Lazić, Vesna M.

Link to this page

Authority KeyName Variants
orcid::0000-0001-6440-6577
  • Lazić, Vesna M. (36)
  • Lazić, Vesna (8)
  • Ilić, Vesna M. (7)
Projects
Materials of Reduced Dimensions for Efficient Light Harvesting and Energy conversion Size-, shape- and structure- dependent properties of nanoparticles and nanocomposites
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) Application of biotechnological methods for sustainable exploitation of by-products of agro-industry
Cell Cycle Aberrations and the Impact of Oxidative Stress in Neurodegenerative Processes and Malignant Transformation of the Cell Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200019 (University of Belgrade, Institute for the Application of Nuclear Energy - INEP)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200161 (University of Belgrade, Faculty of Pharmacy) Advanced technologies for monitoring and environmental protection from chemical pollutants and radiation burden
Ministry of Education, Science and Technological Development of the Republic of Serbia AEI, ERFD [ID2019–106099RB-C43/AEI/10.13039/50110 0 011033]
Bilateral project between the Portuguese Republic and the Republic of Serbia [337–0 0–0 0227/2019–09/14] Bilateral project between the Portuguese Republic and the Republic of Serbia [No. 337-00-00227/ 2019-09/14]
Bilateral project between the Republic of Slovenia and the Republic of Serbia (No. 44) Bilateral project Portugese-Serbia [337-00-00227/2019-09/14]
ELKARTEK and PIBA [PIBA-2018–06] ELKARTEK [NPRP11S-1126- 170033]
EPSCoR of the United States (Award IIA-1355423) ERFD [PID2019-106099RB-C43/ AEI/10.13039/501100011033]
European Union under the LERCO [Project number CZ.10.03.01/00/ 22_003/0000003] FCT [UID/FIS/04650/2020, project PTDC/BTM-MAT/28237/2017, SFRH/BPD/121464/2016]
Hormonal regulation of expression and activity of the nitric oxide synthase and sodium-potassium pump in experimental models of insulin resistance, diabetes and cardiovascular disorders Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM)
Sinteza i karakterizacija nanočestica i nanokompozita Production of lactic acid and probiotics on waste products of food and agricultural industry
Javna Agencija za Raziskovalno Dejavnost RS [P1–0192] Javna Agencija za Raziskovalno Dejavnost RS [P2–0089]
Ministry of Education, Youth and Sports of the Czech Republic [project 8X20001] Ministry of Education, Youth, and Sports of the Czech Republic [Project Code: 8X23021]
Ministry of Education, Youth and Sports of the Czech Republic [Project no. LM2018124] Ministry of Science and Environment of Republic of Serbia [142066], Eureka project NANOVISION [E! 4043]

Author's Bibliography

The photocatalytic ability of visible-light-responsive interfacial charge transfer complex between TiO2 and Tiron

Lazić, Vesna; Sredojević, Dušan; Ćirić, Aleksandar; Nedeljković, Jovan; Zelenková, Gabriela; Férová, Marta; Zelenka, Tomáš; Chavhan, Madhav Prabhakar; Slovák, Václav

(2024)

TY  - JOUR
AU  - Lazić, Vesna
AU  - Sredojević, Dušan
AU  - Ćirić, Aleksandar
AU  - Nedeljković, Jovan
AU  - Zelenková, Gabriela
AU  - Férová, Marta
AU  - Zelenka, Tomáš
AU  - Chavhan, Madhav Prabhakar
AU  - Slovák, Václav
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12392
AB  - The surface modification of commercial TiO2 powder with catecholate-type ligand Tiron (TIR) leads to the formation of the interfacial charge transfer complex (ICT) absorbing in the visible spectral range. The estimated band gap energy of the ICT complex (Eg = 2.2 eV) by density functional theory (DFT) calculations agrees with experimental measurements. The surface-modified TiO2 with TIR has enhanced sorption capacity towards Pb2+ ions compared to the pristine one due to the presence of free sulfonate groups. Our attempt to reduce Pb2+ ions to metallic form failed. The TiO2-based ICT complex with TIR can serve as an efficient sorbent to remove Pb2+ ions from the solution without the ability to recover them in metallic form in a photo-driven catalytic process. The photocatalytic ability of the ICT complex to induce oxidation reactions is significantly improved since the complete degradation of organic dye methyl orange occurs under exclusive excitations with visible light photons.
T2  - Journal of Photochemistry and Photobiology A: Chemistry
T1  - The photocatalytic ability of visible-light-responsive interfacial charge transfer complex between TiO2 and Tiron
VL  - 449
SP  - 115394
DO  - 10.1016/j.jphotochem.2023.115394
ER  - 
@article{
author = "Lazić, Vesna and Sredojević, Dušan and Ćirić, Aleksandar and Nedeljković, Jovan and Zelenková, Gabriela and Férová, Marta and Zelenka, Tomáš and Chavhan, Madhav Prabhakar and Slovák, Václav",
year = "2024",
abstract = "The surface modification of commercial TiO2 powder with catecholate-type ligand Tiron (TIR) leads to the formation of the interfacial charge transfer complex (ICT) absorbing in the visible spectral range. The estimated band gap energy of the ICT complex (Eg = 2.2 eV) by density functional theory (DFT) calculations agrees with experimental measurements. The surface-modified TiO2 with TIR has enhanced sorption capacity towards Pb2+ ions compared to the pristine one due to the presence of free sulfonate groups. Our attempt to reduce Pb2+ ions to metallic form failed. The TiO2-based ICT complex with TIR can serve as an efficient sorbent to remove Pb2+ ions from the solution without the ability to recover them in metallic form in a photo-driven catalytic process. The photocatalytic ability of the ICT complex to induce oxidation reactions is significantly improved since the complete degradation of organic dye methyl orange occurs under exclusive excitations with visible light photons.",
journal = "Journal of Photochemistry and Photobiology A: Chemistry",
title = "The photocatalytic ability of visible-light-responsive interfacial charge transfer complex between TiO2 and Tiron",
volume = "449",
pages = "115394",
doi = "10.1016/j.jphotochem.2023.115394"
}
Lazić, V., Sredojević, D., Ćirić, A., Nedeljković, J., Zelenková, G., Férová, M., Zelenka, T., Chavhan, M. P.,& Slovák, V.. (2024). The photocatalytic ability of visible-light-responsive interfacial charge transfer complex between TiO2 and Tiron. in Journal of Photochemistry and Photobiology A: Chemistry, 449, 115394.
https://doi.org/10.1016/j.jphotochem.2023.115394
Lazić V, Sredojević D, Ćirić A, Nedeljković J, Zelenková G, Férová M, Zelenka T, Chavhan MP, Slovák V. The photocatalytic ability of visible-light-responsive interfacial charge transfer complex between TiO2 and Tiron. in Journal of Photochemistry and Photobiology A: Chemistry. 2024;449:115394.
doi:10.1016/j.jphotochem.2023.115394 .
Lazić, Vesna, Sredojević, Dušan, Ćirić, Aleksandar, Nedeljković, Jovan, Zelenková, Gabriela, Férová, Marta, Zelenka, Tomáš, Chavhan, Madhav Prabhakar, Slovák, Václav, "The photocatalytic ability of visible-light-responsive interfacial charge transfer complex between TiO2 and Tiron" in Journal of Photochemistry and Photobiology A: Chemistry, 449 (2024):115394,
https://doi.org/10.1016/j.jphotochem.2023.115394 . .

Interfacial charge transfer complexes between ZnO and benzene derivatives: Characterization and photocatalytic hydrogen production

Dukić, Miljana; Sredojević, Dušan; Férová, Marta; Slovak, Vaclav; Lončarević, Davor; Dostanić, Jasmina; Šalipur, Hristina; Lazić, Vesna; Nedeljković, Jovan

(2024)

TY  - JOUR
AU  - Dukić, Miljana
AU  - Sredojević, Dušan
AU  - Férová, Marta
AU  - Slovak, Vaclav
AU  - Lončarević, Davor
AU  - Dostanić, Jasmina
AU  - Šalipur, Hristina
AU  - Lazić, Vesna
AU  - Nedeljković, Jovan
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12989
AB  - The interfacial charge transfer (ICT) complex formation is a simple procedure to bring optical absorption of widebandgap oxide materials in the visible spectral range, crucial for enhancing their use in photo-driven reactions. The optical absorption of the prepared ICT complexes between ZnO and five different colorless benzene derivatives is red-shifted compared to pristine ZnO nanopowder. The density functional theory (DFT) calculations provided realistic energy level alignment in hybrid systems. Also, the DFT-calculated infrared spectra support the binding structures derived based on experimental measurements of free and adsorbed ligands onto ZnO surfaces. The photocatalytic performance of prepared hybrids was evaluated using photocatalytic hydrogen generation in the water-splitting reaction. The ZnO nanopowders modified with catechol and caffeic acid have over 50% higher hydrogen production rate than pristine ZnO, displaying steady hydrogen production under long-run working conditions.
T2  - International Journal of Hydrogen Energy
T1  - Interfacial charge transfer complexes between ZnO and benzene derivatives: Characterization and photocatalytic hydrogen production
VL  - 62
SP  - 628
EP  - 636
DO  - 10.1016/j.ijhydene.2024.03.075
ER  - 
@article{
author = "Dukić, Miljana and Sredojević, Dušan and Férová, Marta and Slovak, Vaclav and Lončarević, Davor and Dostanić, Jasmina and Šalipur, Hristina and Lazić, Vesna and Nedeljković, Jovan",
year = "2024",
abstract = "The interfacial charge transfer (ICT) complex formation is a simple procedure to bring optical absorption of widebandgap oxide materials in the visible spectral range, crucial for enhancing their use in photo-driven reactions. The optical absorption of the prepared ICT complexes between ZnO and five different colorless benzene derivatives is red-shifted compared to pristine ZnO nanopowder. The density functional theory (DFT) calculations provided realistic energy level alignment in hybrid systems. Also, the DFT-calculated infrared spectra support the binding structures derived based on experimental measurements of free and adsorbed ligands onto ZnO surfaces. The photocatalytic performance of prepared hybrids was evaluated using photocatalytic hydrogen generation in the water-splitting reaction. The ZnO nanopowders modified with catechol and caffeic acid have over 50% higher hydrogen production rate than pristine ZnO, displaying steady hydrogen production under long-run working conditions.",
journal = "International Journal of Hydrogen Energy",
title = "Interfacial charge transfer complexes between ZnO and benzene derivatives: Characterization and photocatalytic hydrogen production",
volume = "62",
pages = "628-636",
doi = "10.1016/j.ijhydene.2024.03.075"
}
Dukić, M., Sredojević, D., Férová, M., Slovak, V., Lončarević, D., Dostanić, J., Šalipur, H., Lazić, V.,& Nedeljković, J.. (2024). Interfacial charge transfer complexes between ZnO and benzene derivatives: Characterization and photocatalytic hydrogen production. in International Journal of Hydrogen Energy, 62, 628-636.
https://doi.org/10.1016/j.ijhydene.2024.03.075
Dukić M, Sredojević D, Férová M, Slovak V, Lončarević D, Dostanić J, Šalipur H, Lazić V, Nedeljković J. Interfacial charge transfer complexes between ZnO and benzene derivatives: Characterization and photocatalytic hydrogen production. in International Journal of Hydrogen Energy. 2024;62:628-636.
doi:10.1016/j.ijhydene.2024.03.075 .
Dukić, Miljana, Sredojević, Dušan, Férová, Marta, Slovak, Vaclav, Lončarević, Davor, Dostanić, Jasmina, Šalipur, Hristina, Lazić, Vesna, Nedeljković, Jovan, "Interfacial charge transfer complexes between ZnO and benzene derivatives: Characterization and photocatalytic hydrogen production" in International Journal of Hydrogen Energy, 62 (2024):628-636,
https://doi.org/10.1016/j.ijhydene.2024.03.075 . .

Photocatalytic ability of visible-light-responsive hybrid ZrO2 particles

Zarubica, Aleksandra; Sredojević, Dušan; Ljupković, Radomir; Ranđelović, Marjan; Murafa, Natalija; Stoiljković, Milovan; Lazić, Vesna; Nedeljković, Jovan

(2023)

TY  - JOUR
AU  - Zarubica, Aleksandra
AU  - Sredojević, Dušan
AU  - Ljupković, Radomir
AU  - Ranđelović, Marjan
AU  - Murafa, Natalija
AU  - Stoiljković, Milovan
AU  - Lazić, Vesna
AU  - Nedeljković, Jovan
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10874
AB  - The interfacial charge transfer (ICT) complex formation between zirconium dioxide (ZrO2), the material absorbing below 250 nm, and 5-aminosalicylic acid (5-ASA) leads to the formation of visible-light-absorbing inorganic–organic hybrids. The free amino groups, present on the hybrid's surface after the ICT complex formation, were used to reduce silver ions and link silver particles to ZrO2. The prepared samples were characterized by using transmission electron microscopy, X-ray diffraction analysis, and nitrogen adsorption–desorption isotherms. Density functional theory (DFT) calculations using a cluster model are applied to explain optical changes in hybrids, i.e., absorption redshift induced by the ICT complex formation. Decolorization of an organic dye crystal violet (CV), under ultraviolet-C or visible light, was used to compare the photocatalytic ability of the prepared samples. The ICT complex formation transformed ZrO2 into a hybrid material able to induce photocatalytic reactions under exclusive visible light excitation.
T2  - Sustainable Energy and Fuels
T1  - Photocatalytic ability of visible-light-responsive hybrid ZrO2 particles
VL  - 7
IS  - 9
SP  - 2279
EP  - 2287
DO  - 10.1039/D3SE00175J
ER  - 
@article{
author = "Zarubica, Aleksandra and Sredojević, Dušan and Ljupković, Radomir and Ranđelović, Marjan and Murafa, Natalija and Stoiljković, Milovan and Lazić, Vesna and Nedeljković, Jovan",
year = "2023",
abstract = "The interfacial charge transfer (ICT) complex formation between zirconium dioxide (ZrO2), the material absorbing below 250 nm, and 5-aminosalicylic acid (5-ASA) leads to the formation of visible-light-absorbing inorganic–organic hybrids. The free amino groups, present on the hybrid's surface after the ICT complex formation, were used to reduce silver ions and link silver particles to ZrO2. The prepared samples were characterized by using transmission electron microscopy, X-ray diffraction analysis, and nitrogen adsorption–desorption isotherms. Density functional theory (DFT) calculations using a cluster model are applied to explain optical changes in hybrids, i.e., absorption redshift induced by the ICT complex formation. Decolorization of an organic dye crystal violet (CV), under ultraviolet-C or visible light, was used to compare the photocatalytic ability of the prepared samples. The ICT complex formation transformed ZrO2 into a hybrid material able to induce photocatalytic reactions under exclusive visible light excitation.",
journal = "Sustainable Energy and Fuels",
title = "Photocatalytic ability of visible-light-responsive hybrid ZrO2 particles",
volume = "7",
number = "9",
pages = "2279-2287",
doi = "10.1039/D3SE00175J"
}
Zarubica, A., Sredojević, D., Ljupković, R., Ranđelović, M., Murafa, N., Stoiljković, M., Lazić, V.,& Nedeljković, J.. (2023). Photocatalytic ability of visible-light-responsive hybrid ZrO2 particles. in Sustainable Energy and Fuels, 7(9), 2279-2287.
https://doi.org/10.1039/D3SE00175J
Zarubica A, Sredojević D, Ljupković R, Ranđelović M, Murafa N, Stoiljković M, Lazić V, Nedeljković J. Photocatalytic ability of visible-light-responsive hybrid ZrO2 particles. in Sustainable Energy and Fuels. 2023;7(9):2279-2287.
doi:10.1039/D3SE00175J .
Zarubica, Aleksandra, Sredojević, Dušan, Ljupković, Radomir, Ranđelović, Marjan, Murafa, Natalija, Stoiljković, Milovan, Lazić, Vesna, Nedeljković, Jovan, "Photocatalytic ability of visible-light-responsive hybrid ZrO2 particles" in Sustainable Energy and Fuels, 7, no. 9 (2023):2279-2287,
https://doi.org/10.1039/D3SE00175J . .
1
1

Comparative analysis of Ag NPs functionalized with olive leaf extract and oleuropein and toxicity in human trophoblast cells and peripheral blood lymphocytes

Pirković, Andrea; Lazić, Vesna; Spremo-Potparević, Biljana; Živković, Lada; Topalović, Dijana; Kuzman, Sanja; Antić-Stanković, Jelena; Božić, Dragana; Jovanović Krivokuća, Milica; Nedeljković, Jovan

