and Petković, Marijana",
year = "2018",
abstract = "Among various nano-scaled materials composed from a spectrum of chemical compounds, inorganic nanoparticles are very attractive due to their physico-chemical properties, as well as their availability, simplicity, possibility of modifications, stability and biocompatibility. They are, on the one hand, an useful tool in advanced analytical chemistry, in particular for studying of biologically-relevant processes, but also important as functional parts of the systems designed for controlled and targeted delivery of medicaments for treatment of a variety of diseases and for imaging. So far, thousands of compounds and systems have been developed for the above-mentioned purposes, but there are only a few reviews dealing with these topics. The aim of this review is, thus, to summarize recent applications of nano-structured inorganic materials in the field of drug delivery, bioimaging and bioanalytics, and to give a prospective from the standpoint of biology-related applications.",
journal = "Biologica Nyssana",
title = "Inorganic Nanoparticles In Biology: Drug Carriers And Auxiliary Tools In Bioimaging And Bioanalytics",
volume = "9",
number = "1",
pages = "1-19",
doi = "10.5281/zenodo.1470841"
}
Matijević, M., Popović, I. A., Stepić, M., Nešić, M. D., Radoičić, M. B., Stanković, M., Šaponjić, Z.,& Petković, M.. (2018). Inorganic Nanoparticles In Biology: Drug Carriers And Auxiliary Tools In Bioimaging And Bioanalytics. in Biologica Nyssana, 9(1), 1-19.
https://doi.org/10.5281/zenodo.1470841
Matijević M, Popović IA, Stepić M, Nešić MD, Radoičić MB, Stanković M, Šaponjić Z, Petković M. Inorganic Nanoparticles In Biology: Drug Carriers And Auxiliary Tools In Bioimaging And Bioanalytics. in Biologica Nyssana. 2018;9(1):1-19.
doi:10.5281/zenodo.1470841 .
Matijević, Milica, Popović, Iva A., Stepić, Milutin, Nešić, Maja D., Radoičić, Marija B., Stanković, Maja, Šaponjić, Zoran, Petković, Marijana, "Inorganic Nanoparticles In Biology: Drug Carriers And Auxiliary Tools In Bioimaging And Bioanalytics" in Biologica Nyssana, 9, no. 1 (2018):1-19,
https://doi.org/10.5281/zenodo.1470841 . .

In situ synthesis of Cu/Cu2O nanoparticles on the TEMPO oxidized cotton fabrics

Marković, Darka; Korica, Matea; Kostić, Mirjana M.; Radovanović, Željko; Šaponjić, Zoran; Mitrić, Miodrag; Radetić, Maja M.

(2018)

TY  - JOUR
AU  - Marković, Darka
AU  - Korica, Matea
AU  - Kostić, Mirjana M.
AU  - Radovanović, Željko
AU  - Šaponjić, Zoran
AU  - Mitrić, Miodrag
AU  - Radetić, Maja M.
PY  - 2018
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1911
AB  - In situ synthesis of Cu/Cu2O nanoparticles on the cotton fabric discussed in this study relies on adsorption of Cu2+-ions by carboxylate groups generated through the TEMPO-mediated oxidation of cellulose and their subsequent reduction by sodium borohydride. In order to establish the influence of aldehyde and carboxylate groups on the nanoparticles formation, the duration of TEMPO-mediated oxidation was varied. Chemical changes induced by TEMPO-mediated oxidation were evaluated by titrimetric determination of the amounts of aldehyde and carboxylic groups in cotton and FTIR spectroscopy. The presence of Cu/Cu2O nanoparticles on the cotton fabric was confirmed by FE-SEM, AAS and XRD analyses. Antimicrobial activity of synthesized nanoparticles was tested against Gram-negative bacteria E. coli, Gram-positive bacteria S. aureus and fungi C. albicans. The extension of TEMPO oxidation time led to an increase of carboxylate group content and consequently, formation of larger amounts of Cu/Cu2O nanoparticles. All fabricated textile nanocomposites provided excellent antibacterial and acceptable antifungal activity. They also ensured a controlled release of Cu2+-ions in physiological solution which is an imperative for infection prevention.
T2  - Cellulose
T1  - In situ synthesis of Cu/Cu2O nanoparticles on the TEMPO oxidized cotton fabrics
VL  - 25
IS  - 1
SP  - 829
EP  - 841
DO  - 10.1007/s10570-017-1566-5
ER  - 
@article{
author = "Marković, Darka and Korica, Matea and Kostić, Mirjana M. and Radovanović, Željko and Šaponjić, Zoran and Mitrić, Miodrag and Radetić, Maja M.",
year = "2018",
abstract = "In situ synthesis of Cu/Cu2O nanoparticles on the cotton fabric discussed in this study relies on adsorption of Cu2+-ions by carboxylate groups generated through the TEMPO-mediated oxidation of cellulose and their subsequent reduction by sodium borohydride. In order to establish the influence of aldehyde and carboxylate groups on the nanoparticles formation, the duration of TEMPO-mediated oxidation was varied. Chemical changes induced by TEMPO-mediated oxidation were evaluated by titrimetric determination of the amounts of aldehyde and carboxylic groups in cotton and FTIR spectroscopy. The presence of Cu/Cu2O nanoparticles on the cotton fabric was confirmed by FE-SEM, AAS and XRD analyses. Antimicrobial activity of synthesized nanoparticles was tested against Gram-negative bacteria E. coli, Gram-positive bacteria S. aureus and fungi C. albicans. The extension of TEMPO oxidation time led to an increase of carboxylate group content and consequently, formation of larger amounts of Cu/Cu2O nanoparticles. All fabricated textile nanocomposites provided excellent antibacterial and acceptable antifungal activity. They also ensured a controlled release of Cu2+-ions in physiological solution which is an imperative for infection prevention.",
journal = "Cellulose",
title = "In situ synthesis of Cu/Cu2O nanoparticles on the TEMPO oxidized cotton fabrics",
volume = "25",
number = "1",
pages = "829-841",
doi = "10.1007/s10570-017-1566-5"
}
Marković, D., Korica, M., Kostić, M. M., Radovanović, Ž., Šaponjić, Z., Mitrić, M.,& Radetić, M. M.. (2018). In situ synthesis of Cu/Cu2O nanoparticles on the TEMPO oxidized cotton fabrics. in Cellulose, 25(1), 829-841.
https://doi.org/10.1007/s10570-017-1566-5
Marković D, Korica M, Kostić MM, Radovanović Ž, Šaponjić Z, Mitrić M, Radetić MM. In situ synthesis of Cu/Cu2O nanoparticles on the TEMPO oxidized cotton fabrics. in Cellulose. 2018;25(1):829-841.
doi:10.1007/s10570-017-1566-5 .
Marković, Darka, Korica, Matea, Kostić, Mirjana M., Radovanović, Željko, Šaponjić, Zoran, Mitrić, Miodrag, Radetić, Maja M., "In situ synthesis of Cu/Cu2O nanoparticles on the TEMPO oxidized cotton fabrics" in Cellulose, 25, no. 1 (2018):829-841,
https://doi.org/10.1007/s10570-017-1566-5 . .
29
26
26

Floating Photocatalyst Based on Poly(ε-caprolactone) Foam and TiO2 Nanoparticles for Removal of Textile Dyes

Marković, Darka; Milovanović, Stoja; Radovanović, Željko; Žižović, Irena T.; Šaponjić, Zoran; Radetić, Maja M.

(2018)

TY  - JOUR
AU  - Marković, Darka
AU  - Milovanović, Stoja
AU  - Radovanović, Željko
AU  - Žižović, Irena T.
AU  - Šaponjić, Zoran
AU  - Radetić, Maja M.
PY  - 2018
UR  - http://link.springer.com/10.1007/s12221-018-8148-5
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7782
AB  - This study discusses a novel approach for fabrication of floating photocatalyst which can be efficiently exploited for photodegradation of dyes in aqueous solutions. A fabrication of the floating photocatalyst consisted of two steps: transformation of the poly(ε-caprolactone) beads (PCLb) into poly(ε-caprolactone) foam (PCLf) with porous structure in supercritical carbon-dioxide and subsequent loading of PCLf with TiO2 nanoparticles (NPs). Morphological characterization of the PCLf before and after TiO2 NPs loading was carried out by FESEM. The presence of titanium on the surface and inside the PCLf was detected by EDX. Photocatalytical activity of the floating photocatalyst was investigated in aqueous solution of textile dyes C.I. Acid Orange 7 (AO7) and C.I. Basic Yellow 28 (BY28) which were exposed to lamp that simulates the sun light. In addition to sustainable floatability for a long period of time, developed floating photocatalyst exhibited high rate of photodegradation since the complete discoloration of AO7 and BY28 solutions and photocatalysts alone occurred after 300 and 180 min of illumination, respectively. Its photocatalytic activity was preserved after three repeated photodegradation cycles with unchanged chemical structure that was confirmed by FTIR analysis.
T2  - Fibers and Polymers
T1  - Floating Photocatalyst Based on Poly(ε-caprolactone) Foam and TiO2 Nanoparticles for Removal of Textile Dyes
VL  - 19
IS  - 6
SP  - 1219
EP  - 1227
DO  - 10.1007/s12221-018-8148-5
ER  - 
@article{
author = "Marković, Darka and Milovanović, Stoja and Radovanović, Željko and Žižović, Irena T. and Šaponjić, Zoran and Radetić, Maja M.",
year = "2018",
abstract = "This study discusses a novel approach for fabrication of floating photocatalyst which can be efficiently exploited for photodegradation of dyes in aqueous solutions. A fabrication of the floating photocatalyst consisted of two steps: transformation of the poly(ε-caprolactone) beads (PCLb) into poly(ε-caprolactone) foam (PCLf) with porous structure in supercritical carbon-dioxide and subsequent loading of PCLf with TiO2 nanoparticles (NPs). Morphological characterization of the PCLf before and after TiO2 NPs loading was carried out by FESEM. The presence of titanium on the surface and inside the PCLf was detected by EDX. Photocatalytical activity of the floating photocatalyst was investigated in aqueous solution of textile dyes C.I. Acid Orange 7 (AO7) and C.I. Basic Yellow 28 (BY28) which were exposed to lamp that simulates the sun light. In addition to sustainable floatability for a long period of time, developed floating photocatalyst exhibited high rate of photodegradation since the complete discoloration of AO7 and BY28 solutions and photocatalysts alone occurred after 300 and 180 min of illumination, respectively. Its photocatalytic activity was preserved after three repeated photodegradation cycles with unchanged chemical structure that was confirmed by FTIR analysis.",
journal = "Fibers and Polymers",
title = "Floating Photocatalyst Based on Poly(ε-caprolactone) Foam and TiO2 Nanoparticles for Removal of Textile Dyes",
volume = "19",
number = "6",
pages = "1219-1227",
doi = "10.1007/s12221-018-8148-5"
}
Marković, D., Milovanović, S., Radovanović, Ž., Žižović, I. T., Šaponjić, Z.,& Radetić, M. M.. (2018). Floating Photocatalyst Based on Poly(ε-caprolactone) Foam and TiO2 Nanoparticles for Removal of Textile Dyes. in Fibers and Polymers, 19(6), 1219-1227.
https://doi.org/10.1007/s12221-018-8148-5
Marković D, Milovanović S, Radovanović Ž, Žižović IT, Šaponjić Z, Radetić MM. Floating Photocatalyst Based on Poly(ε-caprolactone) Foam and TiO2 Nanoparticles for Removal of Textile Dyes. in Fibers and Polymers. 2018;19(6):1219-1227.
doi:10.1007/s12221-018-8148-5 .
Marković, Darka, Milovanović, Stoja, Radovanović, Željko, Žižović, Irena T., Šaponjić, Zoran, Radetić, Maja M., "Floating Photocatalyst Based on Poly(ε-caprolactone) Foam and TiO2 Nanoparticles for Removal of Textile Dyes" in Fibers and Polymers, 19, no. 6 (2018):1219-1227,
https://doi.org/10.1007/s12221-018-8148-5 . .
9
5
7

Antibacterial activity of Cu-based nanoparticles synthesized on the cotton fabrics modified with polycarboxylic acids

Marković, Darka; Deeks, Christopher; Nunney, Tim; Radovanović, Željko; Radoičić, Marija B.; Šaponjić, Zoran; Radetić, Maja M.