(2023)

TY  - JOUR
AU  - Pirković, Andrea
AU  - Lazić, Vesna
AU  - Spremo-Potparević, Biljana
AU  - Živković, Lada
AU  - Topalović, Dijana
AU  - Kuzman, Sanja
AU  - Antić-Stanković, Jelena
AU  - Božić, Dragana
AU  - Jovanović Krivokuća, Milica
AU  - Nedeljković, Jovan
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11219
AB  - Dry olive leaf extract (DOLE) and its active component oleuropein (OLE) were applied as reducing and stabilizing agents to prepare colloidal 20–25 nm silver nanoparticles (Ag NPs). The Ag NPs were characterized using transmission electron microscopy, X-ray diffraction analysis, and absorption spectroscopy. The cytotoxic actions of coated Ag NPs, and their inorganic and organic components, were examined against trophoblast cells and human peripheral blood lymphocytes (PBLs), Gram-positive, Gram-negative bacteria, and yeast. The genotoxic potential was evaluated in PBLs in vitro with the comet assay. Ag/DOLE and Ag/OLE induced cytotoxic effects in both types of cells after 24 h exposure when silver concentrations were 0.025–0.2 mM. However, the most pronounced cytotoxicity exhibits Ag/OLE. Both colloids also caused reduced ROS production in both cell types at 0.1 mM and 0.2 mM, while bare Ag NPs did not alter ROS levels at any of the conditions. Functionalized Ag/DOLE and Ag/OLE did not show genotoxic effects in PBLs, while bare AgNPs increased DNA damage significantly only at 0.2 mM. Regarding the antimicrobial effects, the Ag/OLE had MIC values for all evaluated microorganisms from 0.0625 to less than 0.0312 mM. Also, the antimicrobial effect of Ag/DOLE was significantly higher on Gram-negative bacteria and yeast than on Gram-positive bacteria. Obtained results indicate that Ag/OLE induced the most pronounced biological effects, beneficial for its application as an antimicrobial agent, but with potential risks from exposure to high concentrations that could induce cytotoxicity in healthy human cells.
T2  - Mutagenesis
T1  - Comparative analysis of Ag NPs functionalized with olive leaf extract and oleuropein and toxicity in human trophoblast cells and peripheral blood lymphocytes
VL  - 38
IS  - 3
SP  - 169
EP  - 181
DO  - 10.1093/mutage/gead013
ER  - 
@article{
author = "Pirković, Andrea and Lazić, Vesna and Spremo-Potparević, Biljana and Živković, Lada and Topalović, Dijana and Kuzman, Sanja and Antić-Stanković, Jelena and Božić, Dragana and Jovanović Krivokuća, Milica and Nedeljković, Jovan",
year = "2023",
abstract = "Dry olive leaf extract (DOLE) and its active component oleuropein (OLE) were applied as reducing and stabilizing agents to prepare colloidal 20–25 nm silver nanoparticles (Ag NPs). The Ag NPs were characterized using transmission electron microscopy, X-ray diffraction analysis, and absorption spectroscopy. The cytotoxic actions of coated Ag NPs, and their inorganic and organic components, were examined against trophoblast cells and human peripheral blood lymphocytes (PBLs), Gram-positive, Gram-negative bacteria, and yeast. The genotoxic potential was evaluated in PBLs in vitro with the comet assay. Ag/DOLE and Ag/OLE induced cytotoxic effects in both types of cells after 24 h exposure when silver concentrations were 0.025–0.2 mM. However, the most pronounced cytotoxicity exhibits Ag/OLE. Both colloids also caused reduced ROS production in both cell types at 0.1 mM and 0.2 mM, while bare Ag NPs did not alter ROS levels at any of the conditions. Functionalized Ag/DOLE and Ag/OLE did not show genotoxic effects in PBLs, while bare AgNPs increased DNA damage significantly only at 0.2 mM. Regarding the antimicrobial effects, the Ag/OLE had MIC values for all evaluated microorganisms from 0.0625 to less than 0.0312 mM. Also, the antimicrobial effect of Ag/DOLE was significantly higher on Gram-negative bacteria and yeast than on Gram-positive bacteria. Obtained results indicate that Ag/OLE induced the most pronounced biological effects, beneficial for its application as an antimicrobial agent, but with potential risks from exposure to high concentrations that could induce cytotoxicity in healthy human cells.",
journal = "Mutagenesis",
title = "Comparative analysis of Ag NPs functionalized with olive leaf extract and oleuropein and toxicity in human trophoblast cells and peripheral blood lymphocytes",
volume = "38",
number = "3",
pages = "169-181",
doi = "10.1093/mutage/gead013"
}
Pirković, A., Lazić, V., Spremo-Potparević, B., Živković, L., Topalović, D., Kuzman, S., Antić-Stanković, J., Božić, D., Jovanović Krivokuća, M.,& Nedeljković, J.. (2023). Comparative analysis of Ag NPs functionalized with olive leaf extract and oleuropein and toxicity in human trophoblast cells and peripheral blood lymphocytes. in Mutagenesis, 38(3), 169-181.
https://doi.org/10.1093/mutage/gead013
Pirković A, Lazić V, Spremo-Potparević B, Živković L, Topalović D, Kuzman S, Antić-Stanković J, Božić D, Jovanović Krivokuća M, Nedeljković J. Comparative analysis of Ag NPs functionalized with olive leaf extract and oleuropein and toxicity in human trophoblast cells and peripheral blood lymphocytes. in Mutagenesis. 2023;38(3):169-181.
doi:10.1093/mutage/gead013 .
Pirković, Andrea, Lazić, Vesna, Spremo-Potparević, Biljana, Živković, Lada, Topalović, Dijana, Kuzman, Sanja, Antić-Stanković, Jelena, Božić, Dragana, Jovanović Krivokuća, Milica, Nedeljković, Jovan, "Comparative analysis of Ag NPs functionalized with olive leaf extract and oleuropein and toxicity in human trophoblast cells and peripheral blood lymphocytes" in Mutagenesis, 38, no. 3 (2023):169-181,
https://doi.org/10.1093/mutage/gead013 . .
1

Sinteza i karakterizacija hibridnih nanomaterijala na bazi ZnO

Dukić, Miljana; Nikšić, Valentina; Sredojević, Dušan; Lazić, Vesna; Nedeljković, Jovan

(Belgrade : Serbian Chemical Society, 2023)

TY  - CONF
AU  - Dukić, Miljana
AU  - Nikšić, Valentina
AU  - Sredojević, Dušan
AU  - Lazić, Vesna
AU  - Nedeljković, Jovan
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13037
AB  - Cink oksid (ZnO) je poluprovodni material sa velikim energetskim procepom, sa najčešćom primenom u fotokatalizi. Površinska modifikacija nanočestica ZnO ligandima salicilatnog tipa (salicilna kiselina i 5-aminosalicilna kiselina) kao i ligandima kateholatnog tipa (katehol, 3,4-dihidroksibenzoeva kiselina i kafeinska kiselina) dovodi do pomeranja apsorpcije ka vidljivom delu spectra usled formiranja kompleksa sa prenosom naelektrisanja (ICT). Pripremljeni uzorci su okarakterisani infracrvenom spektroskopijom (FTIR) koja je korišćena za identifikaciju načina vezivanja između liganada i ZnO. Proračuni teorije funkcionalne gustine (DFT) sa pravilno dizajniranim klasterima, izvedeni su za procenu usklađenosti energetskih nivoa različitih neorganskih/organskih hibrida. Utvrđena je značajna usaglašenost između izračunatih i eksperimentalnih vrednosti za FTIR i refleksione spektre.
AB  - Zinc oxide (ZnO) is a wide bandgap ceramic material with various potential applications like photocatalysis. Surface modification of ZnO nano-powder with salicylate-type ligands (salicylic acid and 5-aminosalicylic acid) as well as catecholate-type ligands (catechol, 3,4dihydroxybenzoic acid, and caffeic acid), induces the appearance of absorption in the visible spectral region due to the interfacial charge transfer (ICT) complex formation. The prepared samples were characterized by Fourier-transform infrared spectroscopy (FTIR), used to identify the binding mode between ligands and the surface of ZnO. The density functional theory (DFT) calculations with properly designed model systems, were performed to estimate the alignment of energy levels of various inorganic/organic hybrids. A reasonably good agreement between calculated values and experimental data for FTIR and reflectance spectra was found.
PB  - Belgrade : Serbian Chemical Society
C3  - 59th Meeting of the Serbian Chemical Society : Book of Abstracts, Proceedings
T1  - Sinteza i karakterizacija hibridnih nanomaterijala na bazi ZnO
T1  - Synthesis and characterization of hybrid nanomaterials based on ZnO
SP  - 140
EP  - 140
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13037
ER  - 
@conference{
author = "Dukić, Miljana and Nikšić, Valentina and Sredojević, Dušan and Lazić, Vesna and Nedeljković, Jovan",
year = "2023",
abstract = "Cink oksid (ZnO) je poluprovodni material sa velikim energetskim procepom, sa najčešćom primenom u fotokatalizi. Površinska modifikacija nanočestica ZnO ligandima salicilatnog tipa (salicilna kiselina i 5-aminosalicilna kiselina) kao i ligandima kateholatnog tipa (katehol, 3,4-dihidroksibenzoeva kiselina i kafeinska kiselina) dovodi do pomeranja apsorpcije ka vidljivom delu spectra usled formiranja kompleksa sa prenosom naelektrisanja (ICT). Pripremljeni uzorci su okarakterisani infracrvenom spektroskopijom (FTIR) koja je korišćena za identifikaciju načina vezivanja između liganada i ZnO. Proračuni teorije funkcionalne gustine (DFT) sa pravilno dizajniranim klasterima, izvedeni su za procenu usklađenosti energetskih nivoa različitih neorganskih/organskih hibrida. Utvrđena je značajna usaglašenost između izračunatih i eksperimentalnih vrednosti za FTIR i refleksione spektre., Zinc oxide (ZnO) is a wide bandgap ceramic material with various potential applications like photocatalysis. Surface modification of ZnO nano-powder with salicylate-type ligands (salicylic acid and 5-aminosalicylic acid) as well as catecholate-type ligands (catechol, 3,4dihydroxybenzoic acid, and caffeic acid), induces the appearance of absorption in the visible spectral region due to the interfacial charge transfer (ICT) complex formation. The prepared samples were characterized by Fourier-transform infrared spectroscopy (FTIR), used to identify the binding mode between ligands and the surface of ZnO. The density functional theory (DFT) calculations with properly designed model systems, were performed to estimate the alignment of energy levels of various inorganic/organic hybrids. A reasonably good agreement between calculated values and experimental data for FTIR and reflectance spectra was found.",
publisher = "Belgrade : Serbian Chemical Society",
journal = "59th Meeting of the Serbian Chemical Society : Book of Abstracts, Proceedings",
title = "Sinteza i karakterizacija hibridnih nanomaterijala na bazi ZnO, Synthesis and characterization of hybrid nanomaterials based on ZnO",
pages = "140-140",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13037"
}
Dukić, M., Nikšić, V., Sredojević, D., Lazić, V.,& Nedeljković, J.. (2023). Sinteza i karakterizacija hibridnih nanomaterijala na bazi ZnO. in 59th Meeting of the Serbian Chemical Society : Book of Abstracts, Proceedings
Belgrade : Serbian Chemical Society., 140-140.
https://hdl.handle.net/21.15107/rcub_vinar_13037
Dukić M, Nikšić V, Sredojević D, Lazić V, Nedeljković J. Sinteza i karakterizacija hibridnih nanomaterijala na bazi ZnO. in 59th Meeting of the Serbian Chemical Society : Book of Abstracts, Proceedings. 2023;:140-140.
https://hdl.handle.net/21.15107/rcub_vinar_13037 .
Dukić, Miljana, Nikšić, Valentina, Sredojević, Dušan, Lazić, Vesna, Nedeljković, Jovan, "Sinteza i karakterizacija hibridnih nanomaterijala na bazi ZnO" in 59th Meeting of the Serbian Chemical Society : Book of Abstracts, Proceedings (2023):140-140,
https://hdl.handle.net/21.15107/rcub_vinar_13037 .

Toksičnost nanočestica TiO2 modifikovanih dihidrokvarcetinom

Nikšić, Valentina; Dukić, Miljana; Pirković, Andrea; Lazić, Vesna

(Belgrade : Serbian Chemical Society, 2023)

TY  - CONF
AU  - Nikšić, Valentina
AU  - Dukić, Miljana
AU  - Pirković, Andrea
AU  - Lazić, Vesna
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13039
AB  - Cilj ovog rada je modifikacija površine nanočestica TiO2 bioaktivnim ligandima, kao što je dihidrokvercetin (DHQ), formiranjem interfacijalnog kompleksa sa prenosom naelektrisanja, kako bi se postigla njegova aktivacija pod vidljivom svetlošću. Neorganskoorganski hibridni nanokompozit TiO2 /DHQ okarakterisan je infracrvenom (FTIR) i refleksionom spektroskopijom. FTIR spektri su identifikovali C=O grupe flavonoida, O-H, C-O i C-O-C grupe fenola, potvrđujući prisustvo liganada na površini nanočestica TiO2 . Kubelka-Munk transformacijom spektara difuzione refleksije vidi se pomeraj ekscitacije /DHQ prema vidljivom delu spektra. Ispitivanje citotoksičnosti MTT testom urađeno je na zdravim ljudskim MRC-5 ćelijama, kao i na ljudskim HeLa ćelijama raka grlića materice. Takođe, H2DCFDA testom ispitan je efekat TiO2 /DHQ na proizvodnju reaktivnih vrsta kiseonika u MRC-5 ćelijama.
AB  - This study aims to modify the surface of TiO2 nanoparticles with bioactive ligands, forming an interfacial charge transfer complex to achieve its activation under visible light. Dihydroquercetin (DHQ) is a catechol-type ligand with pronounced antioxidant and valuable biological performance. The inorganic-organic hybrid nanocomposite TiO2 /DHQ was characterized by Fourier transform infrared (FTIR) and Reflectance spectroscopy. FTIR spectra identified C=O stretching in flavones, O-H, C-O and C-O-C starching in phenolic compounds, demonstrating the presence of ligands on the surface of TiO2 nanoparticles. The Kubelka-Munk transformation of the diffuse reflection spectra shows a shift in the excitation of the TiO2 /DHQ towards the visible part of the spectrum. Cytotoxicity testing was performed on healthy human MRC-5 cells and human cervical cancer HeLa cells determined by MTT assay. Also, the effect of TiO2 /DHQ on the production of reactive oxygen species in MRC-5 cells was determined by the H2DCFDA assay.
PB  - Belgrade : Serbian Chemical Society
C3  - 59th Meeting of the Serbian Chemical Society : Book of Abstracts, Proceedings
T1  - Toksičnost nanočestica TiO2 modifikovanih dihidrokvarcetinom
T1  - Toxicity of TiO2 nanoparticles modified with dihydroquercetin
SP  - 146
EP  - 146
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13039
ER  - 
@conference{
author = "Nikšić, Valentina and Dukić, Miljana and Pirković, Andrea and Lazić, Vesna",
year = "2023",
abstract = "Cilj ovog rada je modifikacija površine nanočestica TiO2 bioaktivnim ligandima, kao što je dihidrokvercetin (DHQ), formiranjem interfacijalnog kompleksa sa prenosom naelektrisanja, kako bi se postigla njegova aktivacija pod vidljivom svetlošću. Neorganskoorganski hibridni nanokompozit TiO2 /DHQ okarakterisan je infracrvenom (FTIR) i refleksionom spektroskopijom. FTIR spektri su identifikovali C=O grupe flavonoida, O-H, C-O i C-O-C grupe fenola, potvrđujući prisustvo liganada na površini nanočestica TiO2 . Kubelka-Munk transformacijom spektara difuzione refleksije vidi se pomeraj ekscitacije /DHQ prema vidljivom delu spektra. Ispitivanje citotoksičnosti MTT testom urađeno je na zdravim ljudskim MRC-5 ćelijama, kao i na ljudskim HeLa ćelijama raka grlića materice. Takođe, H2DCFDA testom ispitan je efekat TiO2 /DHQ na proizvodnju reaktivnih vrsta kiseonika u MRC-5 ćelijama., This study aims to modify the surface of TiO2 nanoparticles with bioactive ligands, forming an interfacial charge transfer complex to achieve its activation under visible light. Dihydroquercetin (DHQ) is a catechol-type ligand with pronounced antioxidant and valuable biological performance. The inorganic-organic hybrid nanocomposite TiO2 /DHQ was characterized by Fourier transform infrared (FTIR) and Reflectance spectroscopy. FTIR spectra identified C=O stretching in flavones, O-H, C-O and C-O-C starching in phenolic compounds, demonstrating the presence of ligands on the surface of TiO2 nanoparticles. The Kubelka-Munk transformation of the diffuse reflection spectra shows a shift in the excitation of the TiO2 /DHQ towards the visible part of the spectrum. Cytotoxicity testing was performed on healthy human MRC-5 cells and human cervical cancer HeLa cells determined by MTT assay. Also, the effect of TiO2 /DHQ on the production of reactive oxygen species in MRC-5 cells was determined by the H2DCFDA assay.",
publisher = "Belgrade : Serbian Chemical Society",
journal = "59th Meeting of the Serbian Chemical Society : Book of Abstracts, Proceedings",
title = "Toksičnost nanočestica TiO2 modifikovanih dihidrokvarcetinom, Toxicity of TiO2 nanoparticles modified with dihydroquercetin",
pages = "146-146",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13039"
}
Nikšić, V., Dukić, M., Pirković, A.,& Lazić, V.. (2023). Toksičnost nanočestica TiO2 modifikovanih dihidrokvarcetinom. in 59th Meeting of the Serbian Chemical Society : Book of Abstracts, Proceedings
Belgrade : Serbian Chemical Society., 146-146.
https://hdl.handle.net/21.15107/rcub_vinar_13039
Nikšić V, Dukić M, Pirković A, Lazić V. Toksičnost nanočestica TiO2 modifikovanih dihidrokvarcetinom. in 59th Meeting of the Serbian Chemical Society : Book of Abstracts, Proceedings. 2023;:146-146.
https://hdl.handle.net/21.15107/rcub_vinar_13039 .
Nikšić, Valentina, Dukić, Miljana, Pirković, Andrea, Lazić, Vesna, "Toksičnost nanočestica TiO2 modifikovanih dihidrokvarcetinom" in 59th Meeting of the Serbian Chemical Society : Book of Abstracts, Proceedings (2023):146-146,
https://hdl.handle.net/21.15107/rcub_vinar_13039 .

Barium hexaferrite nanoplatelets with polyphenol coatings for versatile applications as a stable, magnetic, and antimicrobial colloid

Papan Đaniš, Jelena; Periša, Jovana; Hribar Boštjančič, Patricija; Mihajlovski, Katarina; Lazić, Vesna M.; Dramićanin, Miroslav; Lisjak, Darja

(2023)

TY  - JOUR
AU  - Papan Đaniš, Jelena
AU  - Periša, Jovana
AU  - Hribar Boštjančič, Patricija
AU  - Mihajlovski, Katarina
AU  - Lazić, Vesna M.
AU  - Dramićanin, Miroslav
AU  - Lisjak, Darja
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10639
AB  - Colloidal stabilization of magnetic nanoparticles is one of the most important steps in the preparation of magnetic nanoparticles for potential biomedical applications. A special kind of magnetic nanoparticle are barium hexaferrite nanoplatelets (BSHF NPLs) with a hexagonal shape and a permanent magnetic moment. One strategy for the stabilization of BHF in aqueous media is to use coatings. In our research, we used an eco-friendly tannic acid, as a coating on BSHF NPLs. As-prepared BSHF NPLs coated with tannic acid were examined with transmission electron microscopy, infrared and UV-Vis spectroscopy, electro-kinetic measurements, and their room-temperature magnetic properties were measured. Stable colloids were tested in two biological complex media and antimicrobial properties of the material were examined. To enhance the antimicrobial properties of our material, we used tannic acid as a platform for the in-situ production of silver on BSHF NPLs. New hybrid material with silver also possesses magnetic properties and excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus.
T2  - Colloids and Surfaces. B: Biointerfaces
T1  - Barium hexaferrite nanoplatelets with polyphenol coatings for versatile applications as a stable, magnetic, and antimicrobial colloid
VL  - 224
SP  - 113198
DO  - 10.1016/j.colsurfb.2023.113198
ER  - 
@article{
author = "Papan Đaniš, Jelena and Periša, Jovana and Hribar Boštjančič, Patricija and Mihajlovski, Katarina and Lazić, Vesna M. and Dramićanin, Miroslav and Lisjak, Darja",
year = "2023",
abstract = "Colloidal stabilization of magnetic nanoparticles is one of the most important steps in the preparation of magnetic nanoparticles for potential biomedical applications. A special kind of magnetic nanoparticle are barium hexaferrite nanoplatelets (BSHF NPLs) with a hexagonal shape and a permanent magnetic moment. One strategy for the stabilization of BHF in aqueous media is to use coatings. In our research, we used an eco-friendly tannic acid, as a coating on BSHF NPLs. As-prepared BSHF NPLs coated with tannic acid were examined with transmission electron microscopy, infrared and UV-Vis spectroscopy, electro-kinetic measurements, and their room-temperature magnetic properties were measured. Stable colloids were tested in two biological complex media and antimicrobial properties of the material were examined. To enhance the antimicrobial properties of our material, we used tannic acid as a platform for the in-situ production of silver on BSHF NPLs. New hybrid material with silver also possesses magnetic properties and excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus.",
journal = "Colloids and Surfaces. B: Biointerfaces",
title = "Barium hexaferrite nanoplatelets with polyphenol coatings for versatile applications as a stable, magnetic, and antimicrobial colloid",
volume = "224",
pages = "113198",
doi = "10.1016/j.colsurfb.2023.113198"
}
Papan Đaniš, J., Periša, J., Hribar Boštjančič, P., Mihajlovski, K., Lazić, V. M., Dramićanin, M.,& Lisjak, D.. (2023). Barium hexaferrite nanoplatelets with polyphenol coatings for versatile applications as a stable, magnetic, and antimicrobial colloid. in Colloids and Surfaces. B: Biointerfaces, 224, 113198.
https://doi.org/10.1016/j.colsurfb.2023.113198
Papan Đaniš J, Periša J, Hribar Boštjančič P, Mihajlovski K, Lazić VM, Dramićanin M, Lisjak D. Barium hexaferrite nanoplatelets with polyphenol coatings for versatile applications as a stable, magnetic, and antimicrobial colloid. in Colloids and Surfaces. B: Biointerfaces. 2023;224:113198.
doi:10.1016/j.colsurfb.2023.113198 .
Papan Đaniš, Jelena, Periša, Jovana, Hribar Boštjančič, Patricija, Mihajlovski, Katarina, Lazić, Vesna M., Dramićanin, Miroslav, Lisjak, Darja, "Barium hexaferrite nanoplatelets with polyphenol coatings for versatile applications as a stable, magnetic, and antimicrobial colloid" in Colloids and Surfaces. B: Biointerfaces, 224 (2023):113198,
https://doi.org/10.1016/j.colsurfb.2023.113198 . .

Antimicrobial activity of different wound dressing products treated with silver

Mihajlovski, Katarina; Stajčić, Željka; Lazić, Vesna

(2023)

TY  - JOUR
AU  - Mihajlovski, Katarina
AU  - Stajčić, Željka
AU  - Lazić, Vesna
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12280
AB  - The main goal of this work was to optimize the method of processing wound dressing products (like gauzes, sanitary pads, cotton wool, compresses, and bandages) with a commercial silver colloidal solution (Koloid doo, Belgrade, Serbia) and then to examine the antimicrobial properties of the obtained items in order to potentially reach the market with new improved wound dressing products. The influence of different silver concentrations used for treatment on antimicrobial activity was investigated only against Escherichia coli. The antimicrobial activity of different types of materials treated with silver solutions of 30 ppm was investigated against Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, Gram-positive bacteria Staphylococcus aureus, Bacillus subtilis, and Enterococcus faecalis, as well as the fungus Candida albicans. The microbial reduction of the tested materials loaded with a silver solution of 30 ppm (15-20 μg of Ag on 1 g of fabric) against the Gram-negative bacteria E. coli and P. aeruginosa was almost maximal after 2 h of contact (i.e. 95 and 99 %, respectively). In the case of Gram-positive bacteria S. aureus, B. subtilis, and E. faecalis, a longer time is needed to completely eradicate bacteria (over 99 %). Antifungal activity testing against the fungus C. albicans gave moderate antifungal activity results.
AB  - Cilj ovog rada je ispitivanje antimikrobne efikasnosti pamučnih materijala kao što su gaza, higijenski ulošci, vata, komprese i zavoji obrađeni komercijalnim koloidnim rastvorom srebra (kompanija Koloid doo). Ispitan je uticaj koncentracije koloidnog rastvora srebra kojim je obrađena tkanina na antimikrobnu aktivnost prema Gram-negativnim bakterijama Escherichia coli i Pseudomonas aeruginosa, Gram-pozitivnim bakterijama Staphylococcus aureus, Bacillus subtilis i Enterococcus faecalis i gljivici Candida albicans. Redukcija bakterija postignuta testiranim materijalima obrađenim rastvorom srebra koncentracije 30 ppm (15 do 20 µg Ag na 1 g materijala) prema Gram-negativnim bakterijama E. coli i P. aeruginosa je skoro maksimalna nakon dva sata kontakta, 95 i 99 %, redom. U slučaju Gram-pozitivnih bakterija S. aureus, B. subtilis i E. faecalis, potrebno je duže vreme za potpunu redukciju broja bakterija, osim za B. subtilis, gde je dovoljno dva sata kontakta za maksimalno smanjenje početnog broja bakterija. Antifungalna aktivnost prema gljivici C. albicans je umerena.
T2  - Hemijska industrija
T1  - Antimicrobial activity of different wound dressing products treated with silver
T1  - Antimikrobna aktivnost medicinskih materijala obrađenih srebrom
VL  - 77
IS  - 4
SP  - 265
EP  - 273
DO  - 10.2298/HEMIND230113021M
ER  - 
@article{
author = "Mihajlovski, Katarina and Stajčić, Željka and Lazić, Vesna",
year = "2023",
abstract = "The main goal of this work was to optimize the method of processing wound dressing products (like gauzes, sanitary pads, cotton wool, compresses, and bandages) with a commercial silver colloidal solution (Koloid doo, Belgrade, Serbia) and then to examine the antimicrobial properties of the obtained items in order to potentially reach the market with new improved wound dressing products. The influence of different silver concentrations used for treatment on antimicrobial activity was investigated only against Escherichia coli. The antimicrobial activity of different types of materials treated with silver solutions of 30 ppm was investigated against Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, Gram-positive bacteria Staphylococcus aureus, Bacillus subtilis, and Enterococcus faecalis, as well as the fungus Candida albicans. The microbial reduction of the tested materials loaded with a silver solution of 30 ppm (15-20 μg of Ag on 1 g of fabric) against the Gram-negative bacteria E. coli and P. aeruginosa was almost maximal after 2 h of contact (i.e. 95 and 99 %, respectively). In the case of Gram-positive bacteria S. aureus, B. subtilis, and E. faecalis, a longer time is needed to completely eradicate bacteria (over 99 %). Antifungal activity testing against the fungus C. albicans gave moderate antifungal activity results., Cilj ovog rada je ispitivanje antimikrobne efikasnosti pamučnih materijala kao što su gaza, higijenski ulošci, vata, komprese i zavoji obrađeni komercijalnim koloidnim rastvorom srebra (kompanija Koloid doo). Ispitan je uticaj koncentracije koloidnog rastvora srebra kojim je obrađena tkanina na antimikrobnu aktivnost prema Gram-negativnim bakterijama Escherichia coli i Pseudomonas aeruginosa, Gram-pozitivnim bakterijama Staphylococcus aureus, Bacillus subtilis i Enterococcus faecalis i gljivici Candida albicans. Redukcija bakterija postignuta testiranim materijalima obrađenim rastvorom srebra koncentracije 30 ppm (15 do 20 µg Ag na 1 g materijala) prema Gram-negativnim bakterijama E. coli i P. aeruginosa je skoro maksimalna nakon dva sata kontakta, 95 i 99 %, redom. U slučaju Gram-pozitivnih bakterija S. aureus, B. subtilis i E. faecalis, potrebno je duže vreme za potpunu redukciju broja bakterija, osim za B. subtilis, gde je dovoljno dva sata kontakta za maksimalno smanjenje početnog broja bakterija. Antifungalna aktivnost prema gljivici C. albicans je umerena.",
journal = "Hemijska industrija",
title = "Antimicrobial activity of different wound dressing products treated with silver, Antimikrobna aktivnost medicinskih materijala obrađenih srebrom",
volume = "77",
number = "4",
pages = "265-273",
doi = "10.2298/HEMIND230113021M"
}
Mihajlovski, K., Stajčić, Ž.,& Lazić, V.. (2023). Antimicrobial activity of different wound dressing products treated with silver. in Hemijska industrija, 77(4), 265-273.
https://doi.org/10.2298/HEMIND230113021M
Mihajlovski K, Stajčić Ž, Lazić V. Antimicrobial activity of different wound dressing products treated with silver. in Hemijska industrija. 2023;77(4):265-273.
doi:10.2298/HEMIND230113021M .
Mihajlovski, Katarina, Stajčić, Željka, Lazić, Vesna, "Antimicrobial activity of different wound dressing products treated with silver" in Hemijska industrija, 77, no. 4 (2023):265-273,
https://doi.org/10.2298/HEMIND230113021M . .

Influence of glucose, sucrose, and dextran coatings on the stability and toxicity of silver nanoparticles

Vukoje, Ivana; Lazić, Vesna M.; Sredojević, Dušan; Fernandes, Margarida M.; Lanceros-Mendez, Senentxu; Ahrenkiel, S. Phillip; Nedeljković, Jovan

(2022)

TY  - JOUR
AU  - Vukoje, Ivana
AU  - Lazić, Vesna M.
AU  - Sredojević, Dušan
AU  - Fernandes, Margarida M.
AU  - Lanceros-Mendez, Senentxu
AU  - Ahrenkiel, S. Phillip
AU  - Nedeljković, Jovan
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10052
AB  - Aqueous colloids, consisting of 15–30 nm-sized silver nanoparticles (Ag NPs), were prepared using the reducing and stabilizing abilities of glucose, sucrose, and dextran. The long-term stability of coated Ag NPs increases from glucose over sucrose to dextran, i.e., with the increase of the molecular weight of carbohydrate molecules. The density functional theory (DFT) calculations of the partial atomic (Mulliken) charges and adsorption energies are applied to explain the enhanced stability of coated Ag NPs. All coated Ag NPs have a significantly broader concentration range of nontoxic behavior toward pre-osteoblast cells than bare Ag NPs prepared using sodium borohydride. The carbohydrate-coated Ag NPs display the same level of toxic ability against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria as bare Ag NPs. The differences in toxicity mechanism of the coated and bare Ag NPs are a consequence of the absence and presence of co-occurring Ag+ ions in examined dispersion, respectively.
T2  - International Journal of Biological Macromolecules
T2  - International Journal of Biological MacromoleculesInternational Journal of Biological Macromolecules
T1  - Influence of glucose, sucrose, and dextran coatings on the stability and toxicity of silver nanoparticles
VL  - 194
SP  - 461
EP  - 469
DO  - 10.1016/j.ijbiomac.2021.11.089
ER  - 
@article{
author = "Vukoje, Ivana and Lazić, Vesna M. and Sredojević, Dušan and Fernandes, Margarida M. and Lanceros-Mendez, Senentxu and Ahrenkiel, S. Phillip and Nedeljković, Jovan",
year = "2022",
abstract = "Aqueous colloids, consisting of 15–30 nm-sized silver nanoparticles (Ag NPs), were prepared using the reducing and stabilizing abilities of glucose, sucrose, and dextran. The long-term stability of coated Ag NPs increases from glucose over sucrose to dextran, i.e., with the increase of the molecular weight of carbohydrate molecules. The density functional theory (DFT) calculations of the partial atomic (Mulliken) charges and adsorption energies are applied to explain the enhanced stability of coated Ag NPs. All coated Ag NPs have a significantly broader concentration range of nontoxic behavior toward pre-osteoblast cells than bare Ag NPs prepared using sodium borohydride. The carbohydrate-coated Ag NPs display the same level of toxic ability against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria as bare Ag NPs. The differences in toxicity mechanism of the coated and bare Ag NPs are a consequence of the absence and presence of co-occurring Ag+ ions in examined dispersion, respectively.",
journal = "International Journal of Biological Macromolecules, International Journal of Biological MacromoleculesInternational Journal of Biological Macromolecules",
title = "Influence of glucose, sucrose, and dextran coatings on the stability and toxicity of silver nanoparticles",
volume = "194",
pages = "461-469",
doi = "10.1016/j.ijbiomac.2021.11.089"
}
Vukoje, I., Lazić, V. M., Sredojević, D., Fernandes, M. M., Lanceros-Mendez, S., Ahrenkiel, S. P.,& Nedeljković, J.. (2022). Influence of glucose, sucrose, and dextran coatings on the stability and toxicity of silver nanoparticles. in International Journal of Biological Macromolecules, 194, 461-469.
https://doi.org/10.1016/j.ijbiomac.2021.11.089
Vukoje I, Lazić VM, Sredojević D, Fernandes MM, Lanceros-Mendez S, Ahrenkiel SP, Nedeljković J. Influence of glucose, sucrose, and dextran coatings on the stability and toxicity of silver nanoparticles. in International Journal of Biological Macromolecules. 2022;194:461-469.
doi:10.1016/j.ijbiomac.2021.11.089 .
Vukoje, Ivana, Lazić, Vesna M., Sredojević, Dušan, Fernandes, Margarida M., Lanceros-Mendez, Senentxu, Ahrenkiel, S. Phillip, Nedeljković, Jovan, "Influence of glucose, sucrose, and dextran coatings on the stability and toxicity of silver nanoparticles" in International Journal of Biological Macromolecules, 194 (2022):461-469,
https://doi.org/10.1016/j.ijbiomac.2021.11.089 . .
1
9
6