(2018)

TY  - JOUR
AU  - Marković, Darka
AU  - Deeks, Christopher
AU  - Nunney, Tim
AU  - Radovanović, Željko
AU  - Radoičić, Marija B.
AU  - Šaponjić, Zoran
AU  - Radetić, Maja M.
PY  - 2018
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0144861718308890
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7826
AB  - The fabrication of antimicrobial textile nanocomposite by in situ synthesis of Cu-based nanoparticles on cotton fabrics modified with different polycarboxylic acids was discussed in this study. In order to evaluate the influence of carboxyl group content on Cu2+-ions adsorption, their subsequent reduction with sodium borohydride and formation of Cu-based nanoparticles, cotton fabrics were modified with succinic, citric and 1,2,3,4-butanetetracarboxylic acids. It was shown that the larger the number of carboxyl groups in applied acid, the larger the content of free carboxyl groups on the fibers and consequently, the larger the Cu2+-ions uptake and total amounts of Cu-based nanoparticles. On the basis of the XPS and XRD measurements, it was suggested that synthesized nanoparticles were mixture of Cu2O and CuO. Fabricated nanocomposites provided maximum reduction of Gram-negative bacterium E. coli and Gram-positive bacterium S. aureus and controlled release of Cu2+-ions in physiological saline solution which are necessary prerequisites for infection prevention.
T2  - Carbohydrate Polymers
T1  - Antibacterial activity of Cu-based nanoparticles synthesized on the cotton fabrics modified with polycarboxylic acids
VL  - 200
SP  - 173
EP  - 182
DO  - 10.1016/j.carbpol.2018.08.001
ER  - 
@article{
author = "Marković, Darka and Deeks, Christopher and Nunney, Tim and Radovanović, Željko and Radoičić, Marija B. and Šaponjić, Zoran and Radetić, Maja M.",
year = "2018",
abstract = "The fabrication of antimicrobial textile nanocomposite by in situ synthesis of Cu-based nanoparticles on cotton fabrics modified with different polycarboxylic acids was discussed in this study. In order to evaluate the influence of carboxyl group content on Cu2+-ions adsorption, their subsequent reduction with sodium borohydride and formation of Cu-based nanoparticles, cotton fabrics were modified with succinic, citric and 1,2,3,4-butanetetracarboxylic acids. It was shown that the larger the number of carboxyl groups in applied acid, the larger the content of free carboxyl groups on the fibers and consequently, the larger the Cu2+-ions uptake and total amounts of Cu-based nanoparticles. On the basis of the XPS and XRD measurements, it was suggested that synthesized nanoparticles were mixture of Cu2O and CuO. Fabricated nanocomposites provided maximum reduction of Gram-negative bacterium E. coli and Gram-positive bacterium S. aureus and controlled release of Cu2+-ions in physiological saline solution which are necessary prerequisites for infection prevention.",
journal = "Carbohydrate Polymers",
title = "Antibacterial activity of Cu-based nanoparticles synthesized on the cotton fabrics modified with polycarboxylic acids",
volume = "200",
pages = "173-182",
doi = "10.1016/j.carbpol.2018.08.001"
}
Marković, D., Deeks, C., Nunney, T., Radovanović, Ž., Radoičić, M. B., Šaponjić, Z.,& Radetić, M. M.. (2018). Antibacterial activity of Cu-based nanoparticles synthesized on the cotton fabrics modified with polycarboxylic acids. in Carbohydrate Polymers, 200, 173-182.
https://doi.org/10.1016/j.carbpol.2018.08.001
Marković D, Deeks C, Nunney T, Radovanović Ž, Radoičić MB, Šaponjić Z, Radetić MM. Antibacterial activity of Cu-based nanoparticles synthesized on the cotton fabrics modified with polycarboxylic acids. in Carbohydrate Polymers. 2018;200:173-182.
doi:10.1016/j.carbpol.2018.08.001 .
Marković, Darka, Deeks, Christopher, Nunney, Tim, Radovanović, Željko, Radoičić, Marija B., Šaponjić, Zoran, Radetić, Maja M., "Antibacterial activity of Cu-based nanoparticles synthesized on the cotton fabrics modified with polycarboxylic acids" in Carbohydrate Polymers, 200 (2018):173-182,
https://doi.org/10.1016/j.carbpol.2018.08.001 . .
44
39
40

Removal of textile dyes from water by TiO2 nanoparticles immobilized on poly(ε-caprolactone) beads and foams

Marković, Darka; Milovanović, Stoja; Radoičić, Marija B.; Radovanović, Željko; Žižović, Irena T.; Šaponjić, Zoran; Radetić, Maja M.

(2018)

TY  - JOUR
AU  - Marković, Darka
AU  - Milovanović, Stoja
AU  - Radoičić, Marija B.
AU  - Radovanović, Željko
AU  - Žižović, Irena T.
AU  - Šaponjić, Zoran
AU  - Radetić, Maja M.
PY  - 2018
UR  - http://www.doiserbia.nb.rs/Article.aspx?ID=0352-51391800089M
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8018
AB  - This study discusses the possibility of immobilization of colloidal TiO2 nanoparticles (NPs) onto poly(ε-caprolactone) (PCL) beads and foams that could be utilized for the removal of textile dyes from water by photodegradation. PCL foams were fabricated by environmentally friendly treatment of PCL beads in supercritical carbon dioxide. PCL beads and foams loaded with colloidal TiO2 NPs were used as photocatalysts for the removal of the textile dyes C.I. Acid Orange 7 and C.I. Basic Yellow 28 from aqueous solutions (10 mg L-1) under illumination that simulated sunlight. Unlike the PCL beads, the PCL foams provided complete discoloration of the dye solution within 24 h of illumination. The PCL foams also exhibited excellent floatability that was maintained for more than four weeks. Additionally, their photocatalytic activity was preserved within three repeated photodegradation cycles, indicating that the floating photocatalyst provided superior photocatalytic activity compared to the non-floating PCL beads.
AB  - У овом раду је дискутована могућност имобилизације колоидних наночестица TiO2 на
перлама или пени од поли(ε-капролактона) (PCL) које би се искористиле за уклањање боја
за текстил из воде процесом фотодеградације. PCL пена је добијена еколошки прихватљивим третманом PCL перли у наткритичном CO2. PCL перле и пене су накнадно импрегниране колоидним наночестицама TiO2 и употребљене су као фотокатализатори за
уклањање боја за текстил C.I. Acid Orange 7 и C.I. Basic Yellow 28 из воденог раствора (10
mg L-1) при осветљењу које симулира сунчеву светлост. За разлику од PCL перли, PCL пене
су обезбедиле потпуно обезбојавање раствора боје током 24 h осветљавања. PCL пена је
такође показала одличну способност плутања која је очувана дуже од четири недеље.
Фотокаталитичка активност пена је задржана таком три поновљена циклуса испитивања
фотодеградације што указује да овај плутајући фотокатализатор показује супериорну
фотокаталитичку активност у поређењу са неплутајућим PCL перлама.
T2  - Journal of the Serbian Chemical Society
T1  - Removal of textile dyes from water by TiO2 nanoparticles immobilized on poly(ε-caprolactone) beads and foams
VL  - 83
IS  - 12
SP  - 1379
EP  - 1389
DO  - 10.2298/JSC180913089M
ER  - 
@article{
author = "Marković, Darka and Milovanović, Stoja and Radoičić, Marija B. and Radovanović, Željko and Žižović, Irena T. and Šaponjić, Zoran and Radetić, Maja M.",
year = "2018",
abstract = "This study discusses the possibility of immobilization of colloidal TiO2 nanoparticles (NPs) onto poly(ε-caprolactone) (PCL) beads and foams that could be utilized for the removal of textile dyes from water by photodegradation. PCL foams were fabricated by environmentally friendly treatment of PCL beads in supercritical carbon dioxide. PCL beads and foams loaded with colloidal TiO2 NPs were used as photocatalysts for the removal of the textile dyes C.I. Acid Orange 7 and C.I. Basic Yellow 28 from aqueous solutions (10 mg L-1) under illumination that simulated sunlight. Unlike the PCL beads, the PCL foams provided complete discoloration of the dye solution within 24 h of illumination. The PCL foams also exhibited excellent floatability that was maintained for more than four weeks. Additionally, their photocatalytic activity was preserved within three repeated photodegradation cycles, indicating that the floating photocatalyst provided superior photocatalytic activity compared to the non-floating PCL beads., У овом раду је дискутована могућност имобилизације колоидних наночестица TiO2 на
перлама или пени од поли(ε-капролактона) (PCL) које би се искористиле за уклањање боја
за текстил из воде процесом фотодеградације. PCL пена је добијена еколошки прихватљивим третманом PCL перли у наткритичном CO2. PCL перле и пене су накнадно импрегниране колоидним наночестицама TiO2 и употребљене су као фотокатализатори за
уклањање боја за текстил C.I. Acid Orange 7 и C.I. Basic Yellow 28 из воденог раствора (10
mg L-1) при осветљењу које симулира сунчеву светлост. За разлику од PCL перли, PCL пене
су обезбедиле потпуно обезбојавање раствора боје током 24 h осветљавања. PCL пена је
такође показала одличну способност плутања која је очувана дуже од четири недеље.
Фотокаталитичка активност пена је задржана таком три поновљена циклуса испитивања
фотодеградације што указује да овај плутајући фотокатализатор показује супериорну
фотокаталитичку активност у поређењу са неплутајућим PCL перлама.",
journal = "Journal of the Serbian Chemical Society",
title = "Removal of textile dyes from water by TiO2 nanoparticles immobilized on poly(ε-caprolactone) beads and foams",
volume = "83",
number = "12",
pages = "1379-1389",
doi = "10.2298/JSC180913089M"
}
Marković, D., Milovanović, S., Radoičić, M. B., Radovanović, Ž., Žižović, I. T., Šaponjić, Z.,& Radetić, M. M.. (2018). Removal of textile dyes from water by TiO2 nanoparticles immobilized on poly(ε-caprolactone) beads and foams. in Journal of the Serbian Chemical Society, 83(12), 1379-1389.
https://doi.org/10.2298/JSC180913089M
Marković D, Milovanović S, Radoičić MB, Radovanović Ž, Žižović IT, Šaponjić Z, Radetić MM. Removal of textile dyes from water by TiO2 nanoparticles immobilized on poly(ε-caprolactone) beads and foams. in Journal of the Serbian Chemical Society. 2018;83(12):1379-1389.
doi:10.2298/JSC180913089M .
Marković, Darka, Milovanović, Stoja, Radoičić, Marija B., Radovanović, Željko, Žižović, Irena T., Šaponjić, Zoran, Radetić, Maja M., "Removal of textile dyes from water by TiO2 nanoparticles immobilized on poly(ε-caprolactone) beads and foams" in Journal of the Serbian Chemical Society, 83, no. 12 (2018):1379-1389,
https://doi.org/10.2298/JSC180913089M . .
2
1

Photocatalytic decomposition of selected biologically active compounds in environmental waters using TiO 2 /polyaniline nanocomposites: Kinetics, toxicity and intermediates assessment

Šojić Merkulov, Daniela V.; Despotović, Vesna N.; Banić, Nemanja D.; Armaković, Sanja J.; Finčur, Nina L.; Lazarević, Marina J.; Četojević-Simin, Dragana D.; Orčić, Dejan Z.; Radoičić, Marija B.; Šaponjić, Zoran; Čomor, Mirjana; Abramović, Biljana F.

(2018)