Interfacial charge transfer complex between TiO2 and non-aromatic ligand squaric acid

Barbieriková, Zuzana; Šimunková, Miriama; Brezová, Vlasta; Sredojević, Dušan; Lazić, Vesna M.; Lončarević, Davor; Nedeljković, Jovan

(2022)

TY  - JOUR
AU  - Barbieriková, Zuzana
AU  - Šimunková, Miriama
AU  - Brezová, Vlasta
AU  - Sredojević, Dušan
AU  - Lazić, Vesna M.
AU  - Lončarević, Davor
AU  - Nedeljković, Jovan
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10091
AB  - The attachment of squaric acid, a non-aromatic molecule, to the surface of TiO2 powder induced the optical absorption of the obtained hybrid material in the visible spectral range due to the interfacial charge transfer complex formation. The optical characterization of the hybrid is supported by the density functional theory calculations of the model cluster. The paramagnetic species generated upon excitation with ultraviolet or visible light, in both TiO2 powders, pristine and surface-modified, were identified conducting low-temperature solid-state and indirect electron paramagnetic resonance (EPR) spectroscopy experiments (spin trapping and spin scavenging). The solid-state EPR experiments indicated the promotion of electrons from the organic moiety to the titania conduction band under visible-light excitation of hybrid. Also, the spin scavenging experiments showed that the electrons generated in the hybrid upon the visible-light activation facilitate the reduction of the radical cations present in the dispersion, while these effects are not observed for pristine TiO2.
T2  - Optical Materials
T1  - Interfacial charge transfer complex between TiO2 and non-aromatic ligand squaric acid
VL  - 123
SP  - 111918
DO  - 10.1016/j.optmat.2021.111918
ER  - 
@article{
author = "Barbieriková, Zuzana and Šimunková, Miriama and Brezová, Vlasta and Sredojević, Dušan and Lazić, Vesna M. and Lončarević, Davor and Nedeljković, Jovan",
year = "2022",
abstract = "The attachment of squaric acid, a non-aromatic molecule, to the surface of TiO2 powder induced the optical absorption of the obtained hybrid material in the visible spectral range due to the interfacial charge transfer complex formation. The optical characterization of the hybrid is supported by the density functional theory calculations of the model cluster. The paramagnetic species generated upon excitation with ultraviolet or visible light, in both TiO2 powders, pristine and surface-modified, were identified conducting low-temperature solid-state and indirect electron paramagnetic resonance (EPR) spectroscopy experiments (spin trapping and spin scavenging). The solid-state EPR experiments indicated the promotion of electrons from the organic moiety to the titania conduction band under visible-light excitation of hybrid. Also, the spin scavenging experiments showed that the electrons generated in the hybrid upon the visible-light activation facilitate the reduction of the radical cations present in the dispersion, while these effects are not observed for pristine TiO2.",
journal = "Optical Materials",
title = "Interfacial charge transfer complex between TiO2 and non-aromatic ligand squaric acid",
volume = "123",
pages = "111918",
doi = "10.1016/j.optmat.2021.111918"
}
Barbieriková, Z., Šimunková, M., Brezová, V., Sredojević, D., Lazić, V. M., Lončarević, D.,& Nedeljković, J.. (2022). Interfacial charge transfer complex between TiO2 and non-aromatic ligand squaric acid. in Optical Materials, 123, 111918.
https://doi.org/10.1016/j.optmat.2021.111918
Barbieriková Z, Šimunková M, Brezová V, Sredojević D, Lazić VM, Lončarević D, Nedeljković J. Interfacial charge transfer complex between TiO2 and non-aromatic ligand squaric acid. in Optical Materials. 2022;123:111918.
doi:10.1016/j.optmat.2021.111918 .
Barbieriková, Zuzana, Šimunková, Miriama, Brezová, Vlasta, Sredojević, Dušan, Lazić, Vesna M., Lončarević, Davor, Nedeljković, Jovan, "Interfacial charge transfer complex between TiO2 and non-aromatic ligand squaric acid" in Optical Materials, 123 (2022):111918,
https://doi.org/10.1016/j.optmat.2021.111918 . .
4
4

Interfacial charge transfer complex formation between silver nanoparticles and aromatic amino acids

Sredojević, Dušan; Stavrić, Srđan; Lazić, Vesna M.; Ahrenkiel, S. Phillip; Nedeljković, Jovan

(2022)

TY  - JOUR
AU  - Sredojević, Dušan
AU  - Stavrić, Srđan
AU  - Lazić, Vesna M.
AU  - Ahrenkiel, S. Phillip
AU  - Nedeljković, Jovan
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10352
AB  - The optical properties of surface-modified silver nanoparticles (Ag NPs) with aromatic amino acids tryptophan (Trp) and histidine (His) were examined using the cluster model for density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. Also, the redistribution of electronic charges upon chemisorption of ligand molecules onto silver's surfaces is determined. The obtained theoretical data, on one side, undoubtedly indicate the the formation of an interfacial charge transfer (ICT) complex between silver and this type of ligand, and, on the other side, partial oxidation of surface silver atoms accompanied by an increase of electron density in ligand molecules. The ICT complex formation, based on noble metal nanoparticles, has never been reported previously to the best of our knowledge. The experimental spectroscopic measurements support the theoretical data. A new absorption band in the visible spectral range appears upon surface modification of Ag NPs, and, when exposed to air, oxidation of surface-modified Ag NPs is significantly faster than the oxidation of the unmodified ones.
T2  - Physical Chemistry Chemical Physics
T1  - Interfacial charge transfer complex formation between silver nanoparticles and aromatic amino acids
VL  - 24
IS  - 27
SP  - 16493
EP  - 16500
DO  - 10.1039/D2CP02041F
ER  - 
@article{
author = "Sredojević, Dušan and Stavrić, Srđan and Lazić, Vesna M. and Ahrenkiel, S. Phillip and Nedeljković, Jovan",
year = "2022",
abstract = "The optical properties of surface-modified silver nanoparticles (Ag NPs) with aromatic amino acids tryptophan (Trp) and histidine (His) were examined using the cluster model for density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. Also, the redistribution of electronic charges upon chemisorption of ligand molecules onto silver's surfaces is determined. The obtained theoretical data, on one side, undoubtedly indicate the the formation of an interfacial charge transfer (ICT) complex between silver and this type of ligand, and, on the other side, partial oxidation of surface silver atoms accompanied by an increase of electron density in ligand molecules. The ICT complex formation, based on noble metal nanoparticles, has never been reported previously to the best of our knowledge. The experimental spectroscopic measurements support the theoretical data. A new absorption band in the visible spectral range appears upon surface modification of Ag NPs, and, when exposed to air, oxidation of surface-modified Ag NPs is significantly faster than the oxidation of the unmodified ones.",
journal = "Physical Chemistry Chemical Physics",
title = "Interfacial charge transfer complex formation between silver nanoparticles and aromatic amino acids",
volume = "24",
number = "27",
pages = "16493-16500",
doi = "10.1039/D2CP02041F"
}
Sredojević, D., Stavrić, S., Lazić, V. M., Ahrenkiel, S. P.,& Nedeljković, J.. (2022). Interfacial charge transfer complex formation between silver nanoparticles and aromatic amino acids. in Physical Chemistry Chemical Physics, 24(27), 16493-16500.
https://doi.org/10.1039/D2CP02041F
Sredojević D, Stavrić S, Lazić VM, Ahrenkiel SP, Nedeljković J. Interfacial charge transfer complex formation between silver nanoparticles and aromatic amino acids. in Physical Chemistry Chemical Physics. 2022;24(27):16493-16500.
doi:10.1039/D2CP02041F .
Sredojević, Dušan, Stavrić, Srđan, Lazić, Vesna M., Ahrenkiel, S. Phillip, Nedeljković, Jovan, "Interfacial charge transfer complex formation between silver nanoparticles and aromatic amino acids" in Physical Chemistry Chemical Physics, 24, no. 27 (2022):16493-16500,
https://doi.org/10.1039/D2CP02041F . .
1
1

Toxicity of Silver Nanoparticles Supported by Surface-Modified Zirconium Dioxide with Dihydroquercetin

Sredojević, Dušan; Lazić, Vesna M.; Pirković, Andrea; Periša, Jovana; Murafa, Natalija; Spremo-Potparević, Biljana; Živković, Lada; Topalović, Dijana; Zarubica, Aleksandra; Jovanović Krivokuća, Milica; Nedeljković, Jovan

(2022)

TY  - JOUR
AU  - Sredojević, Dušan
AU  - Lazić, Vesna M.
AU  - Pirković, Andrea
AU  - Periša, Jovana
AU  - Murafa, Natalija
AU  - Spremo-Potparević, Biljana
AU  - Živković, Lada
AU  - Topalović, Dijana
AU  - Zarubica, Aleksandra
AU  - Jovanović Krivokuća, Milica
AU  - Nedeljković, Jovan
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10445
AB  - The antibacterial performance and cytotoxic examination of in situ prepared silver nanoparticles (Ag NPs), on inorganic-organic hybrid nanopowder consisting of zirconium dioxide nanoparticles (ZrO2 NPs) and dihydroquercetin (DHQ), was performed against Gram (−) bacteria Escherichia coli and Gram (+) bacteria Staphylococcus aureus, as well as against human cervical cancer cells HeLa and healthy MRC-5 human cells. The surface modification of ZrO2 NPs, synthesized by the sol-gel method, with DHQ leads to the interfacial charge transfer (ICT) complex formation indicated by the appearance of absorption in the visible spectral range. The prepared samples were thoroughly characterized (TEM, XRD, reflection spectroscopy), and, in addition, the spectroscopic observations are supported by the density functional theory (DFT) calculations using a cluster model. The concentration- and time-dependent antibacterial tests indicated a complete reduction of bacterial species, E. coli and S. aureus, for all investigated concentrations of silver (0.10, 0.25, and 0.50 mg/mL) after 24 h of contact. On the other side, the functionalized ZrO2 NPs with DHQ, before and after deposition of Ag NPs, do not display a significant decrease in the viability of HeLa MRC-5 cells in any of the used concentrations compared to the control.
T2  - Nanomaterials
T1  - Toxicity of Silver Nanoparticles Supported by Surface-Modified Zirconium Dioxide with Dihydroquercetin
VL  - 12
IS  - 18
SP  - 3195
DO  - 10.3390/nano12183195
ER  - 
@article{
author = "Sredojević, Dušan and Lazić, Vesna M. and Pirković, Andrea and Periša, Jovana and Murafa, Natalija and Spremo-Potparević, Biljana and Živković, Lada and Topalović, Dijana and Zarubica, Aleksandra and Jovanović Krivokuća, Milica and Nedeljković, Jovan",
year = "2022",
abstract = "The antibacterial performance and cytotoxic examination of in situ prepared silver nanoparticles (Ag NPs), on inorganic-organic hybrid nanopowder consisting of zirconium dioxide nanoparticles (ZrO2 NPs) and dihydroquercetin (DHQ), was performed against Gram (−) bacteria Escherichia coli and Gram (+) bacteria Staphylococcus aureus, as well as against human cervical cancer cells HeLa and healthy MRC-5 human cells. The surface modification of ZrO2 NPs, synthesized by the sol-gel method, with DHQ leads to the interfacial charge transfer (ICT) complex formation indicated by the appearance of absorption in the visible spectral range. The prepared samples were thoroughly characterized (TEM, XRD, reflection spectroscopy), and, in addition, the spectroscopic observations are supported by the density functional theory (DFT) calculations using a cluster model. The concentration- and time-dependent antibacterial tests indicated a complete reduction of bacterial species, E. coli and S. aureus, for all investigated concentrations of silver (0.10, 0.25, and 0.50 mg/mL) after 24 h of contact. On the other side, the functionalized ZrO2 NPs with DHQ, before and after deposition of Ag NPs, do not display a significant decrease in the viability of HeLa MRC-5 cells in any of the used concentrations compared to the control.",
journal = "Nanomaterials",
title = "Toxicity of Silver Nanoparticles Supported by Surface-Modified Zirconium Dioxide with Dihydroquercetin",
volume = "12",
number = "18",
pages = "3195",
doi = "10.3390/nano12183195"
}
Sredojević, D., Lazić, V. M., Pirković, A., Periša, J., Murafa, N., Spremo-Potparević, B., Živković, L., Topalović, D., Zarubica, A., Jovanović Krivokuća, M.,& Nedeljković, J.. (2022). Toxicity of Silver Nanoparticles Supported by Surface-Modified Zirconium Dioxide with Dihydroquercetin. in Nanomaterials, 12(18), 3195.
https://doi.org/10.3390/nano12183195
Sredojević D, Lazić VM, Pirković A, Periša J, Murafa N, Spremo-Potparević B, Živković L, Topalović D, Zarubica A, Jovanović Krivokuća M, Nedeljković J. Toxicity of Silver Nanoparticles Supported by Surface-Modified Zirconium Dioxide with Dihydroquercetin. in Nanomaterials. 2022;12(18):3195.
doi:10.3390/nano12183195 .
Sredojević, Dušan, Lazić, Vesna M., Pirković, Andrea, Periša, Jovana, Murafa, Natalija, Spremo-Potparević, Biljana, Živković, Lada, Topalović, Dijana, Zarubica, Aleksandra, Jovanović Krivokuća, Milica, Nedeljković, Jovan, "Toxicity of Silver Nanoparticles Supported by Surface-Modified Zirconium Dioxide with Dihydroquercetin" in Nanomaterials, 12, no. 18 (2022):3195,
https://doi.org/10.3390/nano12183195 . .
2
2

Exploring electroactive microenvironments in polymer-based nanocomposites to sensitize bacterial cells to low-dose embedded silver nanoparticles

Moreira, Joana; Fernandes, Margarida M.; Carvalho, Estela O.; Nicolau, Ana; Lazić, Vesna M.; Nedeljković, Jovan; Lanceros-Mendez, Senentxu

(2021)

TY  - JOUR
AU  - Moreira, Joana
AU  - Fernandes, Margarida M.
AU  - Carvalho, Estela O.
AU  - Nicolau, Ana
AU  - Lazić, Vesna M.
AU  - Nedeljković, Jovan
AU  - Lanceros-Mendez, Senentxu
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9920
AB  - The search for alternative antimicrobial strategies capable of avoiding resistance mechanisms in bacteria are highly needed due to the alarming emergence of antimicrobial resistance. The application of physical stimuli as a mean of sensitizing bacteria for the action of antimicrobials on otherwise resistant bacteria or by allowing the action of low quantity of antimicrobials may be seen as a breakthrough for such purpose. This work proposes the development of antibacterial nanocomposites using the synergy between the electrically active microenvironments, created by a piezoelectric polymer (poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE)), with green-synthesized silver nanoparticles (AgNPs). The electrical microenvironment is generated via mechanical stimulation of piezoelectric PVDF-TrFE/AgNPs films using a lab-made mechanical bioreactor. The generated material's electrical response further translates to bacterial cells, namely Escherichia coli and Staphylococcus epidermidis which in combination with AgNPs and the specific morphological features of the material induce important antibacterial and antibiofilm activity. Both porous and non-porous PVDF composites have shown antibacterial characteristics when stimulated at a mechanical frequency of 4 Hz being the effect boosted when AgNPs were incorporated in the nanocomposite, reducing in more than 80% the S. epidermidis bacterial growth in planktonic and biofilm form. The electroactive environments sensitize the bacteria allowing the action of a low dose of AgNPs (1.69% (w/w)). Importantly, the material did not compromise the viability of mammalian cells, thus being considered biocompatible. The piezoelectric stimulation of PVDF-based polymeric films may represent a breakthrough in the development of antibacterial coatings for devices used at hospital setting, taking advantage on the use of mechanical stimuli (pressure/touch) to exert antibacterial and antibiofilm activity.Statement of significanceThe application of physical methods in alternative to the common chemical ones is seen as a breakthrough for avoiding the emergence of antimicrobial resistance. Antimicrobial strategies that take advantage on the capability of bacteria to sense physical stimuli such as mechanical and electrical cues are scarce. Electroactive nanocomposites comprised of poly(vinylidene fluoride-co-trifluoroethylene (PVDF-TrFE) and green-synthesized silver nanoparticles (AgNPs) were developed to obtain material able to inhibit the colonization of microorganisms. By applying a mechanical stimuli to the nanocomposite, which ultimately mimics movements such as walking or touching, an antimicrobial effect is obtained, resulting from the synergy between the electroactive microenvironments created on the surface of the material and the AgNPs. Such environments sensitize the bacteria to low doses of antimicrobials.
T2  - Acta Biomaterialia
T1  - Exploring electroactive microenvironments in polymer-based nanocomposites to sensitize bacterial cells to low-dose embedded silver nanoparticles
DO  - 10.1016/j.actbio.2021.07.067
ER  - 
@article{
author = "Moreira, Joana and Fernandes, Margarida M. and Carvalho, Estela O. and Nicolau, Ana and Lazić, Vesna M. and Nedeljković, Jovan and Lanceros-Mendez, Senentxu",
year = "2021",
abstract = "The search for alternative antimicrobial strategies capable of avoiding resistance mechanisms in bacteria are highly needed due to the alarming emergence of antimicrobial resistance. The application of physical stimuli as a mean of sensitizing bacteria for the action of antimicrobials on otherwise resistant bacteria or by allowing the action of low quantity of antimicrobials may be seen as a breakthrough for such purpose. This work proposes the development of antibacterial nanocomposites using the synergy between the electrically active microenvironments, created by a piezoelectric polymer (poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE)), with green-synthesized silver nanoparticles (AgNPs). The electrical microenvironment is generated via mechanical stimulation of piezoelectric PVDF-TrFE/AgNPs films using a lab-made mechanical bioreactor. The generated material's electrical response further translates to bacterial cells, namely Escherichia coli and Staphylococcus epidermidis which in combination with AgNPs and the specific morphological features of the material induce important antibacterial and antibiofilm activity. Both porous and non-porous PVDF composites have shown antibacterial characteristics when stimulated at a mechanical frequency of 4 Hz being the effect boosted when AgNPs were incorporated in the nanocomposite, reducing in more than 80% the S. epidermidis bacterial growth in planktonic and biofilm form. The electroactive environments sensitize the bacteria allowing the action of a low dose of AgNPs (1.69% (w/w)). Importantly, the material did not compromise the viability of mammalian cells, thus being considered biocompatible. The piezoelectric stimulation of PVDF-based polymeric films may represent a breakthrough in the development of antibacterial coatings for devices used at hospital setting, taking advantage on the use of mechanical stimuli (pressure/touch) to exert antibacterial and antibiofilm activity.Statement of significanceThe application of physical methods in alternative to the common chemical ones is seen as a breakthrough for avoiding the emergence of antimicrobial resistance. Antimicrobial strategies that take advantage on the capability of bacteria to sense physical stimuli such as mechanical and electrical cues are scarce. Electroactive nanocomposites comprised of poly(vinylidene fluoride-co-trifluoroethylene (PVDF-TrFE) and green-synthesized silver nanoparticles (AgNPs) were developed to obtain material able to inhibit the colonization of microorganisms. By applying a mechanical stimuli to the nanocomposite, which ultimately mimics movements such as walking or touching, an antimicrobial effect is obtained, resulting from the synergy between the electroactive microenvironments created on the surface of the material and the AgNPs. Such environments sensitize the bacteria to low doses of antimicrobials.",
journal = "Acta Biomaterialia",
title = "Exploring electroactive microenvironments in polymer-based nanocomposites to sensitize bacterial cells to low-dose embedded silver nanoparticles",
doi = "10.1016/j.actbio.2021.07.067"
}
Moreira, J., Fernandes, M. M., Carvalho, E. O., Nicolau, A., Lazić, V. M., Nedeljković, J.,& Lanceros-Mendez, S.. (2021). Exploring electroactive microenvironments in polymer-based nanocomposites to sensitize bacterial cells to low-dose embedded silver nanoparticles. in Acta Biomaterialia.
https://doi.org/10.1016/j.actbio.2021.07.067
Moreira J, Fernandes MM, Carvalho EO, Nicolau A, Lazić VM, Nedeljković J, Lanceros-Mendez S. Exploring electroactive microenvironments in polymer-based nanocomposites to sensitize bacterial cells to low-dose embedded silver nanoparticles. in Acta Biomaterialia. 2021;.
doi:10.1016/j.actbio.2021.07.067 .
Moreira, Joana, Fernandes, Margarida M., Carvalho, Estela O., Nicolau, Ana, Lazić, Vesna M., Nedeljković, Jovan, Lanceros-Mendez, Senentxu, "Exploring electroactive microenvironments in polymer-based nanocomposites to sensitize bacterial cells to low-dose embedded silver nanoparticles" in Acta Biomaterialia (2021),
https://doi.org/10.1016/j.actbio.2021.07.067 . .
2
11
12

Surface-modified ZrO2 nanoparticles with caffeic acid: Characterization and in vitro evaluation of biosafety for placental cells

Lazić, Vesna M.; Pirković, Andrea; Sredojević, Dušan; Marković, Jelena P.; Papan, Jelena; Ahrenkiel, S. Phillip; Janković-Častvan, Ivona; Dekanski, Dragana; Jovanović Krivokuća, Milica; Nedeljković, Jovan

(2021)

TY  - JOUR
AU  - Lazić, Vesna M.
AU  - Pirković, Andrea
AU  - Sredojević, Dušan
AU  - Marković, Jelena P.
AU  - Papan, Jelena
AU  - Ahrenkiel, S. Phillip
AU  - Janković-Častvan, Ivona
AU  - Dekanski, Dragana
AU  - Jovanović Krivokuća, Milica
AU  - Nedeljković, Jovan
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9897
AB  - The toxicity of hybrid nanoparticles, consisting of non-toxic components, zirconium dioxide nanoparticles (ZrO2 NPs), and caffeic acid (CA), was examined against four different cell lines (HTR-8 SV/Neo, JEG-3, JAR, and HeLa). Stable aqueous ZrO2 sol, synthesized by forced hydrolysis, consists of 3–4 nm in size primary particles organized in 30–60 nm in size snowflake-like particles, as determined by transmission electron microscopy and direct light scattering measurements. The surface modification of ZrO2 NPs with CA leads to the formation of an interfacial charge transfer (ICT) complex followed by the appearance of absorption in the visible spectral range. The spectroscopic observations are complemented with the density functional theory calculations using a cluster model. The ZrO2 NPs and CA are non-toxic against four different cell lines in investigated concentration range. Also, ZrO2 NPs promote the proliferation of HTR-8 SV/Neo, JAR, and HeLa cells. On the other hand, hybrid ZrO2/CA NPs induced a significant reduction of the viability of the JEG-3 cells (39 %) for the high concentration of components (1.6 mM ZrO2 and 0.4 mM CA).
T2  - Chemico-Biological Interactions
T1  - Surface-modified ZrO2 nanoparticles with caffeic acid: Characterization and in vitro evaluation of biosafety for placental cells
VL  - 347
SP  - 109618
DO  - 10.1016/j.cbi.2021.109618
ER  - 
@article{
author = "Lazić, Vesna M. and Pirković, Andrea and Sredojević, Dušan and Marković, Jelena P. and Papan, Jelena and Ahrenkiel, S. Phillip and Janković-Častvan, Ivona and Dekanski, Dragana and Jovanović Krivokuća, Milica and Nedeljković, Jovan",
year = "2021",
abstract = "The toxicity of hybrid nanoparticles, consisting of non-toxic components, zirconium dioxide nanoparticles (ZrO2 NPs), and caffeic acid (CA), was examined against four different cell lines (HTR-8 SV/Neo, JEG-3, JAR, and HeLa). Stable aqueous ZrO2 sol, synthesized by forced hydrolysis, consists of 3–4 nm in size primary particles organized in 30–60 nm in size snowflake-like particles, as determined by transmission electron microscopy and direct light scattering measurements. The surface modification of ZrO2 NPs with CA leads to the formation of an interfacial charge transfer (ICT) complex followed by the appearance of absorption in the visible spectral range. The spectroscopic observations are complemented with the density functional theory calculations using a cluster model. The ZrO2 NPs and CA are non-toxic against four different cell lines in investigated concentration range. Also, ZrO2 NPs promote the proliferation of HTR-8 SV/Neo, JAR, and HeLa cells. On the other hand, hybrid ZrO2/CA NPs induced a significant reduction of the viability of the JEG-3 cells (39 %) for the high concentration of components (1.6 mM ZrO2 and 0.4 mM CA).",
journal = "Chemico-Biological Interactions",
title = "Surface-modified ZrO2 nanoparticles with caffeic acid: Characterization and in vitro evaluation of biosafety for placental cells",
volume = "347",
pages = "109618",
doi = "10.1016/j.cbi.2021.109618"
}
Lazić, V. M., Pirković, A., Sredojević, D., Marković, J. P., Papan, J., Ahrenkiel, S. P., Janković-Častvan, I., Dekanski, D., Jovanović Krivokuća, M.,& Nedeljković, J.. (2021). Surface-modified ZrO2 nanoparticles with caffeic acid: Characterization and in vitro evaluation of biosafety for placental cells. in Chemico-Biological Interactions, 347, 109618.
https://doi.org/10.1016/j.cbi.2021.109618
Lazić VM, Pirković A, Sredojević D, Marković JP, Papan J, Ahrenkiel SP, Janković-Častvan I, Dekanski D, Jovanović Krivokuća M, Nedeljković J. Surface-modified ZrO2 nanoparticles with caffeic acid: Characterization and in vitro evaluation of biosafety for placental cells. in Chemico-Biological Interactions. 2021;347:109618.
doi:10.1016/j.cbi.2021.109618 .
Lazić, Vesna M., Pirković, Andrea, Sredojević, Dušan, Marković, Jelena P., Papan, Jelena, Ahrenkiel, S. Phillip, Janković-Častvan, Ivona, Dekanski, Dragana, Jovanović Krivokuća, Milica, Nedeljković, Jovan, "Surface-modified ZrO2 nanoparticles with caffeic acid: Characterization and in vitro evaluation of biosafety for placental cells" in Chemico-Biological Interactions, 347 (2021):109618,
https://doi.org/10.1016/j.cbi.2021.109618 . .
7
7

Tuning properties of cerium dioxide nanoparticles by surface modification with catecholate-type of ligands

Lazić, Vesna M.; Živković, Ljiljana; Sredojević, Dušan; Fernandes, Margarida M.; Lanceros-Mendez, Senentxu; Ahrenkiel, Scott Phillip; Nedeljković, Jovan

(2020)

TY  - JOUR
AU  - Lazić, Vesna M.
AU  - Živković, Ljiljana
AU  - Sredojević, Dušan
AU  - Fernandes,  Margarida M.
AU  - Lanceros-Mendez,  Senentxu
AU  - Ahrenkiel, Scott Phillip
AU  - Nedeljković, Jovan
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9613
AB  - Cerium dioxide (CeO2) finds applications in areas such as corrosion protection, solar cells, or catalysis, finding increasing applications in biomedicine. This work reports on surface-modified CeO2 particles in order to tune their applicability in the biomedical field. Stable aqueous CeO2 sol, consisting of 3-4 nm in size crystallites, was synthesized using forced hydrolysis. The coordination of catecholate-type of ligands (catechol, caffeic acid, tiron, and dopamine) to the surface-Ce atoms is followed with the appearance of absorption in the visible spectral range as a consequence of interfacial charge-transfer complex formation. The spectroscopic observations are complemented with the density functional theory calculations using a cluster model. The synthesized samples were characterized by X-ray diffraction analysis, transmission electron microscopy, and nitrogen adsorption-desorption isotherms. The ζ-potential measurements indicated that the stability of CeO2 sol is preserved upon surface modification. The pristine CeO2 nanoparticles (NPs) are nontoxic against pre-osteoblast cells in the entire studied concentration range (up to 1.5 mM). Hybrid CeO2 NPs, capped with dopamine or caffeic acid, display toxic behavior for concentrations ≥0.17 and 1.5 mM, respectively. On the other hand, surface-modified CeO2 NPs with catechol and tiron promote the proliferation of pre-osteoblast cells. Copyright © 2020 American Chemical Society.
T2  - Langmuir
T1  - Tuning properties of cerium dioxide nanoparticles by surface modification with catecholate-type of ligands
VL  - 36
IS  - 33
SP  - 9738
EP  - 9746
DO  - 10.1021/acs.langmuir.0c01163
ER  - 
@article{
author = "Lazić, Vesna M. and Živković, Ljiljana and Sredojević, Dušan and Fernandes,  Margarida M. and Lanceros-Mendez,  Senentxu and Ahrenkiel, Scott Phillip and Nedeljković, Jovan",
year = "2020",
abstract = "Cerium dioxide (CeO2) finds applications in areas such as corrosion protection, solar cells, or catalysis, finding increasing applications in biomedicine. This work reports on surface-modified CeO2 particles in order to tune their applicability in the biomedical field. Stable aqueous CeO2 sol, consisting of 3-4 nm in size crystallites, was synthesized using forced hydrolysis. The coordination of catecholate-type of ligands (catechol, caffeic acid, tiron, and dopamine) to the surface-Ce atoms is followed with the appearance of absorption in the visible spectral range as a consequence of interfacial charge-transfer complex formation. The spectroscopic observations are complemented with the density functional theory calculations using a cluster model. The synthesized samples were characterized by X-ray diffraction analysis, transmission electron microscopy, and nitrogen adsorption-desorption isotherms. The ζ-potential measurements indicated that the stability of CeO2 sol is preserved upon surface modification. The pristine CeO2 nanoparticles (NPs) are nontoxic against pre-osteoblast cells in the entire studied concentration range (up to 1.5 mM). Hybrid CeO2 NPs, capped with dopamine or caffeic acid, display toxic behavior for concentrations ≥0.17 and 1.5 mM, respectively. On the other hand, surface-modified CeO2 NPs with catechol and tiron promote the proliferation of pre-osteoblast cells. Copyright © 2020 American Chemical Society.",
journal = "Langmuir",
title = "Tuning properties of cerium dioxide nanoparticles by surface modification with catecholate-type of ligands",
volume = "36",
number = "33",
pages = "9738-9746",
doi = "10.1021/acs.langmuir.0c01163"
}
Lazić, V. M., Živković, L., Sredojević, D., Fernandes, M. M., Lanceros-Mendez, S., Ahrenkiel, S. P.,& Nedeljković, J.. (2020). Tuning properties of cerium dioxide nanoparticles by surface modification with catecholate-type of ligands. in Langmuir, 36(33), 9738-9746.
https://doi.org/10.1021/acs.langmuir.0c01163
Lazić VM, Živković L, Sredojević D, Fernandes MM, Lanceros-Mendez S, Ahrenkiel SP, Nedeljković J. Tuning properties of cerium dioxide nanoparticles by surface modification with catecholate-type of ligands. in Langmuir. 2020;36(33):9738-9746.
doi:10.1021/acs.langmuir.0c01163 .
Lazić, Vesna M., Živković, Ljiljana, Sredojević, Dušan, Fernandes,  Margarida M., Lanceros-Mendez,  Senentxu, Ahrenkiel, Scott Phillip, Nedeljković, Jovan, "Tuning properties of cerium dioxide nanoparticles by surface modification with catecholate-type of ligands" in Langmuir, 36, no. 33 (2020):9738-9746,
https://doi.org/10.1021/acs.langmuir.0c01163 . .
1
10
2
7