TY  - JOUR
AU  - Šojić Merkulov, Daniela V.
AU  - Despotović, Vesna N.
AU  - Banić, Nemanja D.
AU  - Armaković, Sanja J.
AU  - Finčur, Nina L.
AU  - Lazarević, Marina J.
AU  - Četojević-Simin, Dragana D.
AU  - Orčić, Dejan Z.
AU  - Radoičić, Marija B.
AU  - Šaponjić, Zoran
AU  - Čomor, Mirjana
AU  - Abramović, Biljana F.
PY  - 2018
UR  - http://linkinghub.elsevier.com/retrieve/pii/S0269749117352053
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7699
AB  - A comprehensive study of the removal of selected biologically active compounds (pharmaceuticals and pesticides) from different water types was conducted using bare TiO2nanoparticles and TiO2/polyaniline (TP-50, TP-100, and TP-150) nanocomposite powders. In order to investigate how molecular structure of the substrate influences the rate of its removal, we compared degradation efficiency of the initial substrates and degree of mineralization for the active components of pharmaceuticals (propranolol, and amitriptyline) and pesticides (sulcotrione, and clomazone) in double distilled (DDW) and environmental waters. The results indicate that the efficiency of photocatalytic degradation of propranolol and amitriptyline was higher in environmental waters: rivers (Danube, Tisa, and Begej) and lakes (Moharač, and Sot) in comparison with DDW. On the contrary, degradation efficacy of sulcotrione and clomazone was lower in environmental waters. Further, of the all catalysts applied, bare TiO2and TP-100 were found to be most effective in the mineralization of propranolol and amitriptyline, respectively, while TP-150 appeared to be the most efficient in terms of sulcotrione and clomazone mineralization. Also, there was no significant toxicity observed after the irradiation of pharmaceuticals or pesticides solutions using appropriate catalysts on rat hepatoma (H-4-II-E), mouse neuroblastoma (Neuro-2a), human colon adenocarcinoma (HT-29), and human fetal lung (MRC-5) cell lines. Subsequently, detection and identification of the formed intermediates in the case of sulcotrione photocatalytic degradation using bare TiO2and TP-150 showed slightly different pathways of degradation. Furthermore, tentative pathways of sulcotrione photocatalytic degradation were proposed and discussed. Kinetics, toxicity and intermediates assessment of biologically active compounds (pesticides and pharmaceuticals) in environmental waters.
T2  - Environmental Pollution
T1  - Photocatalytic decomposition of selected biologically active compounds in environmental waters using TiO 2 /polyaniline nanocomposites: Kinetics, toxicity and intermediates assessment
VL  - 239
SP  - 457
EP  - 465
DO  - 10.1016/j.envpol.2018.04.039
ER  - 
@article{
author = "Šojić Merkulov, Daniela V. and Despotović, Vesna N. and Banić, Nemanja D. and Armaković, Sanja J. and Finčur, Nina L. and Lazarević, Marina J. and Četojević-Simin, Dragana D. and Orčić, Dejan Z. and Radoičić, Marija B. and Šaponjić, Zoran and Čomor, Mirjana and Abramović, Biljana F.",
year = "2018",
abstract = "A comprehensive study of the removal of selected biologically active compounds (pharmaceuticals and pesticides) from different water types was conducted using bare TiO2nanoparticles and TiO2/polyaniline (TP-50, TP-100, and TP-150) nanocomposite powders. In order to investigate how molecular structure of the substrate influences the rate of its removal, we compared degradation efficiency of the initial substrates and degree of mineralization for the active components of pharmaceuticals (propranolol, and amitriptyline) and pesticides (sulcotrione, and clomazone) in double distilled (DDW) and environmental waters. The results indicate that the efficiency of photocatalytic degradation of propranolol and amitriptyline was higher in environmental waters: rivers (Danube, Tisa, and Begej) and lakes (Moharač, and Sot) in comparison with DDW. On the contrary, degradation efficacy of sulcotrione and clomazone was lower in environmental waters. Further, of the all catalysts applied, bare TiO2and TP-100 were found to be most effective in the mineralization of propranolol and amitriptyline, respectively, while TP-150 appeared to be the most efficient in terms of sulcotrione and clomazone mineralization. Also, there was no significant toxicity observed after the irradiation of pharmaceuticals or pesticides solutions using appropriate catalysts on rat hepatoma (H-4-II-E), mouse neuroblastoma (Neuro-2a), human colon adenocarcinoma (HT-29), and human fetal lung (MRC-5) cell lines. Subsequently, detection and identification of the formed intermediates in the case of sulcotrione photocatalytic degradation using bare TiO2and TP-150 showed slightly different pathways of degradation. Furthermore, tentative pathways of sulcotrione photocatalytic degradation were proposed and discussed. Kinetics, toxicity and intermediates assessment of biologically active compounds (pesticides and pharmaceuticals) in environmental waters.",
journal = "Environmental Pollution",
title = "Photocatalytic decomposition of selected biologically active compounds in environmental waters using TiO 2 /polyaniline nanocomposites: Kinetics, toxicity and intermediates assessment",
volume = "239",
pages = "457-465",
doi = "10.1016/j.envpol.2018.04.039"
}
Šojić Merkulov, D. V., Despotović, V. N., Banić, N. D., Armaković, S. J., Finčur, N. L., Lazarević, M. J., Četojević-Simin, D. D., Orčić, D. Z., Radoičić, M. B., Šaponjić, Z., Čomor, M.,& Abramović, B. F.. (2018). Photocatalytic decomposition of selected biologically active compounds in environmental waters using TiO 2 /polyaniline nanocomposites: Kinetics, toxicity and intermediates assessment. in Environmental Pollution, 239, 457-465.
https://doi.org/10.1016/j.envpol.2018.04.039
Šojić Merkulov DV, Despotović VN, Banić ND, Armaković SJ, Finčur NL, Lazarević MJ, Četojević-Simin DD, Orčić DZ, Radoičić MB, Šaponjić Z, Čomor M, Abramović BF. Photocatalytic decomposition of selected biologically active compounds in environmental waters using TiO 2 /polyaniline nanocomposites: Kinetics, toxicity and intermediates assessment. in Environmental Pollution. 2018;239:457-465.
doi:10.1016/j.envpol.2018.04.039 .
Šojić Merkulov, Daniela V., Despotović, Vesna N., Banić, Nemanja D., Armaković, Sanja J., Finčur, Nina L., Lazarević, Marina J., Četojević-Simin, Dragana D., Orčić, Dejan Z., Radoičić, Marija B., Šaponjić, Zoran, Čomor, Mirjana, Abramović, Biljana F., "Photocatalytic decomposition of selected biologically active compounds in environmental waters using TiO 2 /polyaniline nanocomposites: Kinetics, toxicity and intermediates assessment" in Environmental Pollution, 239 (2018):457-465,
https://doi.org/10.1016/j.envpol.2018.04.039 . .
17
16
16

TiO2 nanoparticles influence on rhodamine 6G droplet emission

Boni, Mihai; Staicu, Angela; Andrei, Ionut Relu; Smarandache, Adriana; Nastasa, Viorel; Šaponjić, Zoran; Pascu, Mihail Lucian

(2018)

TY  - JOUR
AU  - Boni, Mihai
AU  - Staicu, Angela
AU  - Andrei, Ionut Relu
AU  - Smarandache, Adriana
AU  - Nastasa, Viorel
AU  - Šaponjić, Zoran
AU  - Pascu, Mihail Lucian
PY  - 2018
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8075
AB  - This work aims to investigate the effect of TiO 2 nanoparticles addition on the fluorescence emission of solutions of Rhodamine 6G excited in micro-volumetric droplets. In this paper are presented the similarities and the differences of the emission spectra by modifying parameters such as TiO 2 concentration, solutions pH and laser fluence. The pumping laser source used was the second harmonic beam emitted by a pulsed ns Nd:YAG laser at 532 nm. Lasing emission is observed and it is favorised by the solution acidity and laser beam intensity. © 2018, Editura Academiei Romane. All rights reserved.
T2  - Romanian Reports in Physics
T1  - TiO2 nanoparticles influence on rhodamine 6G droplet emission
VL  - 70
IS  - 4
SP  - Art. 513
ER  - 
@article{
author = "Boni, Mihai and Staicu, Angela and Andrei, Ionut Relu and Smarandache, Adriana and Nastasa, Viorel and Šaponjić, Zoran and Pascu, Mihail Lucian",
year = "2018",
abstract = "This work aims to investigate the effect of TiO 2 nanoparticles addition on the fluorescence emission of solutions of Rhodamine 6G excited in micro-volumetric droplets. In this paper are presented the similarities and the differences of the emission spectra by modifying parameters such as TiO 2 concentration, solutions pH and laser fluence. The pumping laser source used was the second harmonic beam emitted by a pulsed ns Nd:YAG laser at 532 nm. Lasing emission is observed and it is favorised by the solution acidity and laser beam intensity. © 2018, Editura Academiei Romane. All rights reserved.",
journal = "Romanian Reports in Physics",
title = "TiO2 nanoparticles influence on rhodamine 6G droplet emission",
volume = "70",
number = "4",
pages = "Art. 513"
}
Boni, M., Staicu, A., Andrei, I. R., Smarandache, A., Nastasa, V., Šaponjić, Z.,& Pascu, M. L.. (2018). TiO2 nanoparticles influence on rhodamine 6G droplet emission. in Romanian Reports in Physics, 70(4), Art. 513.
Boni M, Staicu A, Andrei IR, Smarandache A, Nastasa V, Šaponjić Z, Pascu ML. TiO2 nanoparticles influence on rhodamine 6G droplet emission. in Romanian Reports in Physics. 2018;70(4):Art. 513..
Boni, Mihai, Staicu, Angela, Andrei, Ionut Relu, Smarandache, Adriana, Nastasa, Viorel, Šaponjić, Zoran, Pascu, Mihail Lucian, "TiO2 nanoparticles influence on rhodamine 6G droplet emission" in Romanian Reports in Physics, 70, no. 4 (2018):Art. 513.
1

Superior photocatalytic properties of carbonized PANI/TiO2 nanocomposites

Radoičić, Marija B.; Ćirić-Marjanović, Gordana N.; Spasojević, Vuk D.; Ahrenkiel, Scott Phillip; Mitrić, Miodrag; Novaković, Tatjana B.; Šaponjić, Zoran

(2017)

TY  - JOUR
AU  - Radoičić, Marija B.
AU  - Ćirić-Marjanović, Gordana N.
AU  - Spasojević, Vuk D.
AU  - Ahrenkiel, Scott Phillip
AU  - Mitrić, Miodrag
AU  - Novaković, Tatjana B.
AU  - Šaponjić, Zoran
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1597
AB  - A simple bottom-up method for the preparation of novel and very efficient photocatalytic nanocomposite system based on carbonized form of polyaniline (PANI) and colloidal TiO2 nanocrystals has been developed. The carbonized PANI/TiO2 nanocomposites were synthesized in a two-step procedure. Firstly, non-carbonized PANI/TiO2 nanocomposites were synthesized by the chemical oxidative polymerization of aniline (ANI) with ammonium peroxydisulfate, in the presence of colloidal TiO2 nanoparticles (TiO2 NPs) (d 4.5 nm). Initial [TiO2 NANI] mole ratios were 20, 50, and 80. In the second step, following the polymerization process, the carbonization of PANI/TiO2 nanocomposites was performed by thermal treatment in an inert atmosphere at 650 degrees C. The morphological and structural properties of the carbonized nanocomposites were studied using transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and Raman spectroscopy. The accomplishment of complete carbonization of PANI in PANI/TiO2 nanocomposites was confirmed by Raman spectroscopy. The appearance of anatase and rutile crystal forms in TiO2 NPs upon carbonization, with mass ratio depending on the initial molar ratio of ANI and TiO2 NPs was revealed by XRD measurements, TEM, SEM and Raman spectroscopy. The photocatalytic activities of carbonized PANI/TiO2 nanocomposites were evaluated following the photocatalytic degradation processes of Rhodamine B and Methylene blue. Carbonized PANI/TiO2 nanocomposites showed higher photocatalytic efficacy compared to bare TiO2 NPs and non-carbonized PANI/TiO2 nanocomposites. The porosity and surface structure of carbonized PANI/TiO2 nanocomposites, as well as crystalline structure of TiO2, affect photocatalytic activity of nanocomposites. (C) 2017 Elsevier B.V. All rights reserved.
T2  - Applied Catalysis. B: Environmental
T1  - Superior photocatalytic properties of carbonized PANI/TiO2 nanocomposites
VL  - 213
SP  - 155
EP  - 166
DO  - 10.1016/j.apcatb.2017.05.023
ER  - 
@article{
author = "Radoičić, Marija B. and Ćirić-Marjanović, Gordana N. and Spasojević, Vuk D. and Ahrenkiel, Scott Phillip and Mitrić, Miodrag and Novaković, Tatjana B. and Šaponjić, Zoran",
year = "2017",
abstract = "A simple bottom-up method for the preparation of novel and very efficient photocatalytic nanocomposite system based on carbonized form of polyaniline (PANI) and colloidal TiO2 nanocrystals has been developed. The carbonized PANI/TiO2 nanocomposites were synthesized in a two-step procedure. Firstly, non-carbonized PANI/TiO2 nanocomposites were synthesized by the chemical oxidative polymerization of aniline (ANI) with ammonium peroxydisulfate, in the presence of colloidal TiO2 nanoparticles (TiO2 NPs) (d 4.5 nm). Initial [TiO2 NANI] mole ratios were 20, 50, and 80. In the second step, following the polymerization process, the carbonization of PANI/TiO2 nanocomposites was performed by thermal treatment in an inert atmosphere at 650 degrees C. The morphological and structural properties of the carbonized nanocomposites were studied using transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and Raman spectroscopy. The accomplishment of complete carbonization of PANI in PANI/TiO2 nanocomposites was confirmed by Raman spectroscopy. The appearance of anatase and rutile crystal forms in TiO2 NPs upon carbonization, with mass ratio depending on the initial molar ratio of ANI and TiO2 NPs was revealed by XRD measurements, TEM, SEM and Raman spectroscopy. The photocatalytic activities of carbonized PANI/TiO2 nanocomposites were evaluated following the photocatalytic degradation processes of Rhodamine B and Methylene blue. Carbonized PANI/TiO2 nanocomposites showed higher photocatalytic efficacy compared to bare TiO2 NPs and non-carbonized PANI/TiO2 nanocomposites. The porosity and surface structure of carbonized PANI/TiO2 nanocomposites, as well as crystalline structure of TiO2, affect photocatalytic activity of nanocomposites. (C) 2017 Elsevier B.V. All rights reserved.",
journal = "Applied Catalysis. B: Environmental",
title = "Superior photocatalytic properties of carbonized PANI/TiO2 nanocomposites",
volume = "213",
pages = "155-166",
doi = "10.1016/j.apcatb.2017.05.023"
}
Radoičić, M. B., Ćirić-Marjanović, G. N., Spasojević, V. D., Ahrenkiel, S. P., Mitrić, M., Novaković, T. B.,& Šaponjić, Z.. (2017). Superior photocatalytic properties of carbonized PANI/TiO2 nanocomposites. in Applied Catalysis. B: Environmental, 213, 155-166.
https://doi.org/10.1016/j.apcatb.2017.05.023
Radoičić MB, Ćirić-Marjanović GN, Spasojević VD, Ahrenkiel SP, Mitrić M, Novaković TB, Šaponjić Z. Superior photocatalytic properties of carbonized PANI/TiO2 nanocomposites. in Applied Catalysis. B: Environmental. 2017;213:155-166.
doi:10.1016/j.apcatb.2017.05.023 .
Radoičić, Marija B., Ćirić-Marjanović, Gordana N., Spasojević, Vuk D., Ahrenkiel, Scott Phillip, Mitrić, Miodrag, Novaković, Tatjana B., Šaponjić, Zoran, "Superior photocatalytic properties of carbonized PANI/TiO2 nanocomposites" in Applied Catalysis. B: Environmental, 213 (2017):155-166,
https://doi.org/10.1016/j.apcatb.2017.05.023 . .
38
34
31

In situ photoreduction of Ag+-ions on the surface of titania nanotubes deposited on cotton and cotton/PET fabrics

Milošević, Milica V.; Šaponjić, Zoran; Nunney, Tim; Deeks, Christopher; Radoičić, Marija B.; Mitrić, Miodrag; Radetic, Tamara; Radetić, Maja M.