Dextran-coated silver nanoparticles for improved barrier and controlled antimicrobial properties of nanocellulose films used in food packaging

Lazić, Vesna M.; Vivod, Vera; Peršin, Zdenka; Stoiljković, Milovan; Ratnayake, Ishara S.; Ahrenkiel, Phillip S.; Nedeljković, Jovan; Kokol, Vanja

(2020)

TY  - JOUR
AU  - Lazić, Vesna M.
AU  - Vivod, Vera
AU  - Peršin, Zdenka
AU  - Stoiljković, Milovan
AU  - Ratnayake, Ishara S.
AU  - Ahrenkiel, Phillip S.
AU  - Nedeljković, Jovan
AU  - Kokol, Vanja
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9676
AB  - The effect of dextran-coated silver nanoparticles (Ag NPs 12.0 ± 1.9 nm) loading (0−0.42 wt%) on the mechanical, barrier, and antimicrobial properties of thin (50−60 μm) films prepared from cellulose nanofibrils by solvent casting method were studied as eco-friendly and food-preservative packaging materials. The presence of dextran was shown to act not only as a dispersing media for Ag NPs and controlling its release but also as a moisture-resistant sealable additive that, synergetically with reduced oxygen permeability, may preserve the food against bacteria growth. Thus, significantly reduced Oxygen Transmission Rates (from 2.07 to 1.40-0.78 cm3 m−2d−1) and hydrophilicity (from 20.8° to 52.4° for MilliQ water, and from 35-37° to 62-74° for 3 % acetic acid and 0.9 % NaCl simulant solutions), yielding a 99.9 % inhibition of Escherichia coli after five repeated cycles of 24 h exposure to 0.9 % NaCl solution was displayed, supported by a controlled release of Ag+ ions (below the toxicologically harmful threshold, <0.5 mg L-1).
T2  - Food Packaging and Shelf Life
T1  - Dextran-coated silver nanoparticles for improved barrier and controlled antimicrobial properties of nanocellulose films used in food packaging
VL  - 26
SP  - 100575
DO  - 10.1016/j.fpsl.2020.100575
ER  - 
@article{
author = "Lazić, Vesna M. and Vivod, Vera and Peršin, Zdenka and Stoiljković, Milovan and Ratnayake, Ishara S. and Ahrenkiel, Phillip S. and Nedeljković, Jovan and Kokol, Vanja",
year = "2020",
abstract = "The effect of dextran-coated silver nanoparticles (Ag NPs 12.0 ± 1.9 nm) loading (0−0.42 wt%) on the mechanical, barrier, and antimicrobial properties of thin (50−60 μm) films prepared from cellulose nanofibrils by solvent casting method were studied as eco-friendly and food-preservative packaging materials. The presence of dextran was shown to act not only as a dispersing media for Ag NPs and controlling its release but also as a moisture-resistant sealable additive that, synergetically with reduced oxygen permeability, may preserve the food against bacteria growth. Thus, significantly reduced Oxygen Transmission Rates (from 2.07 to 1.40-0.78 cm3 m−2d−1) and hydrophilicity (from 20.8° to 52.4° for MilliQ water, and from 35-37° to 62-74° for 3 % acetic acid and 0.9 % NaCl simulant solutions), yielding a 99.9 % inhibition of Escherichia coli after five repeated cycles of 24 h exposure to 0.9 % NaCl solution was displayed, supported by a controlled release of Ag+ ions (below the toxicologically harmful threshold, <0.5 mg L-1).",
journal = "Food Packaging and Shelf Life",
title = "Dextran-coated silver nanoparticles for improved barrier and controlled antimicrobial properties of nanocellulose films used in food packaging",
volume = "26",
pages = "100575",
doi = "10.1016/j.fpsl.2020.100575"
}
Lazić, V. M., Vivod, V., Peršin, Z., Stoiljković, M., Ratnayake, I. S., Ahrenkiel, P. S., Nedeljković, J.,& Kokol, V.. (2020). Dextran-coated silver nanoparticles for improved barrier and controlled antimicrobial properties of nanocellulose films used in food packaging. in Food Packaging and Shelf Life, 26, 100575.
https://doi.org/10.1016/j.fpsl.2020.100575
Lazić VM, Vivod V, Peršin Z, Stoiljković M, Ratnayake IS, Ahrenkiel PS, Nedeljković J, Kokol V. Dextran-coated silver nanoparticles for improved barrier and controlled antimicrobial properties of nanocellulose films used in food packaging. in Food Packaging and Shelf Life. 2020;26:100575.
doi:10.1016/j.fpsl.2020.100575 .
Lazić, Vesna M., Vivod, Vera, Peršin, Zdenka, Stoiljković, Milovan, Ratnayake, Ishara S., Ahrenkiel, Phillip S., Nedeljković, Jovan, Kokol, Vanja, "Dextran-coated silver nanoparticles for improved barrier and controlled antimicrobial properties of nanocellulose films used in food packaging" in Food Packaging and Shelf Life, 26 (2020):100575,
https://doi.org/10.1016/j.fpsl.2020.100575 . .
47
9
44

Selective Antimicrobial Performance of Biosynthesized Silver Nanoparticles by Horsetail Extract Against E. coli

Miljković, Miona G.; Lazić, Vesna M.; Davidović, Slađana Z.; Milivojević, Ana; Papan, Jelena; Fernandes, Margarida M.; Lanceros-Mendez, Senentxu; Ahrenkiel, Scott Phillip; Nedeljković, Jovan

(2020)

TY  - JOUR
AU  - Miljković, Miona G.
AU  - Lazić, Vesna M.
AU  - Davidović, Slađana Z.
AU  - Milivojević, Ana
AU  - Papan, Jelena
AU  - Fernandes, Margarida M.
AU  - Lanceros-Mendez, Senentxu
AU  - Ahrenkiel, Scott Phillip
AU  - Nedeljković, Jovan
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8902
AB  - The aim of this study was the development of a non-toxic, biosynthetic antimicrobial agent which selectively acts on only one type of microorganism, and preserves the microbiota. Antimicrobial performance of biosynthesized silver nanoparticles (Ag NPs) by horsetail (Equisetum arvense L.) extract was examined against Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus, as well as yeasts Candida albicans and Saccharomyces boulardii. Also, the cytotoxicity of Ag NPs was examined toward pre-osteoblast cells. The synthetic conditions—concentration of extract, temperature, and pH—were optimized to prepare silver colloids with different particle size distributions and long-term stability. The obtained samples were characterized using transmission electron microscopy, X-ray diffraction analysis, and absorption spectroscopy. The smaller-sized Ag NPs (~ 10–20 nm), prepared at a lower temperature (20 °C), showed better antimicrobial performance against E. coli compared to larger ones (~ 40–60 nm), prepared at high temperature (100 °C). On the other hand, both samples did not display any toxic action against bacteria S. aureus, or yeasts C. albicans and S. boulardii. Non-cytotoxic behavior of Ag NPs toward pre-osteoblast cells was observed for the concentrations of silver ≤ 2.25 and ≤ 4.5 mg L−1 for 10–20 and 40–60 nm-sized Ag NPs, respectively. Biosynthesized Ag NPs by horsetail extract display selective toxic action against E. coli at the ecologically acceptable concentration level. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.
T2  - Journal of Inorganic and Organometallic Polymers and Materials
T1  - Selective Antimicrobial Performance of Biosynthesized Silver Nanoparticles by Horsetail Extract Against E. coli
VL  - 30
IS  - 7
SP  - 2598
EP  - 2607
DO  - 10.1007/s10904-019-01402-x
ER  - 
@article{
author = "Miljković, Miona G. and Lazić, Vesna M. and Davidović, Slađana Z. and Milivojević, Ana and Papan, Jelena and Fernandes, Margarida M. and Lanceros-Mendez, Senentxu and Ahrenkiel, Scott Phillip and Nedeljković, Jovan",
year = "2020",
abstract = "The aim of this study was the development of a non-toxic, biosynthetic antimicrobial agent which selectively acts on only one type of microorganism, and preserves the microbiota. Antimicrobial performance of biosynthesized silver nanoparticles (Ag NPs) by horsetail (Equisetum arvense L.) extract was examined against Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus, as well as yeasts Candida albicans and Saccharomyces boulardii. Also, the cytotoxicity of Ag NPs was examined toward pre-osteoblast cells. The synthetic conditions—concentration of extract, temperature, and pH—were optimized to prepare silver colloids with different particle size distributions and long-term stability. The obtained samples were characterized using transmission electron microscopy, X-ray diffraction analysis, and absorption spectroscopy. The smaller-sized Ag NPs (~ 10–20 nm), prepared at a lower temperature (20 °C), showed better antimicrobial performance against E. coli compared to larger ones (~ 40–60 nm), prepared at high temperature (100 °C). On the other hand, both samples did not display any toxic action against bacteria S. aureus, or yeasts C. albicans and S. boulardii. Non-cytotoxic behavior of Ag NPs toward pre-osteoblast cells was observed for the concentrations of silver ≤ 2.25 and ≤ 4.5 mg L−1 for 10–20 and 40–60 nm-sized Ag NPs, respectively. Biosynthesized Ag NPs by horsetail extract display selective toxic action against E. coli at the ecologically acceptable concentration level. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.",
journal = "Journal of Inorganic and Organometallic Polymers and Materials",
title = "Selective Antimicrobial Performance of Biosynthesized Silver Nanoparticles by Horsetail Extract Against E. coli",
volume = "30",
number = "7",
pages = "2598-2607",
doi = "10.1007/s10904-019-01402-x"
}
Miljković, M. G., Lazić, V. M., Davidović, S. Z., Milivojević, A., Papan, J., Fernandes, M. M., Lanceros-Mendez, S., Ahrenkiel, S. P.,& Nedeljković, J.. (2020). Selective Antimicrobial Performance of Biosynthesized Silver Nanoparticles by Horsetail Extract Against E. coli. in Journal of Inorganic and Organometallic Polymers and Materials, 30(7), 2598-2607.
https://doi.org/10.1007/s10904-019-01402-x
Miljković MG, Lazić VM, Davidović SZ, Milivojević A, Papan J, Fernandes MM, Lanceros-Mendez S, Ahrenkiel SP, Nedeljković J. Selective Antimicrobial Performance of Biosynthesized Silver Nanoparticles by Horsetail Extract Against E. coli. in Journal of Inorganic and Organometallic Polymers and Materials. 2020;30(7):2598-2607.
doi:10.1007/s10904-019-01402-x .
Miljković, Miona G., Lazić, Vesna M., Davidović, Slađana Z., Milivojević, Ana, Papan, Jelena, Fernandes, Margarida M., Lanceros-Mendez, Senentxu, Ahrenkiel, Scott Phillip, Nedeljković, Jovan, "Selective Antimicrobial Performance of Biosynthesized Silver Nanoparticles by Horsetail Extract Against E. coli" in Journal of Inorganic and Organometallic Polymers and Materials, 30, no. 7 (2020):2598-2607,
https://doi.org/10.1007/s10904-019-01402-x . .
1
13
6
12

Sorption of divalent heavy metal ions onto functionalized biogenic hydroxyapatite with caffeic acid and 3,4-dihydroxybenzoic acid

Smičiklas, Ivana D.; Lazić, Vesna M.; Živković, Ljiljana; Porobić, Slavica; Ahrenkiel, Scott Phillip; Nedeljković, Jovan

(2019)

TY  - JOUR
AU  - Smičiklas, Ivana D.
AU  - Lazić, Vesna M.
AU  - Živković, Ljiljana
AU  - Porobić, Slavica
AU  - Ahrenkiel, Scott Phillip
AU  - Nedeljković, Jovan
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8172
AB  - The sorption ability of biogenic hydroxyapatite (BHAP) towards heavy metal ions (Pb, Cu, Ni, Cd, and Zn) is compared with functionalized BHAP powders with caffeic acid (CA) and 3,4-dihydroxybenzoic acid (3,4-DHBA). The functionalization of the BHAP with either CA or 3,4-DHBA is indicated by the appearance of the colored powders due to the formation of the interfacial charge transfer (ICT) complexes. The detailed characterization of as-prepared and functionalized BHAP samples was performed using transmission electron microscopy, reflection spectroscopy, thermogravimetric analysis and determination of zeta potential. All three sorbents clearly displayed preferential sorption of Pb ions when the total concentration of multi-component equimolar solutions of heavy metal ions is high. It should be emphasized that the sorption capacity of functionalized BHAP with either CA or 3,4-BHAP was found to be higher, up to 60%, compared to as-prepared BHAP without the decrease of selectivity towards Pb ions. © 2019, © 2019 Taylor & Francis Group, LLC.
T2  - Journal of Environmental Science and Health, Part A
T1  - Sorption of divalent heavy metal ions onto functionalized biogenic hydroxyapatite with caffeic acid and 3,4-dihydroxybenzoic acid
VL  - 54
IS  - 9
SP  - 899
EP  - 905
DO  - 10.1080/10934529.2019.1606575
ER  - 
@article{
author = "Smičiklas, Ivana D. and Lazić, Vesna M. and Živković, Ljiljana and Porobić, Slavica and Ahrenkiel, Scott Phillip and Nedeljković, Jovan",
year = "2019",
abstract = "The sorption ability of biogenic hydroxyapatite (BHAP) towards heavy metal ions (Pb, Cu, Ni, Cd, and Zn) is compared with functionalized BHAP powders with caffeic acid (CA) and 3,4-dihydroxybenzoic acid (3,4-DHBA). The functionalization of the BHAP with either CA or 3,4-DHBA is indicated by the appearance of the colored powders due to the formation of the interfacial charge transfer (ICT) complexes. The detailed characterization of as-prepared and functionalized BHAP samples was performed using transmission electron microscopy, reflection spectroscopy, thermogravimetric analysis and determination of zeta potential. All three sorbents clearly displayed preferential sorption of Pb ions when the total concentration of multi-component equimolar solutions of heavy metal ions is high. It should be emphasized that the sorption capacity of functionalized BHAP with either CA or 3,4-BHAP was found to be higher, up to 60%, compared to as-prepared BHAP without the decrease of selectivity towards Pb ions. © 2019, © 2019 Taylor & Francis Group, LLC.",
journal = "Journal of Environmental Science and Health, Part A",
title = "Sorption of divalent heavy metal ions onto functionalized biogenic hydroxyapatite with caffeic acid and 3,4-dihydroxybenzoic acid",
volume = "54",
number = "9",
pages = "899-905",
doi = "10.1080/10934529.2019.1606575"
}
Smičiklas, I. D., Lazić, V. M., Živković, L., Porobić, S., Ahrenkiel, S. P.,& Nedeljković, J.. (2019). Sorption of divalent heavy metal ions onto functionalized biogenic hydroxyapatite with caffeic acid and 3,4-dihydroxybenzoic acid. in Journal of Environmental Science and Health, Part A, 54(9), 899-905.
https://doi.org/10.1080/10934529.2019.1606575
Smičiklas ID, Lazić VM, Živković L, Porobić S, Ahrenkiel SP, Nedeljković J. Sorption of divalent heavy metal ions onto functionalized biogenic hydroxyapatite with caffeic acid and 3,4-dihydroxybenzoic acid. in Journal of Environmental Science and Health, Part A. 2019;54(9):899-905.
doi:10.1080/10934529.2019.1606575 .
Smičiklas, Ivana D., Lazić, Vesna M., Živković, Ljiljana, Porobić, Slavica, Ahrenkiel, Scott Phillip, Nedeljković, Jovan, "Sorption of divalent heavy metal ions onto functionalized biogenic hydroxyapatite with caffeic acid and 3,4-dihydroxybenzoic acid" in Journal of Environmental Science and Health, Part A, 54, no. 9 (2019):899-905,
https://doi.org/10.1080/10934529.2019.1606575 . .
10
2
9

Sorption of divalent heavy metal ions onto functionalized biogenic hydroxyapatite with caffeic acid and 3,4-dihydroxybenzoic acid

Smičiklas, Ivana D.; Lazić, Vesna M.; Živković, Ljiljana; Porobić, Slavica; Ahrenkiel, Scott Phillip; Nedeljković, Jovan

(2019)