(2017)

TY  - JOUR
AU  - Milošević, Milica V.
AU  - Šaponjić, Zoran
AU  - Nunney, Tim
AU  - Deeks, Christopher
AU  - Radoičić, Marija B.
AU  - Mitrić, Miodrag
AU  - Radetic, Tamara
AU  - Radetić, Maja M.
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1436
AB  - This study discusses the possibility of in situ photoreduction of Ag+-ions on the surface of titania nanotubes (TNTs) deposited on the cotton and cotton/PET fabrics in the presence of amino acid alanine and methyl alcohol. TNTs were synthetized by hydrothermal method. The proposed interaction between titania, alanine and Ag+-ions was based on the results obtained by FTIR measurements. In order to enhance the binding efficiency between TNTs and fibers, the fabrics were previously impregnated with polyethyleneimine. The presence of TNT/Ag nanocrystals on the surface of fibers was proved by SEM, AAS, XRD and XPS. Larger amount of silver was detected on the cotton fabric. Fabricated TiO2/Ag nanocrystals provided maximum reduction of bacteria E. coli which was preserved after five washing cycles despite significant release of silver. The perspiration fastness tests indicated that silver release did not depend on pH. The presence of TNT/Ag nanocrystals imparted maximum UV protection to fabrics.
T2  - Cellulose
T1  - In situ photoreduction of Ag+-ions on the surface of titania nanotubes deposited on cotton and cotton/PET fabrics
VL  - 24
IS  - 3
SP  - 1597
EP  - 1610
DO  - 10.1007/s10570-017-1207-z
ER  - 
@article{
author = "Milošević, Milica V. and Šaponjić, Zoran and Nunney, Tim and Deeks, Christopher and Radoičić, Marija B. and Mitrić, Miodrag and Radetic, Tamara and Radetić, Maja M.",
year = "2017",
abstract = "This study discusses the possibility of in situ photoreduction of Ag+-ions on the surface of titania nanotubes (TNTs) deposited on the cotton and cotton/PET fabrics in the presence of amino acid alanine and methyl alcohol. TNTs were synthetized by hydrothermal method. The proposed interaction between titania, alanine and Ag+-ions was based on the results obtained by FTIR measurements. In order to enhance the binding efficiency between TNTs and fibers, the fabrics were previously impregnated with polyethyleneimine. The presence of TNT/Ag nanocrystals on the surface of fibers was proved by SEM, AAS, XRD and XPS. Larger amount of silver was detected on the cotton fabric. Fabricated TiO2/Ag nanocrystals provided maximum reduction of bacteria E. coli which was preserved after five washing cycles despite significant release of silver. The perspiration fastness tests indicated that silver release did not depend on pH. The presence of TNT/Ag nanocrystals imparted maximum UV protection to fabrics.",
journal = "Cellulose",
title = "In situ photoreduction of Ag+-ions on the surface of titania nanotubes deposited on cotton and cotton/PET fabrics",
volume = "24",
number = "3",
pages = "1597-1610",
doi = "10.1007/s10570-017-1207-z"
}
Milošević, M. V., Šaponjić, Z., Nunney, T., Deeks, C., Radoičić, M. B., Mitrić, M., Radetic, T.,& Radetić, M. M.. (2017). In situ photoreduction of Ag+-ions on the surface of titania nanotubes deposited on cotton and cotton/PET fabrics. in Cellulose, 24(3), 1597-1610.
https://doi.org/10.1007/s10570-017-1207-z
Milošević MV, Šaponjić Z, Nunney T, Deeks C, Radoičić MB, Mitrić M, Radetic T, Radetić MM. In situ photoreduction of Ag+-ions on the surface of titania nanotubes deposited on cotton and cotton/PET fabrics. in Cellulose. 2017;24(3):1597-1610.
doi:10.1007/s10570-017-1207-z .
Milošević, Milica V., Šaponjić, Zoran, Nunney, Tim, Deeks, Christopher, Radoičić, Marija B., Mitrić, Miodrag, Radetic, Tamara, Radetić, Maja M., "In situ photoreduction of Ag+-ions on the surface of titania nanotubes deposited on cotton and cotton/PET fabrics" in Cellulose, 24, no. 3 (2017):1597-1610,
https://doi.org/10.1007/s10570-017-1207-z . .
9
9
10

Biodegradation of cotton and cotton/polyester with Ag/TiO2 nanoparticles in soil

Milošević, Milica V.; Krkobabic, Ana; Radoičić, Marija B.; Šaponjić, Zoran; Radetic, Tamara; Radetić, Maja M.

(2017)

TY  - JOUR
AU  - Milošević, Milica V.
AU  - Krkobabic, Ana
AU  - Radoičić, Marija B.
AU  - Šaponjić, Zoran
AU  - Radetic, Tamara
AU  - Radetić, Maja M.
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1415
AB  - This study discusses the biodegradation behavior of cotton and cotton/PET fabrics impregnated with Ag/TiO2 nanoparticles in soil. Biodegradation behavior was evaluated by standard test method ASTM 5988-03 based on determination of percentage conversions of carbon content to CO2 as well as by soil burial test and enzymatic hydrolysis with cellulase where the extent of biodegradation was estimated by the calculation of fabric weight loss. The morphological and chemical changes of fibers during biodegradation process were analyzed by SEM and FTIR spectroscopy, respectively. The results obtained by all applied methods suggested that Ag/TiO2 nanoparticles hindered the biodegradation of investigated cotton and cotton/PET fabrics. Soil burial test indicated faster biodegradation of the impregnated blend compared to impregnated cotton fabric which is attributed to smaller amount of fabricated Ag nanoparticles on the blend proved by MS measurement. Similar trend was established by enzymatic hydrolysis of cotton fibers. Severe damage of cotton fibers in both fabrics due to biodegradation process was confirmed by SEM. However, the cotton fiber damage occurred to a lesser extent in the samples that were impregnated with Ag/TiO2 nanoparticles. PET fibers remained intact which was also indicated by FTIR analysis. (C) 2016 Elsevier Ltd. All rights reserved.
T2  - Carbohydrate Polymers
T1  - Biodegradation of cotton and cotton/polyester with Ag/TiO2 nanoparticles in soil
VL  - 158
SP  - 77
EP  - 84
DO  - 10.1016/j.carbpol.2016.12.006
ER  - 
@article{
author = "Milošević, Milica V. and Krkobabic, Ana and Radoičić, Marija B. and Šaponjić, Zoran and Radetic, Tamara and Radetić, Maja M.",
year = "2017",
abstract = "This study discusses the biodegradation behavior of cotton and cotton/PET fabrics impregnated with Ag/TiO2 nanoparticles in soil. Biodegradation behavior was evaluated by standard test method ASTM 5988-03 based on determination of percentage conversions of carbon content to CO2 as well as by soil burial test and enzymatic hydrolysis with cellulase where the extent of biodegradation was estimated by the calculation of fabric weight loss. The morphological and chemical changes of fibers during biodegradation process were analyzed by SEM and FTIR spectroscopy, respectively. The results obtained by all applied methods suggested that Ag/TiO2 nanoparticles hindered the biodegradation of investigated cotton and cotton/PET fabrics. Soil burial test indicated faster biodegradation of the impregnated blend compared to impregnated cotton fabric which is attributed to smaller amount of fabricated Ag nanoparticles on the blend proved by MS measurement. Similar trend was established by enzymatic hydrolysis of cotton fibers. Severe damage of cotton fibers in both fabrics due to biodegradation process was confirmed by SEM. However, the cotton fiber damage occurred to a lesser extent in the samples that were impregnated with Ag/TiO2 nanoparticles. PET fibers remained intact which was also indicated by FTIR analysis. (C) 2016 Elsevier Ltd. All rights reserved.",
journal = "Carbohydrate Polymers",
title = "Biodegradation of cotton and cotton/polyester with Ag/TiO2 nanoparticles in soil",
volume = "158",
pages = "77-84",
doi = "10.1016/j.carbpol.2016.12.006"
}
Milošević, M. V., Krkobabic, A., Radoičić, M. B., Šaponjić, Z., Radetic, T.,& Radetić, M. M.. (2017). Biodegradation of cotton and cotton/polyester with Ag/TiO2 nanoparticles in soil. in Carbohydrate Polymers, 158, 77-84.
https://doi.org/10.1016/j.carbpol.2016.12.006
Milošević MV, Krkobabic A, Radoičić MB, Šaponjić Z, Radetic T, Radetić MM. Biodegradation of cotton and cotton/polyester with Ag/TiO2 nanoparticles in soil. in Carbohydrate Polymers. 2017;158:77-84.
doi:10.1016/j.carbpol.2016.12.006 .
Milošević, Milica V., Krkobabic, Ana, Radoičić, Marija B., Šaponjić, Zoran, Radetic, Tamara, Radetić, Maja M., "Biodegradation of cotton and cotton/polyester with Ag/TiO2 nanoparticles in soil" in Carbohydrate Polymers, 158 (2017):77-84,
https://doi.org/10.1016/j.carbpol.2016.12.006 . .
21
22
24

Shaped Co2+ doped TiO2 nanocrystals synthesized from nanotubular precursor: Structure and ferromagnetic behavior

Vranješ, Mila; Kuljanin-Jakovljević, Jadranka Ž.; Konstantinović, Zorica; Pomar, Alberto; Stoiljković, Milovan; Mitrić, Miodrag; Radetic, Tamara; Šaponjić, Zoran

(2017)

TY  - JOUR
AU  - Vranješ, Mila
AU  - Kuljanin-Jakovljević, Jadranka Ž.
AU  - Konstantinović, Zorica
AU  - Pomar, Alberto
AU  - Stoiljković, Milovan
AU  - Mitrić, Miodrag
AU  - Radetic, Tamara
AU  - Šaponjić, Zoran
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1792
AB  - Co2+ doped TiO2 nanocrystals were synthetized by a hydrothermal treatment procedure applied to precursor dispersion of titania nanotubes and Co2+ ions. Mixture of polygonal and prolate spheroid-like nanocrystals was obtained. The results of X-ray diffraction (XRD) analysis showed that resulted nanocrystals retain anatase crystal phase for both dopant concentrations (1.69 and 2.5 at%), but the crystal lattice parameters were affected. Reflection spectra revealed altered optical properties compared to bare TiO2. Room temperature ferromagnetic ordering with saturation magnetic moment in the range of 0.001-0.002 mu (B)/Co was observed for both measured films made of Co2+ doped TiO2 nanocrystals.
T2  - Journal of Advanced Ceramics
T1  - Shaped Co2+ doped TiO2 nanocrystals synthesized from nanotubular precursor: Structure and ferromagnetic behavior
VL  - 6
IS  - 3
SP  - 220
EP  - 229
DO  - 10.1007/s40145-017-0233-5
ER  - 
@article{
author = "Vranješ, Mila and Kuljanin-Jakovljević, Jadranka Ž. and Konstantinović, Zorica and Pomar, Alberto and Stoiljković, Milovan and Mitrić, Miodrag and Radetic, Tamara and Šaponjić, Zoran",
year = "2017",
abstract = "Co2+ doped TiO2 nanocrystals were synthetized by a hydrothermal treatment procedure applied to precursor dispersion of titania nanotubes and Co2+ ions. Mixture of polygonal and prolate spheroid-like nanocrystals was obtained. The results of X-ray diffraction (XRD) analysis showed that resulted nanocrystals retain anatase crystal phase for both dopant concentrations (1.69 and 2.5 at%), but the crystal lattice parameters were affected. Reflection spectra revealed altered optical properties compared to bare TiO2. Room temperature ferromagnetic ordering with saturation magnetic moment in the range of 0.001-0.002 mu (B)/Co was observed for both measured films made of Co2+ doped TiO2 nanocrystals.",
journal = "Journal of Advanced Ceramics",
title = "Shaped Co2+ doped TiO2 nanocrystals synthesized from nanotubular precursor: Structure and ferromagnetic behavior",
volume = "6",
number = "3",
pages = "220-229",
doi = "10.1007/s40145-017-0233-5"
}
Vranješ, M., Kuljanin-Jakovljević, J. Ž., Konstantinović, Z., Pomar, A., Stoiljković, M., Mitrić, M., Radetic, T.,& Šaponjić, Z.. (2017). Shaped Co2+ doped TiO2 nanocrystals synthesized from nanotubular precursor: Structure and ferromagnetic behavior. in Journal of Advanced Ceramics, 6(3), 220-229.
https://doi.org/10.1007/s40145-017-0233-5
Vranješ M, Kuljanin-Jakovljević JŽ, Konstantinović Z, Pomar A, Stoiljković M, Mitrić M, Radetic T, Šaponjić Z. Shaped Co2+ doped TiO2 nanocrystals synthesized from nanotubular precursor: Structure and ferromagnetic behavior. in Journal of Advanced Ceramics. 2017;6(3):220-229.
doi:10.1007/s40145-017-0233-5 .
Vranješ, Mila, Kuljanin-Jakovljević, Jadranka Ž., Konstantinović, Zorica, Pomar, Alberto, Stoiljković, Milovan, Mitrić, Miodrag, Radetic, Tamara, Šaponjić, Zoran, "Shaped Co2+ doped TiO2 nanocrystals synthesized from nanotubular precursor: Structure and ferromagnetic behavior" in Journal of Advanced Ceramics, 6, no. 3 (2017):220-229,
https://doi.org/10.1007/s40145-017-0233-5 . .
2
2
1

Light controlled metallo-drug delivery system based on the TiO(2-)nanoparticles and Ru-complex

Nešić, Maja A.; Žakula, Jelena; Korićanac, Lela; Stepić, Milutin; Radoičić, Marija B.; Popović, Iva A.; Šaponjić, Zoran; Petković, Marijana

(2017)

TY  - JOUR
AU  - Nešić, Maja A.
AU  - Žakula, Jelena
AU  - Korićanac, Lela
AU  - Stepić, Milutin
AU  - Radoičić, Marija B.
AU  - Popović, Iva A.
AU  - Šaponjić, Zoran
AU  - Petković, Marijana
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1747
AB  - We studied the colloidal TiO2 nanoparticles as a carrier for controlled delivery of the ruthenium complex to the melanoma cell line. The system demonstrated slower complex release upon visible and increased release rate upon UV light illumination. Accordingly, the light-dependent cytotoxicity of the system was demonstrated on amelanotic melanoma cancer line. The cell death is enhanced by UV and reduced by red light in the presence of investigated nanocomposite system. Both components of the system may act as photosensitizers, by generating reactive oxygen species, which promote cell death. Thus, the system might act dually, as photodynamic therapeutic agent and as the light tunable system for metallo-drug delivery and it might be of interest for development of new more efficient drug delivery approaches by using a light as external stimulus. (C) 2017 Elsevier B.V. All rights reserved.
T2  - Journal of Photochemistry and Photobiology. A: Chemistry
T1  - Light controlled metallo-drug delivery system based on the TiO(2-)nanoparticles and Ru-complex
VL  - 347
SP  - 55
EP  - 66
DO  - 10.1016/jjphotochem.2017.06.045
ER  - 
@article{
author = "Nešić, Maja A. and Žakula, Jelena and Korićanac, Lela and Stepić, Milutin and Radoičić, Marija B. and Popović, Iva A. and Šaponjić, Zoran and Petković, Marijana",
year = "2017",
abstract = "We studied the colloidal TiO2 nanoparticles as a carrier for controlled delivery of the ruthenium complex to the melanoma cell line. The system demonstrated slower complex release upon visible and increased release rate upon UV light illumination. Accordingly, the light-dependent cytotoxicity of the system was demonstrated on amelanotic melanoma cancer line. The cell death is enhanced by UV and reduced by red light in the presence of investigated nanocomposite system. Both components of the system may act as photosensitizers, by generating reactive oxygen species, which promote cell death. Thus, the system might act dually, as photodynamic therapeutic agent and as the light tunable system for metallo-drug delivery and it might be of interest for development of new more efficient drug delivery approaches by using a light as external stimulus. (C) 2017 Elsevier B.V. All rights reserved.",
journal = "Journal of Photochemistry and Photobiology. A: Chemistry",
title = "Light controlled metallo-drug delivery system based on the TiO(2-)nanoparticles and Ru-complex",
volume = "347",
pages = "55-66",
doi = "10.1016/jjphotochem.2017.06.045"
}
Nešić, M. A., Žakula, J., Korićanac, L., Stepić, M., Radoičić, M. B., Popović, I. A., Šaponjić, Z.,& Petković, M.. (2017). Light controlled metallo-drug delivery system based on the TiO(2-)nanoparticles and Ru-complex. in Journal of Photochemistry and Photobiology. A: Chemistry, 347, 55-66.
https://doi.org/10.1016/jjphotochem.2017.06.045
Nešić MA, Žakula J, Korićanac L, Stepić M, Radoičić MB, Popović IA, Šaponjić Z, Petković M. Light controlled metallo-drug delivery system based on the TiO(2-)nanoparticles and Ru-complex. in Journal of Photochemistry and Photobiology. A: Chemistry. 2017;347:55-66.
doi:10.1016/jjphotochem.2017.06.045 .
Nešić, Maja A., Žakula, Jelena, Korićanac, Lela, Stepić, Milutin, Radoičić, Marija B., Popović, Iva A., Šaponjić, Zoran, Petković, Marijana, "Light controlled metallo-drug delivery system based on the TiO(2-)nanoparticles and Ru-complex" in Journal of Photochemistry and Photobiology. A: Chemistry, 347 (2017):55-66,
https://doi.org/10.1016/jjphotochem.2017.06.045 . .
9

Studies on laser induced emission of microdroplets containing Rhodamine 6G solutions in water doped with TiO2 nanoparticles

Boni, Mihai; Staicu, Angela; Andrei, Ionut Relu; Smarandache, Adriana; Nastasa, Viorel; Čomor, Mirjana; Šaponjić, Zoran; Pascu, Mihail Lucian

(2017)

TY  - JOUR
AU  - Boni, Mihai
AU  - Staicu, Angela
AU  - Andrei, Ionut Relu
AU  - Smarandache, Adriana
AU  - Nastasa, Viorel
AU  - Čomor, Mirjana
AU  - Šaponjić, Zoran
AU  - Pascu, Mihail Lucian
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1483
AB  - Studies on the emission spectra of microdroplets containing Rh6G solutions in water doped with TiO2 nanoparticles are reported. The excitation is made by the second harmonic of a pulsed Nd:YAG laser at 532 nm, pulse duration at half maximum 6 ns and energy varied between 6 and 10 mJ. The laser induced emission spectra are analyzed function of TiO2 concentration and pumping laser energy. Comparison between fluorescence dispersed spectra emitted by pendant droplets containing TiO2 nanoparticles with respect to Rh6G water solutions droplets pumped in the same conditions is made. The surface tension measurements of the samples show that with variation of dye and nanoparticles concentrations, surface phenomena take place and influence the behavior of the droplet fluorescence. (C) 2016 Elsevier B.V. All rights reserved.
T2  - Colloids and Surfaces. A: Physicochemical and Engineering Aspects
T1  - Studies on laser induced emission of microdroplets containing Rhodamine 6G solutions in water doped with TiO2 nanoparticles
VL  - 519
SP  - 238
EP  - 244
DO  - 10.1016/j.colsurfa.2016.07.033
ER  - 
@article{
author = "Boni, Mihai and Staicu, Angela and Andrei, Ionut Relu and Smarandache, Adriana and Nastasa, Viorel and Čomor, Mirjana and Šaponjić, Zoran and Pascu, Mihail Lucian",
year = "2017",
abstract = "Studies on the emission spectra of microdroplets containing Rh6G solutions in water doped with TiO2 nanoparticles are reported. The excitation is made by the second harmonic of a pulsed Nd:YAG laser at 532 nm, pulse duration at half maximum 6 ns and energy varied between 6 and 10 mJ. The laser induced emission spectra are analyzed function of TiO2 concentration and pumping laser energy. Comparison between fluorescence dispersed spectra emitted by pendant droplets containing TiO2 nanoparticles with respect to Rh6G water solutions droplets pumped in the same conditions is made. The surface tension measurements of the samples show that with variation of dye and nanoparticles concentrations, surface phenomena take place and influence the behavior of the droplet fluorescence. (C) 2016 Elsevier B.V. All rights reserved.",
journal = "Colloids and Surfaces. A: Physicochemical and Engineering Aspects",
title = "Studies on laser induced emission of microdroplets containing Rhodamine 6G solutions in water doped with TiO2 nanoparticles",
volume = "519",
pages = "238-244",
doi = "10.1016/j.colsurfa.2016.07.033"
}
Boni, M., Staicu, A., Andrei, I. R., Smarandache, A., Nastasa, V., Čomor, M., Šaponjić, Z.,& Pascu, M. L.. (2017). Studies on laser induced emission of microdroplets containing Rhodamine 6G solutions in water doped with TiO2 nanoparticles. in Colloids and Surfaces. A: Physicochemical and Engineering Aspects, 519, 238-244.
https://doi.org/10.1016/j.colsurfa.2016.07.033
Boni M, Staicu A, Andrei IR, Smarandache A, Nastasa V, Čomor M, Šaponjić Z, Pascu ML. Studies on laser induced emission of microdroplets containing Rhodamine 6G solutions in water doped with TiO2 nanoparticles. in Colloids and Surfaces. A: Physicochemical and Engineering Aspects. 2017;519:238-244.
doi:10.1016/j.colsurfa.2016.07.033 .
Boni, Mihai, Staicu, Angela, Andrei, Ionut Relu, Smarandache, Adriana, Nastasa, Viorel, Čomor, Mirjana, Šaponjić, Zoran, Pascu, Mihail Lucian, "Studies on laser induced emission of microdroplets containing Rhodamine 6G solutions in water doped with TiO2 nanoparticles" in Colloids and Surfaces. A: Physicochemical and Engineering Aspects, 519 (2017):238-244,
https://doi.org/10.1016/j.colsurfa.2016.07.033 . .
4
4
5

Ferromagnetic behavior of Mn2+ doped titania nanotubes

Vranješ, Mila; Kuljanin-Jakovljević, Jadranka Ž.; Konstantinović, Zorica; Radetić, Tamara; Stoiljković, Milovan; Mitrić, Miodrag; Šaponjić, Zoran

(Society of Physical Chemists of Serbia, 2016)

TY  - CONF
AU  - Vranješ, Mila
AU  - Kuljanin-Jakovljević, Jadranka Ž.
AU  - Konstantinović, Zorica
AU  - Radetić, Tamara
AU  - Stoiljković, Milovan
AU  - Mitrić, Miodrag
AU  - Šaponjić, Zoran
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9213
AB  - Hydrothermal synthesis of Mn doped titaniananotubes, which showed room temperature  ferromagnetism  (RTFM)is  reported.  Morphology  of  Mn  doped nanotubes  was  characterized  by  transmission  electron  microscopy  (TEM). The  size  of  nanotubes  was  relatively  uniform  with  outer  diameter  of  about 10  nm  and  lengths  of  up  to  few  hundred  nanometers.  The  x-ray  powder diffraction  (XRPD)  analysis  of  resultant  powder  confirmed  the  appearance of   mixed   crystalline   phases   inMn   doped   nanotubes:hydrogentitanate (H2Ti2O5x   H2O)and   tetragonal   anatasetitania.   RTFM   ordering   with saturation magnetic moment (Ms) of the order of 1.27 μBperMn atom was observed.
PB  - Society of Physical Chemists of Serbia
C3  - Physical chemistry 2016 : 13th international conference on fundamental and applied aspects of physical chemistry
T1  - Ferromagnetic behavior of Mn2+ doped titania nanotubes
SP  - 521
EP  - 524
ER  - 
@conference{
author = "Vranješ, Mila and Kuljanin-Jakovljević, Jadranka Ž. and Konstantinović, Zorica and Radetić, Tamara and Stoiljković, Milovan and Mitrić, Miodrag and Šaponjić, Zoran",
year = "2016",
abstract = "Hydrothermal synthesis of Mn doped titaniananotubes, which showed room temperature  ferromagnetism  (RTFM)is  reported.  Morphology  of  Mn  doped nanotubes  was  characterized  by  transmission  electron  microscopy  (TEM). The  size  of  nanotubes  was  relatively  uniform  with  outer  diameter  of  about 10  nm  and  lengths  of  up  to  few  hundred  nanometers.  The  x-ray  powder diffraction  (XRPD)  analysis  of  resultant  powder  confirmed  the  appearance of   mixed   crystalline   phases   inMn   doped   nanotubes:hydrogentitanate (H2Ti2O5x   H2O)and   tetragonal   anatasetitania.   RTFM   ordering   with saturation magnetic moment (Ms) of the order of 1.27 μBperMn atom was observed.",
publisher = "Society of Physical Chemists of Serbia",
journal = "Physical chemistry 2016 : 13th international conference on fundamental and applied aspects of physical chemistry",
title = "Ferromagnetic behavior of Mn2+ doped titania nanotubes",
pages = "521-524"
}
Vranješ, M., Kuljanin-Jakovljević, J. Ž., Konstantinović, Z., Radetić, T., Stoiljković, M., Mitrić, M.,& Šaponjić, Z.. (2016). Ferromagnetic behavior of Mn2+ doped titania nanotubes. in Physical chemistry 2016 : 13th international conference on fundamental and applied aspects of physical chemistry
Society of Physical Chemists of Serbia., 521-524.
Vranješ M, Kuljanin-Jakovljević JŽ, Konstantinović Z, Radetić T, Stoiljković M, Mitrić M, Šaponjić Z. Ferromagnetic behavior of Mn2+ doped titania nanotubes. in Physical chemistry 2016 : 13th international conference on fundamental and applied aspects of physical chemistry. 2016;:521-524..
Vranješ, Mila, Kuljanin-Jakovljević, Jadranka Ž., Konstantinović, Zorica, Radetić, Tamara, Stoiljković, Milovan, Mitrić, Miodrag, Šaponjić, Zoran, "Ferromagnetic behavior of Mn2+ doped titania nanotubes" in Physical chemistry 2016 : 13th international conference on fundamental and applied aspects of physical chemistry (2016):521-524.