TY  - JOUR
AU  - Smičiklas, Ivana D.
AU  - Lazić, Vesna M.
AU  - Živković, Ljiljana
AU  - Porobić, Slavica
AU  - Ahrenkiel, Scott Phillip
AU  - Nedeljković, Jovan
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8188
AB  - The sorption ability of biogenic hydroxyapatite (BHAP) towards heavy metal ions (Pb, Cu, Ni, Cd, and Zn) is compared with functionalized BHAP powders with caffeic acid (CA) and 3,4-dihydroxybenzoic acid (3,4-DHBA). The functionalization of the BHAP with either CA or 3,4-DHBA is indicated by the appearance of the colored powders due to the formation of the interfacial charge transfer (ICT) complexes. The detailed characterization of as-prepared and functionalized BHAP samples was performed using transmission electron microscopy, reflection spectroscopy, thermogravimetric analysis and determination of zeta potential. All three sorbents clearly displayed preferential sorption of Pb ions when the total concentration of multi-component equimolar solutions of heavy metal ions is high. It should be emphasized that the sorption capacity of functionalized BHAP with either CA or 3,4-BHAP was found to be higher, up to 60%, compared to as-prepared BHAP without the decrease of selectivity towards Pb ions. © 2019, © 2019 Taylor & Francis Group, LLC.
T2  - Journal of Environmental Science and Health, Part A
T1  - Sorption of divalent heavy metal ions onto functionalized biogenic hydroxyapatite with caffeic acid and 3,4-dihydroxybenzoic acid
VL  - 54
IS  - 9
SP  - 899
EP  - 905
DO  - 10.1080/10934529.2019.1606575
ER  - 
@article{
author = "Smičiklas, Ivana D. and Lazić, Vesna M. and Živković, Ljiljana and Porobić, Slavica and Ahrenkiel, Scott Phillip and Nedeljković, Jovan",
year = "2019",
abstract = "The sorption ability of biogenic hydroxyapatite (BHAP) towards heavy metal ions (Pb, Cu, Ni, Cd, and Zn) is compared with functionalized BHAP powders with caffeic acid (CA) and 3,4-dihydroxybenzoic acid (3,4-DHBA). The functionalization of the BHAP with either CA or 3,4-DHBA is indicated by the appearance of the colored powders due to the formation of the interfacial charge transfer (ICT) complexes. The detailed characterization of as-prepared and functionalized BHAP samples was performed using transmission electron microscopy, reflection spectroscopy, thermogravimetric analysis and determination of zeta potential. All three sorbents clearly displayed preferential sorption of Pb ions when the total concentration of multi-component equimolar solutions of heavy metal ions is high. It should be emphasized that the sorption capacity of functionalized BHAP with either CA or 3,4-BHAP was found to be higher, up to 60%, compared to as-prepared BHAP without the decrease of selectivity towards Pb ions. © 2019, © 2019 Taylor & Francis Group, LLC.",
journal = "Journal of Environmental Science and Health, Part A",
title = "Sorption of divalent heavy metal ions onto functionalized biogenic hydroxyapatite with caffeic acid and 3,4-dihydroxybenzoic acid",
volume = "54",
number = "9",
pages = "899-905",
doi = "10.1080/10934529.2019.1606575"
}
Smičiklas, I. D., Lazić, V. M., Živković, L., Porobić, S., Ahrenkiel, S. P.,& Nedeljković, J.. (2019). Sorption of divalent heavy metal ions onto functionalized biogenic hydroxyapatite with caffeic acid and 3,4-dihydroxybenzoic acid. in Journal of Environmental Science and Health, Part A, 54(9), 899-905.
https://doi.org/10.1080/10934529.2019.1606575
Smičiklas ID, Lazić VM, Živković L, Porobić S, Ahrenkiel SP, Nedeljković J. Sorption of divalent heavy metal ions onto functionalized biogenic hydroxyapatite with caffeic acid and 3,4-dihydroxybenzoic acid. in Journal of Environmental Science and Health, Part A. 2019;54(9):899-905.
doi:10.1080/10934529.2019.1606575 .
Smičiklas, Ivana D., Lazić, Vesna M., Živković, Ljiljana, Porobić, Slavica, Ahrenkiel, Scott Phillip, Nedeljković, Jovan, "Sorption of divalent heavy metal ions onto functionalized biogenic hydroxyapatite with caffeic acid and 3,4-dihydroxybenzoic acid" in Journal of Environmental Science and Health, Part A, 54, no. 9 (2019):899-905,
https://doi.org/10.1080/10934529.2019.1606575 . .
10
2
10

Visible-light-responsive surface-modified TiO2 powder with 4-chlorophenol: A combined experimental and DFT study

Barbierikova, Zuzana; Dvoranova, Dana; Brezova, Vlasta; Džunuzović, Enis S.; Sredojević, Dušan; Lazić, Vesna M.; Nedeljković, Jovan

(2019)

TY  - JOUR
AU  - Barbierikova, Zuzana
AU  - Dvoranova, Dana
AU  - Brezova, Vlasta
AU  - Džunuzović, Enis S.
AU  - Sredojević, Dušan
AU  - Lazić, Vesna M.
AU  - Nedeljković, Jovan
PY  - 2019
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0925346719300503
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8044
AB  - The visible-light-responsive inorganic-organic hybrid was prepared by surface modification of commercial TiO2 powder (Degussa P25) with 4-chlorophenol (4-CP). The optical absorption of the hybrid material is red-shifted compared to unmodified TiO2 powder due to the surface charge transfer complex (CTC) formation. The experimental results are supported by the density functional theory (DFT) calculations of the corresponding model cluster. The calculated electronic excitation spectrum is in agreement with the measured reflection spectrum of surface-modified TiO2 powder with 4-CP. The paramagnetic species, generated in the unmodified and surface-modified TiO2 powders upon excitation with ultraviolet and visible light, were identified using low-temperature electron paramagnetic resonance (EPR) spectroscopy. The formation of trapped electrons (Ti(III) centers) and the persistent oxygen-centered organic radicals indicated the photoinduced electron transfer from the chemisorbed 4-chlorophenol to the conduction band of TiO2. © 2019 Elsevier B.V.
T2  - Optical Materials
T1  - Visible-light-responsive surface-modified TiO2 powder with 4-chlorophenol: A combined experimental and DFT study
VL  - 89
SP  - 237
EP  - 242
DO  - 10.1016/j.optmat.2019.01.027
ER  - 
@article{
author = "Barbierikova, Zuzana and Dvoranova, Dana and Brezova, Vlasta and Džunuzović, Enis S. and Sredojević, Dušan and Lazić, Vesna M. and Nedeljković, Jovan",
year = "2019",
abstract = "The visible-light-responsive inorganic-organic hybrid was prepared by surface modification of commercial TiO2 powder (Degussa P25) with 4-chlorophenol (4-CP). The optical absorption of the hybrid material is red-shifted compared to unmodified TiO2 powder due to the surface charge transfer complex (CTC) formation. The experimental results are supported by the density functional theory (DFT) calculations of the corresponding model cluster. The calculated electronic excitation spectrum is in agreement with the measured reflection spectrum of surface-modified TiO2 powder with 4-CP. The paramagnetic species, generated in the unmodified and surface-modified TiO2 powders upon excitation with ultraviolet and visible light, were identified using low-temperature electron paramagnetic resonance (EPR) spectroscopy. The formation of trapped electrons (Ti(III) centers) and the persistent oxygen-centered organic radicals indicated the photoinduced electron transfer from the chemisorbed 4-chlorophenol to the conduction band of TiO2. © 2019 Elsevier B.V.",
journal = "Optical Materials",
title = "Visible-light-responsive surface-modified TiO2 powder with 4-chlorophenol: A combined experimental and DFT study",
volume = "89",
pages = "237-242",
doi = "10.1016/j.optmat.2019.01.027"
}
Barbierikova, Z., Dvoranova, D., Brezova, V., Džunuzović, E. S., Sredojević, D., Lazić, V. M.,& Nedeljković, J.. (2019). Visible-light-responsive surface-modified TiO2 powder with 4-chlorophenol: A combined experimental and DFT study. in Optical Materials, 89, 237-242.
https://doi.org/10.1016/j.optmat.2019.01.027
Barbierikova Z, Dvoranova D, Brezova V, Džunuzović ES, Sredojević D, Lazić VM, Nedeljković J. Visible-light-responsive surface-modified TiO2 powder with 4-chlorophenol: A combined experimental and DFT study. in Optical Materials. 2019;89:237-242.
doi:10.1016/j.optmat.2019.01.027 .
Barbierikova, Zuzana, Dvoranova, Dana, Brezova, Vlasta, Džunuzović, Enis S., Sredojević, Dušan, Lazić, Vesna M., Nedeljković, Jovan, "Visible-light-responsive surface-modified TiO2 powder with 4-chlorophenol: A combined experimental and DFT study" in Optical Materials, 89 (2019):237-242,
https://doi.org/10.1016/j.optmat.2019.01.027 . .
19
12
20

Electronic structure of surface complexes between CeO2 and benzene derivatives: A comparative experimental and DFT study

Prekajski-Đorđević, Marija D.; Vukoje, Ivana D.; Lazić, Vesna M.; Đorđević, Vesna R.; Sredojević, Dušan; Dostanić, Jasmina; Lončarević, Davor; Ahrenkiel, Scott Phillip; Belić, Milivoj R.; Nedeljković, Jovan

(2019)

TY  - JOUR
AU  - Prekajski-Đorđević, Marija D.
AU  - Vukoje, Ivana D.
AU  - Lazić, Vesna M.
AU  - Đorđević, Vesna R.
AU  - Sredojević, Dušan
AU  - Dostanić, Jasmina
AU  - Lončarević, Davor
AU  - Ahrenkiel, Scott Phillip
AU  - Belić, Milivoj R.
AU  - Nedeljković, Jovan
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8387
AB  - Surface modification of CeO2 nano-powder, synthesized by a self-propagating room temperature method with salicylate-type ligands (salicylic acid and 5-aminosalicylic acid) as well as catecholate-type ligands (catechol, 3,4-dihydroxybenzoic acid, caffeic acid and 2,3-dihydroxy naphthalene), induces the appearance of absorption in the visible spectral region due to the interfacial charge transfer (ICT) complex formation. Thorough characterization involving transmission electron microscopy, XRD analysis, and nitrogen adsorption-desorption isotherms, revealed that loosely agglomerated CeO2 particles of the size ranging from 2 to 4 nm have cubic fluorite structure and specific surface area of 140 m2/g. The attachment of salicylate- and catecholate-type of ligands to the surface of CeO2 powders leads to the formation of colored powders with tunable absorption in the visible spectral region. The density functional theory calculations with properly design model systems were performed to estimate the alignment of energy levels of various inorganic/organic hybrids. A reasonably good agreement between calculated values and experimental data was found. © 2019
T2  - Materials Chemistry and Physics
T1  - Electronic structure of surface complexes between CeO2 and benzene derivatives: A comparative experimental and DFT study
VL  - 236
SP  - 121816
DO  - 10.1016/j.matchemphys.2019.121816
ER  - 
@article{
author = "Prekajski-Đorđević, Marija D. and Vukoje, Ivana D. and Lazić, Vesna M. and Đorđević, Vesna R. and Sredojević, Dušan and Dostanić, Jasmina and Lončarević, Davor and Ahrenkiel, Scott Phillip and Belić, Milivoj R. and Nedeljković, Jovan",
year = "2019",
abstract = "Surface modification of CeO2 nano-powder, synthesized by a self-propagating room temperature method with salicylate-type ligands (salicylic acid and 5-aminosalicylic acid) as well as catecholate-type ligands (catechol, 3,4-dihydroxybenzoic acid, caffeic acid and 2,3-dihydroxy naphthalene), induces the appearance of absorption in the visible spectral region due to the interfacial charge transfer (ICT) complex formation. Thorough characterization involving transmission electron microscopy, XRD analysis, and nitrogen adsorption-desorption isotherms, revealed that loosely agglomerated CeO2 particles of the size ranging from 2 to 4 nm have cubic fluorite structure and specific surface area of 140 m2/g. The attachment of salicylate- and catecholate-type of ligands to the surface of CeO2 powders leads to the formation of colored powders with tunable absorption in the visible spectral region. The density functional theory calculations with properly design model systems were performed to estimate the alignment of energy levels of various inorganic/organic hybrids. A reasonably good agreement between calculated values and experimental data was found. © 2019",
journal = "Materials Chemistry and Physics",
title = "Electronic structure of surface complexes between CeO2 and benzene derivatives: A comparative experimental and DFT study",
volume = "236",
pages = "121816",
doi = "10.1016/j.matchemphys.2019.121816"
}
Prekajski-Đorđević, M. D., Vukoje, I. D., Lazić, V. M., Đorđević, V. R., Sredojević, D., Dostanić, J., Lončarević, D., Ahrenkiel, S. P., Belić, M. R.,& Nedeljković, J.. (2019). Electronic structure of surface complexes between CeO2 and benzene derivatives: A comparative experimental and DFT study. in Materials Chemistry and Physics, 236, 121816.
https://doi.org/10.1016/j.matchemphys.2019.121816
Prekajski-Đorđević MD, Vukoje ID, Lazić VM, Đorđević VR, Sredojević D, Dostanić J, Lončarević D, Ahrenkiel SP, Belić MR, Nedeljković J. Electronic structure of surface complexes between CeO2 and benzene derivatives: A comparative experimental and DFT study. in Materials Chemistry and Physics. 2019;236:121816.
doi:10.1016/j.matchemphys.2019.121816 .
Prekajski-Đorđević, Marija D., Vukoje, Ivana D., Lazić, Vesna M., Đorđević, Vesna R., Sredojević, Dušan, Dostanić, Jasmina, Lončarević, Davor, Ahrenkiel, Scott Phillip, Belić, Milivoj R., Nedeljković, Jovan, "Electronic structure of surface complexes between CeO2 and benzene derivatives: A comparative experimental and DFT study" in Materials Chemistry and Physics, 236 (2019):121816,
https://doi.org/10.1016/j.matchemphys.2019.121816 . .
5
2
5

Organic–Inorganic Hybrid Nanomaterials: Synthesis, Characterization, and Application

Lazić, Vesna M.; Nedeljković, Jovan

(2019)

TY  - CHAP
AU  - Lazić, Vesna M.
AU  - Nedeljković, Jovan
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8934
AB  - The increasing interest in energy maintenance, as well as an environmentally and human-friendly material with potential medical applications, is the driving force for the development of new nanomaterials. In this chapter, synthetic methodology, properties, and potential applications of organic-inorganic hybrids linked together through strong chemical bonds are reviewed. The first type of hybrid nanomaterials, based on chemically stable wide-band-gap oxides, whose optical properties can be tuned by interfacial charge transfer complex formation with small colorless organic molecules, is suitable to participate in photo-induced processes (photocatalysis, water-splitting reaction, solar cells). The second type of hybrid nanomaterial is polymer supports decorated with inorganic nanoparticles, in particular, silver, with potential application as a disinfection agent. This review provides a contribution to the general understanding of the interface chemistry in the rapidly growing field of organic-inorganic hybrid nanomaterials. © 2019 Elsevier Inc. All rights reserved.
T2  - Nanomaterials Synthesis
T1  - Organic–Inorganic Hybrid Nanomaterials: Synthesis, Characterization, and Application
SP  - 419
EP  - 449
DO  - 10.1016/B978-0-12-815751-0.00012-2
ER  - 
@inbook{
author = "Lazić, Vesna M. and Nedeljković, Jovan",
year = "2019",
abstract = "The increasing interest in energy maintenance, as well as an environmentally and human-friendly material with potential medical applications, is the driving force for the development of new nanomaterials. In this chapter, synthetic methodology, properties, and potential applications of organic-inorganic hybrids linked together through strong chemical bonds are reviewed. The first type of hybrid nanomaterials, based on chemically stable wide-band-gap oxides, whose optical properties can be tuned by interfacial charge transfer complex formation with small colorless organic molecules, is suitable to participate in photo-induced processes (photocatalysis, water-splitting reaction, solar cells). The second type of hybrid nanomaterial is polymer supports decorated with inorganic nanoparticles, in particular, silver, with potential application as a disinfection agent. This review provides a contribution to the general understanding of the interface chemistry in the rapidly growing field of organic-inorganic hybrid nanomaterials. © 2019 Elsevier Inc. All rights reserved.",
journal = "Nanomaterials Synthesis",
booktitle = "Organic–Inorganic Hybrid Nanomaterials: Synthesis, Characterization, and Application",
pages = "419-449",
doi = "10.1016/B978-0-12-815751-0.00012-2"
}
Lazić, V. M.,& Nedeljković, J.. (2019). Organic–Inorganic Hybrid Nanomaterials: Synthesis, Characterization, and Application. in Nanomaterials Synthesis, 419-449.
https://doi.org/10.1016/B978-0-12-815751-0.00012-2
Lazić VM, Nedeljković J. Organic–Inorganic Hybrid Nanomaterials: Synthesis, Characterization, and Application. in Nanomaterials Synthesis. 2019;:419-449.
doi:10.1016/B978-0-12-815751-0.00012-2 .
Lazić, Vesna M., Nedeljković, Jovan, "Organic–Inorganic Hybrid Nanomaterials: Synthesis, Characterization, and Application" in Nanomaterials Synthesis (2019):419-449,
https://doi.org/10.1016/B978-0-12-815751-0.00012-2 . .
5
3

Drug Delivery Systems for Diabetes Treatment

Zarić, Božidarka; Obradović, Milan M.; Sudar-Milovanović, Emina; Nedeljković, Jovan; Lazić, Vesna M.; Isenović, Esma R.