Room temperature ferromagnetism in Cu2+ doped TiO2 nanocrystals: The impact of their size, shape and dopant concentration

Vranješ, Mila; Kuljanin-Jakovljević, Jadranka Ž.; Konstantinović, Zorica; Pomar, Alberto; Ahrenkiel, Scott Phillip; Radetic, Tamara; Stoiljković, Milovan; Mitrić, Miodrag; Šaponjić, Zoran

(Elsevier, 2016)

TY  - JOUR
AU  - Vranješ, Mila
AU  - Kuljanin-Jakovljević, Jadranka Ž.
AU  - Konstantinović, Zorica
AU  - Pomar, Alberto
AU  - Ahrenkiel, Scott Phillip
AU  - Radetic, Tamara
AU  - Stoiljković, Milovan
AU  - Mitrić, Miodrag
AU  - Šaponjić, Zoran
PY  - 2016
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1024
AB  - Cu2+ doped TiO2 nanocrystals were synthesized using dispersions of titania nanotubes in the presence of Cu2+ ions as a precursors. The morphologies of nanotubular titania precursors and resulted Cu2+ doped TiO2 nanocrystals were characterized by TEM. Structural and optical properties were studied by XRPD analysis and UV-vis spectroscopy in reflectance mode, respectively. Their magnetic properties were investigated using SQUID magnetometer. Tetragonal anatase crystalline structure was confirmed in all synthesized samples. Polygonal (d similar to 15 nm) and spheroid like (length, up to 90 nm) Cu2+ doped TiO2 nanocrystals in samples synthesized at different pHs were observed by TEM. Ferromagnetic ordering with almost closed loop (H-c similar to 200 Oe) was detected in all Cu2+ doped TiO2 nanoparticle films. The saturation magnetization values varied depending on the Cu2+ concentration, nanoparticles shape, size and consequently different number of oxygen vacancies. This study revealed possibility to control magnetic ordering by changing the shape/aspect ratio of Cu2+ doped TiO2 nanocrystals. (C) 2015 Elsevier Ltd. All rights reserved.
PB  - Elsevier
T2  - Materials Research Bulletin
T1  - Room temperature ferromagnetism in Cu2+ doped TiO2 nanocrystals: The impact of their size, shape and dopant concentration
VL  - 76
SP  - 100
EP  - 106
DO  - 10.1016/j.materresbull.2015.11.051
ER  - 
@article{
author = "Vranješ, Mila and Kuljanin-Jakovljević, Jadranka Ž. and Konstantinović, Zorica and Pomar, Alberto and Ahrenkiel, Scott Phillip and Radetic, Tamara and Stoiljković, Milovan and Mitrić, Miodrag and Šaponjić, Zoran",
year = "2016",
abstract = "Cu2+ doped TiO2 nanocrystals were synthesized using dispersions of titania nanotubes in the presence of Cu2+ ions as a precursors. The morphologies of nanotubular titania precursors and resulted Cu2+ doped TiO2 nanocrystals were characterized by TEM. Structural and optical properties were studied by XRPD analysis and UV-vis spectroscopy in reflectance mode, respectively. Their magnetic properties were investigated using SQUID magnetometer. Tetragonal anatase crystalline structure was confirmed in all synthesized samples. Polygonal (d similar to 15 nm) and spheroid like (length, up to 90 nm) Cu2+ doped TiO2 nanocrystals in samples synthesized at different pHs were observed by TEM. Ferromagnetic ordering with almost closed loop (H-c similar to 200 Oe) was detected in all Cu2+ doped TiO2 nanoparticle films. The saturation magnetization values varied depending on the Cu2+ concentration, nanoparticles shape, size and consequently different number of oxygen vacancies. This study revealed possibility to control magnetic ordering by changing the shape/aspect ratio of Cu2+ doped TiO2 nanocrystals. (C) 2015 Elsevier Ltd. All rights reserved.",
publisher = "Elsevier",
journal = "Materials Research Bulletin",
title = "Room temperature ferromagnetism in Cu2+ doped TiO2 nanocrystals: The impact of their size, shape and dopant concentration",
volume = "76",
pages = "100-106",
doi = "10.1016/j.materresbull.2015.11.051"
}
Vranješ, M., Kuljanin-Jakovljević, J. Ž., Konstantinović, Z., Pomar, A., Ahrenkiel, S. P., Radetic, T., Stoiljković, M., Mitrić, M.,& Šaponjić, Z.. (2016). Room temperature ferromagnetism in Cu2+ doped TiO2 nanocrystals: The impact of their size, shape and dopant concentration. in Materials Research Bulletin
Elsevier., 76, 100-106.
https://doi.org/10.1016/j.materresbull.2015.11.051
Vranješ M, Kuljanin-Jakovljević JŽ, Konstantinović Z, Pomar A, Ahrenkiel SP, Radetic T, Stoiljković M, Mitrić M, Šaponjić Z. Room temperature ferromagnetism in Cu2+ doped TiO2 nanocrystals: The impact of their size, shape and dopant concentration. in Materials Research Bulletin. 2016;76:100-106.
doi:10.1016/j.materresbull.2015.11.051 .
Vranješ, Mila, Kuljanin-Jakovljević, Jadranka Ž., Konstantinović, Zorica, Pomar, Alberto, Ahrenkiel, Scott Phillip, Radetic, Tamara, Stoiljković, Milovan, Mitrić, Miodrag, Šaponjić, Zoran, "Room temperature ferromagnetism in Cu2+ doped TiO2 nanocrystals: The impact of their size, shape and dopant concentration" in Materials Research Bulletin, 76 (2016):100-106,
https://doi.org/10.1016/j.materresbull.2015.11.051 . .
7
7
7

Testing the photo-sensitive nanocomposite system for potential controlled metallo-drug delivery

Nešić, Maja A.; Popović, Iva A.; Leskovac, Andreja; Šaponjić, Zoran; Radoičić, Marija B.; Stepić, Milutin; Petković, Marijana

(Springer, 2016)

TY  - JOUR
AU  - Nešić, Maja A.
AU  - Popović, Iva A.
AU  - Leskovac, Andreja
AU  - Šaponjić, Zoran
AU  - Radoičić, Marija B.
AU  - Stepić, Milutin
AU  - Petković, Marijana
PY  - 2016
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/904
AB  - Photo-responsive drug release systems are promising for drug delivery applications due to many benefits compared to conventional chemotherapy such as targeted, controlled release of a drug and reduced toxicity to healthy tissues. In this work, we report synthesis of the nanocomposite system based on carrier TiO2 nanoparticles and potential anticancer ruthenium complex, with light controllable release properties. Nanocomposite system showed biological activity and induced the generation of free radicals, which are implied in the efficient cell killing. The drug release tests demonstrated sustained release of the transition metal complex from the surface implying the potency for the controlled drug delivery system. Taking into account photoactivity of the Ru-complex, in the next step we have investigated the influence of green light on the rate of the complex release, and the results showed dependence of the Ru-complex release from the surface of TiO2 nanoparticles on the applied laser energy. Therefore, these characteristics make this nanocomposite system promising for the photo-responsive chemotherapy.
PB  - Springer
T2  - Optical and Quantum Electronics
T1  - Testing the photo-sensitive nanocomposite system for potential controlled metallo-drug delivery
VL  - 48
IS  - 2
DO  - 10.1007/s11082-016-0421-5
ER  - 
@article{
author = "Nešić, Maja A. and Popović, Iva A. and Leskovac, Andreja and Šaponjić, Zoran and Radoičić, Marija B. and Stepić, Milutin and Petković, Marijana",
year = "2016",
abstract = "Photo-responsive drug release systems are promising for drug delivery applications due to many benefits compared to conventional chemotherapy such as targeted, controlled release of a drug and reduced toxicity to healthy tissues. In this work, we report synthesis of the nanocomposite system based on carrier TiO2 nanoparticles and potential anticancer ruthenium complex, with light controllable release properties. Nanocomposite system showed biological activity and induced the generation of free radicals, which are implied in the efficient cell killing. The drug release tests demonstrated sustained release of the transition metal complex from the surface implying the potency for the controlled drug delivery system. Taking into account photoactivity of the Ru-complex, in the next step we have investigated the influence of green light on the rate of the complex release, and the results showed dependence of the Ru-complex release from the surface of TiO2 nanoparticles on the applied laser energy. Therefore, these characteristics make this nanocomposite system promising for the photo-responsive chemotherapy.",
publisher = "Springer",
journal = "Optical and Quantum Electronics",
title = "Testing the photo-sensitive nanocomposite system for potential controlled metallo-drug delivery",
volume = "48",
number = "2",
doi = "10.1007/s11082-016-0421-5"
}
Nešić, M. A., Popović, I. A., Leskovac, A., Šaponjić, Z., Radoičić, M. B., Stepić, M.,& Petković, M.. (2016). Testing the photo-sensitive nanocomposite system for potential controlled metallo-drug delivery. in Optical and Quantum Electronics
Springer., 48(2).
https://doi.org/10.1007/s11082-016-0421-5
Nešić MA, Popović IA, Leskovac A, Šaponjić Z, Radoičić MB, Stepić M, Petković M. Testing the photo-sensitive nanocomposite system for potential controlled metallo-drug delivery. in Optical and Quantum Electronics. 2016;48(2).
doi:10.1007/s11082-016-0421-5 .
Nešić, Maja A., Popović, Iva A., Leskovac, Andreja, Šaponjić, Zoran, Radoičić, Marija B., Stepić, Milutin, Petković, Marijana, "Testing the photo-sensitive nanocomposite system for potential controlled metallo-drug delivery" in Optical and Quantum Electronics, 48, no. 2 (2016),
https://doi.org/10.1007/s11082-016-0421-5 . .
5
5
5

Dependence of the quality of SALDI TOF MS analysis on the TiO2 nanocrystals size and shape

Popović, Iva A.; Milovanović, Dubravka S.; Miletić, Jadranka; Nešić, Maja A.; Vranješ, Mila; Šaponjić, Zoran; Petković, Marijana

(Springer, 2016)

TY  - JOUR
AU  - Popović, Iva A.
AU  - Milovanović, Dubravka S.
AU  - Miletić, Jadranka
AU  - Nešić, Maja A.
AU  - Vranješ, Mila
AU  - Šaponjić, Zoran
AU  - Petković, Marijana
PY  - 2016
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/902
AB  - Titanium dioxide is widely used substrate for laser desorption and ionization [(SA)LDI] mass spectrometry. As the semiconductor with high UV absorbance and rapid energy transfer to analytes, TiO2 provides soft and efficient desorption/ionization of analytes with relatively low degrees of fragmentation in the gas phase. TiO2 nanocrystals are convenient for small molecules (molecular mass LT 1000 Da) analysis due to low number of background signals. Desorption/ionization processes on TiO2 nanocrystals are related to the physical properties of the substrate, such as the ability to absorb and dissipate energy from the irradiating laser light source. In addition, size and shape of nanocrystals also affect these abilities. The aim of this study is to investigate the influence of shape and size dependant TiO2 nanocrystals/UV laser interaction on the quality of the mass spectra, detectability of analyzed molecules, intensities of the signals and homogeneity of co-crystals onto the MALDI plate, of carbohydrates. It is shown that the size and shape of nanocrystals influenced the way of packing carbohydrates onto plate, and thus affects homogeneity and reproducibility of mass spectrometry analysis.
PB  - Springer
T2  - Optical and Quantum Electronics
T1  - Dependence of the quality of SALDI TOF MS analysis on the TiO2 nanocrystals size and shape
VL  - 48
IS  - 2
DO  - 10.1007/s11082-016-0413-5
ER  - 
@article{
author = "Popović, Iva A. and Milovanović, Dubravka S. and Miletić, Jadranka and Nešić, Maja A. and Vranješ, Mila and Šaponjić, Zoran and Petković, Marijana",
year = "2016",
abstract = "Titanium dioxide is widely used substrate for laser desorption and ionization [(SA)LDI] mass spectrometry. As the semiconductor with high UV absorbance and rapid energy transfer to analytes, TiO2 provides soft and efficient desorption/ionization of analytes with relatively low degrees of fragmentation in the gas phase. TiO2 nanocrystals are convenient for small molecules (molecular mass LT 1000 Da) analysis due to low number of background signals. Desorption/ionization processes on TiO2 nanocrystals are related to the physical properties of the substrate, such as the ability to absorb and dissipate energy from the irradiating laser light source. In addition, size and shape of nanocrystals also affect these abilities. The aim of this study is to investigate the influence of shape and size dependant TiO2 nanocrystals/UV laser interaction on the quality of the mass spectra, detectability of analyzed molecules, intensities of the signals and homogeneity of co-crystals onto the MALDI plate, of carbohydrates. It is shown that the size and shape of nanocrystals influenced the way of packing carbohydrates onto plate, and thus affects homogeneity and reproducibility of mass spectrometry analysis.",
publisher = "Springer",
journal = "Optical and Quantum Electronics",
title = "Dependence of the quality of SALDI TOF MS analysis on the TiO2 nanocrystals size and shape",
volume = "48",
number = "2",
doi = "10.1007/s11082-016-0413-5"
}
Popović, I. A., Milovanović, D. S., Miletić, J., Nešić, M. A., Vranješ, M., Šaponjić, Z.,& Petković, M.. (2016). Dependence of the quality of SALDI TOF MS analysis on the TiO2 nanocrystals size and shape. in Optical and Quantum Electronics
Springer., 48(2).
https://doi.org/10.1007/s11082-016-0413-5
Popović IA, Milovanović DS, Miletić J, Nešić MA, Vranješ M, Šaponjić Z, Petković M. Dependence of the quality of SALDI TOF MS analysis on the TiO2 nanocrystals size and shape. in Optical and Quantum Electronics. 2016;48(2).
doi:10.1007/s11082-016-0413-5 .
Popović, Iva A., Milovanović, Dubravka S., Miletić, Jadranka, Nešić, Maja A., Vranješ, Mila, Šaponjić, Zoran, Petković, Marijana, "Dependence of the quality of SALDI TOF MS analysis on the TiO2 nanocrystals size and shape" in Optical and Quantum Electronics, 48, no. 2 (2016),
https://doi.org/10.1007/s11082-016-0413-5 . .
9
7
8

Chitosan-based microparticles for immobilization of TiO2 nanoparticles and their application for photodegradation of textile dyes

Skoric, Marija Lucic; Terzić, Ivan; Milosavljevic, Nedeljko; Radetić, Maja M.; Šaponjić, Zoran; Radoičić, Marija B.; Krusic, Melina Kalagasidis

(2016)

TY  - JOUR
AU  - Skoric, Marija Lucic
AU  - Terzić, Ivan
AU  - Milosavljevic, Nedeljko
AU  - Radetić, Maja M.
AU  - Šaponjić, Zoran
AU  - Radoičić, Marija B.
AU  - Krusic, Melina Kalagasidis
PY  - 2016
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1226
AB  - The present paper deals with removal and photocatalytic degradation of the textile dyes by TiO2 nanoparticles immobilized onto chitosan-based microparticles. The microparticles composed of chitosan (Ch) and poly(methacrylic acid) (PMA) were fabricated for the first time by inverse suspension polymerization. They were utilized for colloidal TiO2 nanoparticles immobilization, synthetized by acidic hydrolysis of TiCl4. To evaluate the potential application of Ch/PMA/TiO2 microparticles for treatment of textile wastwaters, their photocatalytic activity was examined by degradation assessment of three different groups of anionic azo dyes in aqueous solutions under solar light simulating source. FTIR analysis revealed that Ch and PMA were incorporated in the polymer network. SEM and optical microscopy confirmed their spherical shape. Under illumination, Ch/PMA/TiO2 microparticles completely removed dyes C.I. Acid Orange 7, C.I. Acid Red 18, C.I. Acid Blue 113, C.I. Reactive Black 5, C.I. Direct Blue 78, while removal degree of C.I. Reactive Yellow 17 was 75%. It was found that pH had significant influence on the photocatalytic activity of Ch/PMA/TiO2 microparticles. Increase of solution pH from acidic to alkaline, lead to decrease in photodegradation rate of C.I. Acid Orange 7 during the first hours of illumination. After three illumination cycles, removal degree of C.I. Acid Orange 7 was maintained at remarkably high level (95% at pH 5.60 and 100% at pH 2.00 and 8.00), indicating that microparticles could be reused without significant loss of photocatalytic efficiency. (C) 2016 Elsevier Ltd. All rights reserved.
T2  - European Polymer Journal
T1  - Chitosan-based microparticles for immobilization of TiO2 nanoparticles and their application for photodegradation of textile dyes
VL  - 82
SP  - 57
EP  - 70
DO  - 10.1016/j.eurpolymj.2016.06.026
ER  - 
@article{
author = "Skoric, Marija Lucic and Terzić, Ivan and Milosavljevic, Nedeljko and Radetić, Maja M. and Šaponjić, Zoran and Radoičić, Marija B. and Krusic, Melina Kalagasidis",
year = "2016",
abstract = "The present paper deals with removal and photocatalytic degradation of the textile dyes by TiO2 nanoparticles immobilized onto chitosan-based microparticles. The microparticles composed of chitosan (Ch) and poly(methacrylic acid) (PMA) were fabricated for the first time by inverse suspension polymerization. They were utilized for colloidal TiO2 nanoparticles immobilization, synthetized by acidic hydrolysis of TiCl4. To evaluate the potential application of Ch/PMA/TiO2 microparticles for treatment of textile wastwaters, their photocatalytic activity was examined by degradation assessment of three different groups of anionic azo dyes in aqueous solutions under solar light simulating source. FTIR analysis revealed that Ch and PMA were incorporated in the polymer network. SEM and optical microscopy confirmed their spherical shape. Under illumination, Ch/PMA/TiO2 microparticles completely removed dyes C.I. Acid Orange 7, C.I. Acid Red 18, C.I. Acid Blue 113, C.I. Reactive Black 5, C.I. Direct Blue 78, while removal degree of C.I. Reactive Yellow 17 was 75%. It was found that pH had significant influence on the photocatalytic activity of Ch/PMA/TiO2 microparticles. Increase of solution pH from acidic to alkaline, lead to decrease in photodegradation rate of C.I. Acid Orange 7 during the first hours of illumination. After three illumination cycles, removal degree of C.I. Acid Orange 7 was maintained at remarkably high level (95% at pH 5.60 and 100% at pH 2.00 and 8.00), indicating that microparticles could be reused without significant loss of photocatalytic efficiency. (C) 2016 Elsevier Ltd. All rights reserved.",
journal = "European Polymer Journal",
title = "Chitosan-based microparticles for immobilization of TiO2 nanoparticles and their application for photodegradation of textile dyes",
volume = "82",
pages = "57-70",
doi = "10.1016/j.eurpolymj.2016.06.026"
}
Skoric, M. L., Terzić, I., Milosavljevic, N., Radetić, M. M., Šaponjić, Z., Radoičić, M. B.,& Krusic, M. K.. (2016). Chitosan-based microparticles for immobilization of TiO2 nanoparticles and their application for photodegradation of textile dyes. in European Polymer Journal, 82, 57-70.
https://doi.org/10.1016/j.eurpolymj.2016.06.026
Skoric ML, Terzić I, Milosavljevic N, Radetić MM, Šaponjić Z, Radoičić MB, Krusic MK. Chitosan-based microparticles for immobilization of TiO2 nanoparticles and their application for photodegradation of textile dyes. in European Polymer Journal. 2016;82:57-70.
doi:10.1016/j.eurpolymj.2016.06.026 .
Skoric, Marija Lucic, Terzić, Ivan, Milosavljevic, Nedeljko, Radetić, Maja M., Šaponjić, Zoran, Radoičić, Marija B., Krusic, Melina Kalagasidis, "Chitosan-based microparticles for immobilization of TiO2 nanoparticles and their application for photodegradation of textile dyes" in European Polymer Journal, 82 (2016):57-70,
https://doi.org/10.1016/j.eurpolymj.2016.06.026 . .
23
24
21

TiO2 nanocrystals - assisted laser desorption and ionization time-of-flight mass spectrometric analysis of steroid hormones, amino acids and saccharides. Validation and comparison of methods

Popović, Iva A.; Nešić, Mioljub V.; Vranješ, Mila; Šaponjić, Zoran; Petković, Marijana

(2016)

TY  - JOUR
AU  - Popović, Iva A.
AU  - Nešić, Mioljub V.
AU  - Vranješ, Mila
AU  - Šaponjić, Zoran
AU  - Petković, Marijana
PY  - 2016
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/886
AB  - In the present study, the possibility for the application of TiO2 nanocrystals of various shapes and sizes, for substrate-assisted laser desorption and ionization time-of-flight mass spectrometric (SALDI TOF MS) quantitative analysis of small molecules (steroid hormones, amino acids and saccharides) was investigated. Parameters, such as homogeneity of the substrate/analyte distribution, reproducibility of the measurements, within-day, and day-to-day repeatability, were determined. The homogeneity of different nanocrystal/analyte combinations on the target plate were compared based on the signal-to-noise values of several analyte signals. Obtained results show that all TiO2 nanocrystals, regardless of their shape, have great potential for the detection and determination of steroid hormones, amino acids and saccharides with good analytical parameters and detection limits. On the other hand, the reproducibility of the S/N ratio and detectability of the analytes recorded in various modes differ depending on the substrate. All examined molecules were detectable in negative ion mode with TiO2 NTs, in contrast to all other organic matrices and substrates, and the best reproducibility was obtained with the larger nanocrystals, TiO2 PNSs and TiO2 NTs, making them good candidates for the quantitative determination of small molecules.
T2  - RSC Advances
T1  - TiO2 nanocrystals - assisted laser desorption and ionization time-of-flight mass spectrometric analysis of steroid hormones, amino acids and saccharides. Validation and comparison of methods
VL  - 6
IS  - 2
SP  - 1027
EP  - 1036
DO  - 10.1039/c5ra20042c
ER  - 
@article{
author = "Popović, Iva A. and Nešić, Mioljub V. and Vranješ, Mila and Šaponjić, Zoran and Petković, Marijana",
year = "2016",
abstract = "In the present study, the possibility for the application of TiO2 nanocrystals of various shapes and sizes, for substrate-assisted laser desorption and ionization time-of-flight mass spectrometric (SALDI TOF MS) quantitative analysis of small molecules (steroid hormones, amino acids and saccharides) was investigated. Parameters, such as homogeneity of the substrate/analyte distribution, reproducibility of the measurements, within-day, and day-to-day repeatability, were determined. The homogeneity of different nanocrystal/analyte combinations on the target plate were compared based on the signal-to-noise values of several analyte signals. Obtained results show that all TiO2 nanocrystals, regardless of their shape, have great potential for the detection and determination of steroid hormones, amino acids and saccharides with good analytical parameters and detection limits. On the other hand, the reproducibility of the S/N ratio and detectability of the analytes recorded in various modes differ depending on the substrate. All examined molecules were detectable in negative ion mode with TiO2 NTs, in contrast to all other organic matrices and substrates, and the best reproducibility was obtained with the larger nanocrystals, TiO2 PNSs and TiO2 NTs, making them good candidates for the quantitative determination of small molecules.",
journal = "RSC Advances",
title = "TiO2 nanocrystals - assisted laser desorption and ionization time-of-flight mass spectrometric analysis of steroid hormones, amino acids and saccharides. Validation and comparison of methods",
volume = "6",
number = "2",
pages = "1027-1036",
doi = "10.1039/c5ra20042c"
}
Popović, I. A., Nešić, M. V., Vranješ, M., Šaponjić, Z.,& Petković, M.. (2016). TiO2 nanocrystals - assisted laser desorption and ionization time-of-flight mass spectrometric analysis of steroid hormones, amino acids and saccharides. Validation and comparison of methods. in RSC Advances, 6(2), 1027-1036.
https://doi.org/10.1039/c5ra20042c
Popović IA, Nešić MV, Vranješ M, Šaponjić Z, Petković M. TiO2 nanocrystals - assisted laser desorption and ionization time-of-flight mass spectrometric analysis of steroid hormones, amino acids and saccharides. Validation and comparison of methods. in RSC Advances. 2016;6(2):1027-1036.
doi:10.1039/c5ra20042c .
Popović, Iva A., Nešić, Mioljub V., Vranješ, Mila, Šaponjić, Zoran, Petković, Marijana, "TiO2 nanocrystals - assisted laser desorption and ionization time-of-flight mass spectrometric analysis of steroid hormones, amino acids and saccharides. Validation and comparison of methods" in RSC Advances, 6, no. 2 (2016):1027-1036,
https://doi.org/10.1039/c5ra20042c . .
9
9
8