(2019)

TY  - JOUR
AU  - Zarić, Božidarka
AU  - Obradović, Milan M.
AU  - Sudar-Milovanović, Emina
AU  - Nedeljković, Jovan
AU  - Lazić, Vesna M.
AU  - Isenović, Esma R.
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8378
AB  - Background: Insulin is essential for the treatment of Type 1 diabetes mellitus (T1DM) and is necessary in numerous cases of Type 2 diabetes mellitus (T2DM). Prolonged administration of anti-diabetic therapy is necessary for the maintenance of the normal glucose levels and thereby preventing vascular complications. A better understanding of the disease per se and the technological progress contribute to the development of new approaches with the aim to achieve better glycemic control. Objective: Current therapies for DM are faced with some challenges. The purpose of this review is to analyze in detail the current trends for insulin delivery systems for diabetes treatment. Results: Contemporary ways have been proposed for the management of both types of diabetes by adequate application of drug via subcutaneous, buccal, oral, ocular, nasal, rectal and pulmonary ways. Development of improved oral administration of insulin is beneficial regarding mimicking physiological pathway of insulin and minimizing the discomfort of the patient. Various nanoparticle carriers for oral and other ways of insulin delivery are currently being developed. Engineered specific properties of nanoparticles (NP): controlling toxicity of NP, stability and drug release, can allow delivery of higher concentration of the drug to the desired location. Conclusions: The successful development of any drug delivery system relies on solving three important issues: toxicity of nanoparticles, stability of nanoparticles, and desired drug release rate at targeted sites. The main goals of future investigations are to improve the existing therapies by pharmacokinetic modifications, development of a fully automatized system to mimic insulin delivery by the pancreas and reduce invasiveness during admission. © 2019 Bentham Science Publishers.
T2  - Current Pharmaceutical Design
T1  - Drug Delivery Systems for Diabetes Treatment
VL  - 25
IS  - 2
SP  - 166
EP  - 173
DO  - 10.2174/1381612825666190306153838
ER  - 
@article{
author = "Zarić, Božidarka and Obradović, Milan M. and Sudar-Milovanović, Emina and Nedeljković, Jovan and Lazić, Vesna M. and Isenović, Esma R.",
year = "2019",
abstract = "Background: Insulin is essential for the treatment of Type 1 diabetes mellitus (T1DM) and is necessary in numerous cases of Type 2 diabetes mellitus (T2DM). Prolonged administration of anti-diabetic therapy is necessary for the maintenance of the normal glucose levels and thereby preventing vascular complications. A better understanding of the disease per se and the technological progress contribute to the development of new approaches with the aim to achieve better glycemic control. Objective: Current therapies for DM are faced with some challenges. The purpose of this review is to analyze in detail the current trends for insulin delivery systems for diabetes treatment. Results: Contemporary ways have been proposed for the management of both types of diabetes by adequate application of drug via subcutaneous, buccal, oral, ocular, nasal, rectal and pulmonary ways. Development of improved oral administration of insulin is beneficial regarding mimicking physiological pathway of insulin and minimizing the discomfort of the patient. Various nanoparticle carriers for oral and other ways of insulin delivery are currently being developed. Engineered specific properties of nanoparticles (NP): controlling toxicity of NP, stability and drug release, can allow delivery of higher concentration of the drug to the desired location. Conclusions: The successful development of any drug delivery system relies on solving three important issues: toxicity of nanoparticles, stability of nanoparticles, and desired drug release rate at targeted sites. The main goals of future investigations are to improve the existing therapies by pharmacokinetic modifications, development of a fully automatized system to mimic insulin delivery by the pancreas and reduce invasiveness during admission. © 2019 Bentham Science Publishers.",
journal = "Current Pharmaceutical Design",
title = "Drug Delivery Systems for Diabetes Treatment",
volume = "25",
number = "2",
pages = "166-173",
doi = "10.2174/1381612825666190306153838"
}
Zarić, B., Obradović, M. M., Sudar-Milovanović, E., Nedeljković, J., Lazić, V. M.,& Isenović, E. R.. (2019). Drug Delivery Systems for Diabetes Treatment. in Current Pharmaceutical Design, 25(2), 166-173.
https://doi.org/10.2174/1381612825666190306153838
Zarić B, Obradović MM, Sudar-Milovanović E, Nedeljković J, Lazić VM, Isenović ER. Drug Delivery Systems for Diabetes Treatment. in Current Pharmaceutical Design. 2019;25(2):166-173.
doi:10.2174/1381612825666190306153838 .
Zarić, Božidarka, Obradović, Milan M., Sudar-Milovanović, Emina, Nedeljković, Jovan, Lazić, Vesna M., Isenović, Esma R., "Drug Delivery Systems for Diabetes Treatment" in Current Pharmaceutical Design, 25, no. 2 (2019):166-173,
https://doi.org/10.2174/1381612825666190306153838 . .
19
9
21

Antibacterial ability of immobilized silver nanoparticles in agar-agar films co-doped with magnesium ions

Davidović, Slađana Z.; Lazić, Vesna M.; Miljković, Miona G.; Gordić, Milan V.; Sekulić, Milica; Marinović-Cincović, Milena; Ratnayake, Ishara S.; Ahrenkiel, Scott Phillip; Nedeljković, Jovan

(2019)

TY  - JOUR
AU  - Davidović, Slađana Z.
AU  - Lazić, Vesna M.
AU  - Miljković, Miona G.
AU  - Gordić, Milan V.
AU  - Sekulić, Milica
AU  - Marinović-Cincović, Milena
AU  - Ratnayake, Ishara S.
AU  - Ahrenkiel, Scott Phillip
AU  - Nedeljković, Jovan
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8452
AB  - The antibacterial ability of in situ prepared nanometer-sized silver particles, immobilized in agar-agar films, was studied as a function of the concentration of co-dopant, magnesium ions. Content of inorganic components in hybrid films was determined using inductively coupled plasma optic emission spectroscopy, and found to be low (<2 wt.-%). Morphology of prepared hybrid films, studied by transmission electron microscopy, revealed the presence of non-agglomerated and randomly distributed 10–20 nm silver nanoparticles (Ag NPs) within the agar-agar matrices. Fourier-transform infrared spectroscopy indicated the distinct chemical interaction between Ag NPs and polymer chains. Thermogravimetric analysis, as well as the determination of tensile strength, Young's modulus, and elongation at break showed improvement of thermal stability and mechanical properties of agar-agar matrices upon the incorporation of Ag NPs due to high compatibility between the hydrophilic organic component and inorganic components. The complete microbial reduction of Gram-positive bacteria Staphylococcus aureuswas observed for all agar-silver films, while satisfactory results were observed for Gram-negative bacteria Pseudomonas aeruginosa (≥99.6%). The release of Ag+ ions is suppressed by the increase of the concentration of Mg2+ ions and it was found to be significantly smaller (≤0.24 ppm) than the harmful ecological level (1 ppm). © 2019 Elsevier Ltd
T2  - Carbohydrate Polymers
T1  - Antibacterial ability of immobilized silver nanoparticles in agar-agar films co-doped with magnesium ions
VL  - 224
SP  - 115187
DO  - 10.1016/j.carbpol.2019.115187
ER  - 
@article{
author = "Davidović, Slađana Z. and Lazić, Vesna M. and Miljković, Miona G. and Gordić, Milan V. and Sekulić, Milica and Marinović-Cincović, Milena and Ratnayake, Ishara S. and Ahrenkiel, Scott Phillip and Nedeljković, Jovan",
year = "2019",
abstract = "The antibacterial ability of in situ prepared nanometer-sized silver particles, immobilized in agar-agar films, was studied as a function of the concentration of co-dopant, magnesium ions. Content of inorganic components in hybrid films was determined using inductively coupled plasma optic emission spectroscopy, and found to be low (<2 wt.-%). Morphology of prepared hybrid films, studied by transmission electron microscopy, revealed the presence of non-agglomerated and randomly distributed 10–20 nm silver nanoparticles (Ag NPs) within the agar-agar matrices. Fourier-transform infrared spectroscopy indicated the distinct chemical interaction between Ag NPs and polymer chains. Thermogravimetric analysis, as well as the determination of tensile strength, Young's modulus, and elongation at break showed improvement of thermal stability and mechanical properties of agar-agar matrices upon the incorporation of Ag NPs due to high compatibility between the hydrophilic organic component and inorganic components. The complete microbial reduction of Gram-positive bacteria Staphylococcus aureuswas observed for all agar-silver films, while satisfactory results were observed for Gram-negative bacteria Pseudomonas aeruginosa (≥99.6%). The release of Ag+ ions is suppressed by the increase of the concentration of Mg2+ ions and it was found to be significantly smaller (≤0.24 ppm) than the harmful ecological level (1 ppm). © 2019 Elsevier Ltd",
journal = "Carbohydrate Polymers",
title = "Antibacterial ability of immobilized silver nanoparticles in agar-agar films co-doped with magnesium ions",
volume = "224",
pages = "115187",
doi = "10.1016/j.carbpol.2019.115187"
}
Davidović, S. Z., Lazić, V. M., Miljković, M. G., Gordić, M. V., Sekulić, M., Marinović-Cincović, M., Ratnayake, I. S., Ahrenkiel, S. P.,& Nedeljković, J.. (2019). Antibacterial ability of immobilized silver nanoparticles in agar-agar films co-doped with magnesium ions. in Carbohydrate Polymers, 224, 115187.
https://doi.org/10.1016/j.carbpol.2019.115187
Davidović SZ, Lazić VM, Miljković MG, Gordić MV, Sekulić M, Marinović-Cincović M, Ratnayake IS, Ahrenkiel SP, Nedeljković J. Antibacterial ability of immobilized silver nanoparticles in agar-agar films co-doped with magnesium ions. in Carbohydrate Polymers. 2019;224:115187.
doi:10.1016/j.carbpol.2019.115187 .
Davidović, Slađana Z., Lazić, Vesna M., Miljković, Miona G., Gordić, Milan V., Sekulić, Milica, Marinović-Cincović, Milena, Ratnayake, Ishara S., Ahrenkiel, Scott Phillip, Nedeljković, Jovan, "Antibacterial ability of immobilized silver nanoparticles in agar-agar films co-doped with magnesium ions" in Carbohydrate Polymers, 224 (2019):115187,
https://doi.org/10.1016/j.carbpol.2019.115187 . .
1
27
8
26

Antimicrobial activity of silver nanoparticles supported by magnetite

Lazić, Vesna M.; Mihajlovski, Katarina ; Lazić, Vesna M.; Illés, Erzsébet; Stoiljković, Milovan; Ahrenkiel, Scott Phillip; Nedeljković, Jovan

(2019)

TY  - JOUR
AU  - Lazić, Vesna M.
AU  - Mihajlovski, Katarina 
AU  - Lazić, Vesna M.
AU  - Illés, Erzsébet
AU  - Stoiljković, Milovan
AU  - Ahrenkiel, Scott Phillip
AU  - Nedeljković, Jovan
PY  - 2019
UR  - https://onlinelibrary.wiley.com/doi/abs/10.1002/slct.201900628
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8162
AB  - Antibacterial and antifungal ability of silver nanoparticles (Ag NPs) supported by functionalized magnetite (Fe 3 O 4 ) with 5-aminosalicylic acid (5-ASA) was tested against Gram-negative bacteria Escherichia coli, Gram-positive bacteria Staphylococcus aureus and yeast Candida albicans. Characterization of materials including transmission electron microscopy, X-ray diffraction analysis, and inductively coupled plasma optic emission spectroscopy technique followed each step during the course of nanocomposite preparation. The synthesized powder consists of 30–50 nm in size silver particles surrounded by clusters of smaller (∼10 nm) Fe 3 O 4 particles. The content of silver in the nanocomposite powder was found to be slightly above 40 wt.–%. Concentration-dependent and time-dependent bacterial reduction measurements in dark indicated that use of Ag NPs leads to the complete reduction of E. coli and S. aureus even at the concentration level of silver as low as 40 μg/mL. However, the negligible antifungal ability of synthesized nanocomposite was found against yeast C. albicans in the entire investigated concentration range (0.1-2.0 mg/mL of the nanocomposite, i. e., 40–800 μg/mL of silver). Complete inactivation of E. coli and S. aureus was achieved in five repeated cycles indicated that synthesized nanocomposite can perform under long-run working conditions. From the technological point of view, magnetic separation is the additional advantage of synthesized nanocomposite for potential use as an antibacterial agent. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
T2  - ChemistrySelect
T1  - Antimicrobial activity of silver nanoparticles supported by magnetite
VL  - 4
IS  - 14
SP  - 4018
EP  - 4024
DO  - 10.1002/slct.201900628
ER  - 
@article{
author = "Lazić, Vesna M. and Mihajlovski, Katarina  and Lazić, Vesna M. and Illés, Erzsébet and Stoiljković, Milovan and Ahrenkiel, Scott Phillip and Nedeljković, Jovan",
year = "2019",
abstract = "Antibacterial and antifungal ability of silver nanoparticles (Ag NPs) supported by functionalized magnetite (Fe 3 O 4 ) with 5-aminosalicylic acid (5-ASA) was tested against Gram-negative bacteria Escherichia coli, Gram-positive bacteria Staphylococcus aureus and yeast Candida albicans. Characterization of materials including transmission electron microscopy, X-ray diffraction analysis, and inductively coupled plasma optic emission spectroscopy technique followed each step during the course of nanocomposite preparation. The synthesized powder consists of 30–50 nm in size silver particles surrounded by clusters of smaller (∼10 nm) Fe 3 O 4 particles. The content of silver in the nanocomposite powder was found to be slightly above 40 wt.–%. Concentration-dependent and time-dependent bacterial reduction measurements in dark indicated that use of Ag NPs leads to the complete reduction of E. coli and S. aureus even at the concentration level of silver as low as 40 μg/mL. However, the negligible antifungal ability of synthesized nanocomposite was found against yeast C. albicans in the entire investigated concentration range (0.1-2.0 mg/mL of the nanocomposite, i. e., 40–800 μg/mL of silver). Complete inactivation of E. coli and S. aureus was achieved in five repeated cycles indicated that synthesized nanocomposite can perform under long-run working conditions. From the technological point of view, magnetic separation is the additional advantage of synthesized nanocomposite for potential use as an antibacterial agent. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim",
journal = "ChemistrySelect",
title = "Antimicrobial activity of silver nanoparticles supported by magnetite",
volume = "4",
number = "14",
pages = "4018-4024",
doi = "10.1002/slct.201900628"
}
Lazić, V. M., Mihajlovski, K., Lazić, V. M., Illés, E., Stoiljković, M., Ahrenkiel, S. P.,& Nedeljković, J.. (2019). Antimicrobial activity of silver nanoparticles supported by magnetite. in ChemistrySelect, 4(14), 4018-4024.
https://doi.org/10.1002/slct.201900628
Lazić VM, Mihajlovski K, Lazić VM, Illés E, Stoiljković M, Ahrenkiel SP, Nedeljković J. Antimicrobial activity of silver nanoparticles supported by magnetite. in ChemistrySelect. 2019;4(14):4018-4024.
doi:10.1002/slct.201900628 .
Lazić, Vesna M., Mihajlovski, Katarina , Lazić, Vesna M., Illés, Erzsébet, Stoiljković, Milovan, Ahrenkiel, Scott Phillip, Nedeljković, Jovan, "Antimicrobial activity of silver nanoparticles supported by magnetite" in ChemistrySelect, 4, no. 14 (2019):4018-4024,
https://doi.org/10.1002/slct.201900628 . .
1
11
5
11