SALDI-TOF-MS analyses of small molecules (citric acid, dexasone, vitamins E and A) using TiO2 nanocrystals as substrates

Popović, Iva A.; Nešić, Maja A.; Vranješ, Mila; Šaponjić, Zoran; Petković, Marijana

(2016)

TY  - JOUR
AU  - Popović, Iva A.
AU  - Nešić, Maja A.
AU  - Vranješ, Mila
AU  - Šaponjić, Zoran
AU  - Petković, Marijana
PY  - 2016
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1267
AB  - Surface-assisted laser desorption/ionisation time-of-flight mass spectrometry (SALDI-TOF-MS) might be the method of choice for the analysis of low mass molecules (less than m/z 500). Titanium dioxide (TiO2) nanocrystals as a substrate for SALDI-TOF-MS improve the reproducibility of the signal intensities and prevent the fragmentation of some molecules upon laser irradiation, as we have previously shown. In addition, variously shaped and sized TiO2 nanocrystals/substrates for SALDI-MS could be used for quantification of small molecules, which are otherwise difficult to detect with the assistance of organic matrices. TiO2-assisted LDI-MS spectra could be acquired with excellent reproducibility and repeatability and with low detection limit. In the current study, we analysed the spectra of dexasone, citric acid, vitamin E and vitamin A acquired with TiO2 nanocrystals of various shapes and dimensions, i.e. the colloidal TiO2 nanoparticles (TiO2 NPs), TiO2 prolate nanospheroids (TiO2 PNSs) and TiO2 nanotubes (TiO2 NTs). Various shapes and dimensions of substrates were used since these factors determine desorption and ionisation processes. The homogeneity on the target plate was compared based on signal-to-noise values of peaks of interest of analysed molecules as well as the within-day and day-to-day repeatability. In summary, the obtained results show that the applicability of individual TiO2 nanocrystals depends on the analyte. Signals which are acquired with the assistance of TiO2 PNSs have the highest sensitivity and reproducibility (the smallest standard deviation), even compared with those in the LDI mode. This implies that TiO2 PNSs could also be suitable for quantitative analyses of small molecules.
T2  - Analytical and Bioanalytical Chemistry
T1  - SALDI-TOF-MS analyses of small molecules (citric acid, dexasone, vitamins E and A) using TiO2 nanocrystals as substrates
VL  - 408
IS  - 26
SP  - 7481
EP  - 7490
DO  - 10.1007/s00216-016-9846-8
ER  - 
@article{
author = "Popović, Iva A. and Nešić, Maja A. and Vranješ, Mila and Šaponjić, Zoran and Petković, Marijana",
year = "2016",
abstract = "Surface-assisted laser desorption/ionisation time-of-flight mass spectrometry (SALDI-TOF-MS) might be the method of choice for the analysis of low mass molecules (less than m/z 500). Titanium dioxide (TiO2) nanocrystals as a substrate for SALDI-TOF-MS improve the reproducibility of the signal intensities and prevent the fragmentation of some molecules upon laser irradiation, as we have previously shown. In addition, variously shaped and sized TiO2 nanocrystals/substrates for SALDI-MS could be used for quantification of small molecules, which are otherwise difficult to detect with the assistance of organic matrices. TiO2-assisted LDI-MS spectra could be acquired with excellent reproducibility and repeatability and with low detection limit. In the current study, we analysed the spectra of dexasone, citric acid, vitamin E and vitamin A acquired with TiO2 nanocrystals of various shapes and dimensions, i.e. the colloidal TiO2 nanoparticles (TiO2 NPs), TiO2 prolate nanospheroids (TiO2 PNSs) and TiO2 nanotubes (TiO2 NTs). Various shapes and dimensions of substrates were used since these factors determine desorption and ionisation processes. The homogeneity on the target plate was compared based on signal-to-noise values of peaks of interest of analysed molecules as well as the within-day and day-to-day repeatability. In summary, the obtained results show that the applicability of individual TiO2 nanocrystals depends on the analyte. Signals which are acquired with the assistance of TiO2 PNSs have the highest sensitivity and reproducibility (the smallest standard deviation), even compared with those in the LDI mode. This implies that TiO2 PNSs could also be suitable for quantitative analyses of small molecules.",
journal = "Analytical and Bioanalytical Chemistry",
title = "SALDI-TOF-MS analyses of small molecules (citric acid, dexasone, vitamins E and A) using TiO2 nanocrystals as substrates",
volume = "408",
number = "26",
pages = "7481-7490",
doi = "10.1007/s00216-016-9846-8"
}
Popović, I. A., Nešić, M. A., Vranješ, M., Šaponjić, Z.,& Petković, M.. (2016). SALDI-TOF-MS analyses of small molecules (citric acid, dexasone, vitamins E and A) using TiO2 nanocrystals as substrates. in Analytical and Bioanalytical Chemistry, 408(26), 7481-7490.
https://doi.org/10.1007/s00216-016-9846-8
Popović IA, Nešić MA, Vranješ M, Šaponjić Z, Petković M. SALDI-TOF-MS analyses of small molecules (citric acid, dexasone, vitamins E and A) using TiO2 nanocrystals as substrates. in Analytical and Bioanalytical Chemistry. 2016;408(26):7481-7490.
doi:10.1007/s00216-016-9846-8 .
Popović, Iva A., Nešić, Maja A., Vranješ, Mila, Šaponjić, Zoran, Petković, Marijana, "SALDI-TOF-MS analyses of small molecules (citric acid, dexasone, vitamins E and A) using TiO2 nanocrystals as substrates" in Analytical and Bioanalytical Chemistry, 408, no. 26 (2016):7481-7490,
https://doi.org/10.1007/s00216-016-9846-8 . .
1
19
15
15

Anatase nanoparticles surface modified with fused ring salicylate-type ligands (1-hydroxy-2-naphthoic acids): A combined DFT and experimental study

Savić, Tatjana D.; Čomor, Mirjana; Abazović, Nadica; Šaponjić, Zoran; Marinović-Cincović, Milena; Veljkovic, Dusan Z.; Zarić, Snežana D.; Janković, Ivana A.

(2015)

TY  - JOUR
AU  - Savić, Tatjana D.
AU  - Čomor, Mirjana
AU  - Abazović, Nadica
AU  - Šaponjić, Zoran
AU  - Marinović-Cincović, Milena
AU  - Veljkovic, Dusan Z.
AU  - Zarić, Snežana D.
AU  - Janković, Ivana A.
PY  - 2015
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/410
AB  - Sensitization of TiO2 crystals and nanoparticles with appropriately chosen organic molecules can lead to a significant shift of their absorption threshold from the UV to the visible, thus improving the absorption of the solar spectrum as well as the efficiency of photocatalytic and photovoltaic devices. Herein, the surface modification of nanocrystalline TiO2 particles (45 angstrom) with salicylate-type ligands consisting of an extended aromatic ring system, specifically 1-hydroxy-2-naphthoic acid and 1,4-dihydroxy-2-naphthoic acid, was found to alter the optical properties of nanoparticles in a similar way to salicylic acid. From both absorption measurements and steady-state quenching measurements of modifier fluorescence upon binding to TiO2 in methanol/ water = 90/10 solutions, stability constants in the order of 10(3) M-1 have been determined at pH 2. Fluorescence lifetime measurements, in the presence and absence of colloidal TiO2 nanoparticles, indicated that the fluorescence quenching process is primarily static quenching, thus proving the formation of a nonfluorescent charge-transfer (CT) complex. The binding structures were investigated by using FTIR spectroscopy. Thermal stability of CT-complexes was investigated by using TPD analysis (TG/DTA/MS). Quantum chemical calculations on model systems using density functional theory (DFT) were performed to obtain the vibrational frequencies of charge transfer complexes, and the calculated values were compared with the experimental data. The investigated ligands have the optimal geometry for binding to surface Ti atoms, resulting in ring coordination complexes of a salicylate type (binuclear bidentate binding-bridging) thus restoring the six-coordinated octahedral geometry of surface Ti atoms. The formation of the inner-sphere CT-complexes results in a red shift of the semiconductor absorption compared to unmodified nanocrystallites and a reduction in the band gap upon the increase in the electron delocalization when including an additional ring. (C) 2015 Elsevier B.V. All rights reserved.
T2  - Journal of Alloys and Compounds
T1  - Anatase nanoparticles surface modified with fused ring salicylate-type ligands (1-hydroxy-2-naphthoic acids): A combined DFT and experimental study
VL  - 630
SP  - 226
EP  - 235
DO  - 10.1016/j.jallcom.2015.01.041
ER  - 
@article{
author = "Savić, Tatjana D. and Čomor, Mirjana and Abazović, Nadica and Šaponjić, Zoran and Marinović-Cincović, Milena and Veljkovic, Dusan Z. and Zarić, Snežana D. and Janković, Ivana A.",
year = "2015",
abstract = "Sensitization of TiO2 crystals and nanoparticles with appropriately chosen organic molecules can lead to a significant shift of their absorption threshold from the UV to the visible, thus improving the absorption of the solar spectrum as well as the efficiency of photocatalytic and photovoltaic devices. Herein, the surface modification of nanocrystalline TiO2 particles (45 angstrom) with salicylate-type ligands consisting of an extended aromatic ring system, specifically 1-hydroxy-2-naphthoic acid and 1,4-dihydroxy-2-naphthoic acid, was found to alter the optical properties of nanoparticles in a similar way to salicylic acid. From both absorption measurements and steady-state quenching measurements of modifier fluorescence upon binding to TiO2 in methanol/ water = 90/10 solutions, stability constants in the order of 10(3) M-1 have been determined at pH 2. Fluorescence lifetime measurements, in the presence and absence of colloidal TiO2 nanoparticles, indicated that the fluorescence quenching process is primarily static quenching, thus proving the formation of a nonfluorescent charge-transfer (CT) complex. The binding structures were investigated by using FTIR spectroscopy. Thermal stability of CT-complexes was investigated by using TPD analysis (TG/DTA/MS). Quantum chemical calculations on model systems using density functional theory (DFT) were performed to obtain the vibrational frequencies of charge transfer complexes, and the calculated values were compared with the experimental data. The investigated ligands have the optimal geometry for binding to surface Ti atoms, resulting in ring coordination complexes of a salicylate type (binuclear bidentate binding-bridging) thus restoring the six-coordinated octahedral geometry of surface Ti atoms. The formation of the inner-sphere CT-complexes results in a red shift of the semiconductor absorption compared to unmodified nanocrystallites and a reduction in the band gap upon the increase in the electron delocalization when including an additional ring. (C) 2015 Elsevier B.V. All rights reserved.",
journal = "Journal of Alloys and Compounds",
title = "Anatase nanoparticles surface modified with fused ring salicylate-type ligands (1-hydroxy-2-naphthoic acids): A combined DFT and experimental study",
volume = "630",
pages = "226-235",
doi = "10.1016/j.jallcom.2015.01.041"
}
Savić, T. D., Čomor, M., Abazović, N., Šaponjić, Z., Marinović-Cincović, M., Veljkovic, D. Z., Zarić, S. D.,& Janković, I. A.. (2015). Anatase nanoparticles surface modified with fused ring salicylate-type ligands (1-hydroxy-2-naphthoic acids): A combined DFT and experimental study. in Journal of Alloys and Compounds, 630, 226-235.
https://doi.org/10.1016/j.jallcom.2015.01.041
Savić TD, Čomor M, Abazović N, Šaponjić Z, Marinović-Cincović M, Veljkovic DZ, Zarić SD, Janković IA. Anatase nanoparticles surface modified with fused ring salicylate-type ligands (1-hydroxy-2-naphthoic acids): A combined DFT and experimental study. in Journal of Alloys and Compounds. 2015;630:226-235.
doi:10.1016/j.jallcom.2015.01.041 .
Savić, Tatjana D., Čomor, Mirjana, Abazović, Nadica, Šaponjić, Zoran, Marinović-Cincović, Milena, Veljkovic, Dusan Z., Zarić, Snežana D., Janković, Ivana A., "Anatase nanoparticles surface modified with fused ring salicylate-type ligands (1-hydroxy-2-naphthoic acids): A combined DFT and experimental study" in Journal of Alloys and Compounds, 630 (2015):226-235,
https://doi.org/10.1016/j.jallcom.2015.01.041 . .
23
20
23