Peruško, Davor

Link to this page

Authority KeyName Variants
orcid::0000-0002-1763-0469
  • Peruško, Davor (94)
Projects
Physical processes in the synthesis of advanced nanostructured materials Fabrication and characterization of nano-photonic functional structrues in biomedicine and informatics
SPIRIT - Support of Public and Industrial Research using Ion Beam Technology Thin films of single wall carbon nanotubes and graphene for electronic application
Modifikacija, sinteza i analiza nanostrukturnih materijala jonskim snopovima, gama zračenjem i vakuumskim deponovanjem Effects of laser radiation and plasma on novel materials in their synthesis, modification, and analysis
SILAMPS - Silicon integrated lasers and optical amplifiers Slovenian Research Agency [P2-0082]
NFFA-Europe - Nanoscience Foundries and Fine Analysis - Europe Holographic methods for generation of specific wave-fronts to better control quantum coherent effects in laser-atom interactions
Functional, Functionalized and Advanced Nanomaterials International Atomic Energy Agency, Vienna
Ministry of Science and Technology of the Republic of Slovenia Slovenian Research Agency, Ministry of Science, Education, and Sports of the Republic of Croatia, COST Action [MP0903 Nanoalloy]
Slovenian Research Agency [P2-0082], IAEA, Vienna bilateral project Serbia-Slovakia (SK-SRB-2016-0038)
COST Action [MP0903] COST Action [MP0903 Nanoalloy], Center for Multidisciplinary Studies, Serbia
COST [CA17126] European Community [CM1104]
European Community, COST Action [CM1104], Slovenian Research Agency, Ministry of Science, Education, and Sports of the Republic of Croatia European Community, COST Action [MP1203]
European Community [COST Action MP1203, COST Action MP1208] European Community, COST Action [MP1208]
European Community, COST Action [MP1208], National Authority for Research and Innovation in the frame of Nucleus programme [304/2011, 4N/2016] European Union under REA (609427)
German-Serbian DAAD bilateral collaboration (Project No. 451-03-01038/2015-09118/18) IAEA, Vienna contract [17202]
SASPRO - Mobility Programme of Slovak Academy of Sciences: Supportive Fund for Excellent Scientists Physics of Ordered Nanostructures and New Materials in Photonics

Author's Bibliography

Influence of Nitrogen Incorporation Sites on Structural and Optical Properties of Sputtered TiO2-N Thin Films with Improved Visible Light Activity

Pjević, Dejan J.; Savić, Tatjana D.; Petrović, Suzana; Peruško, Davor; Čomor, Mirjana; Kovač, Janez

(2021)

TY  - JOUR
AU  - Pjević, Dejan J.
AU  - Savić, Tatjana D.
AU  - Petrović, Suzana
AU  - Peruško, Davor
AU  - Čomor, Mirjana
AU  - Kovač, Janez
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9841
AB  - The influence of deposition and annealing parameters on optical, structural and photocatalytic properties of N-doped titanium-dioxide (TiO2) thin films have been studied. Anatase and anatase-rutile crystalline phase mixture TiO2 thin films were obtained depending on the reactive direct current (DC) sputtering and annealing conditions. Deposition in the nitrogen atmosphere produced N-doped TiO2 thin films with energy gap values shifted towards visible region in comparison with thin TiO2 films deposited without nitrogen in the atmosphere. The role of substitutional and interstitial nitrogen atoms incorporated in obtained crystalline structures during the deposition was shown important and was reflected in the efficiency of photocatalysis. It was found that thin TiO2 films with more substitutional incorporated nitrogen exhibits better photocatalytic properties. These results could be of importance towards achieving controlled synthesis of N-doped TiO2 thin films with desired structural and optical properties, especially with improved photo-activity in the visible part of the solar spectrum.
T2  - ECS Journal of Solid State Science and Technology
T1  - Influence of Nitrogen Incorporation Sites on Structural and Optical Properties of Sputtered TiO2-N Thin Films with Improved Visible Light Activity
VL  - 10
IS  - 5
SP  - 053002
DO  - 10.1149/2162-8777/abffb2
ER  - 
@article{
author = "Pjević, Dejan J. and Savić, Tatjana D. and Petrović, Suzana and Peruško, Davor and Čomor, Mirjana and Kovač, Janez",
year = "2021",
abstract = "The influence of deposition and annealing parameters on optical, structural and photocatalytic properties of N-doped titanium-dioxide (TiO2) thin films have been studied. Anatase and anatase-rutile crystalline phase mixture TiO2 thin films were obtained depending on the reactive direct current (DC) sputtering and annealing conditions. Deposition in the nitrogen atmosphere produced N-doped TiO2 thin films with energy gap values shifted towards visible region in comparison with thin TiO2 films deposited without nitrogen in the atmosphere. The role of substitutional and interstitial nitrogen atoms incorporated in obtained crystalline structures during the deposition was shown important and was reflected in the efficiency of photocatalysis. It was found that thin TiO2 films with more substitutional incorporated nitrogen exhibits better photocatalytic properties. These results could be of importance towards achieving controlled synthesis of N-doped TiO2 thin films with desired structural and optical properties, especially with improved photo-activity in the visible part of the solar spectrum.",
journal = "ECS Journal of Solid State Science and Technology",
title = "Influence of Nitrogen Incorporation Sites on Structural and Optical Properties of Sputtered TiO2-N Thin Films with Improved Visible Light Activity",
volume = "10",
number = "5",
pages = "053002",
doi = "10.1149/2162-8777/abffb2"
}
Pjević, D. J., Savić, T. D., Petrović, S., Peruško, D., Čomor, M.,& Kovač, J.. (2021). Influence of Nitrogen Incorporation Sites on Structural and Optical Properties of Sputtered TiO2-N Thin Films with Improved Visible Light Activity. in ECS Journal of Solid State Science and Technology, 10(5), 053002.
https://doi.org/10.1149/2162-8777/abffb2
Pjević DJ, Savić TD, Petrović S, Peruško D, Čomor M, Kovač J. Influence of Nitrogen Incorporation Sites on Structural and Optical Properties of Sputtered TiO2-N Thin Films with Improved Visible Light Activity. in ECS Journal of Solid State Science and Technology. 2021;10(5):053002.
doi:10.1149/2162-8777/abffb2 .
Pjević, Dejan J., Savić, Tatjana D., Petrović, Suzana, Peruško, Davor, Čomor, Mirjana, Kovač, Janez, "Influence of Nitrogen Incorporation Sites on Structural and Optical Properties of Sputtered TiO2-N Thin Films with Improved Visible Light Activity" in ECS Journal of Solid State Science and Technology, 10, no. 5 (2021):053002,
https://doi.org/10.1149/2162-8777/abffb2 . .
1
1
1

Structural and electrochemical properties of carbon ion beam irradiated 12-tungstophosphoric acid

Mravik, Željko; Bajuk-Bogdanović, Danica V.; Mraković, Ana Đ.; Vukosavljević, Ljubiša; Trajić, Ivan; Kovač, Janez; Peruško, Davor; Gavrilov, Nemanja; Jovanović, Zoran M.

(2021)

TY  - JOUR
AU  - Mravik, Željko
AU  - Bajuk-Bogdanović, Danica V.
AU  - Mraković, Ana Đ.
AU  - Vukosavljević, Ljubiša
AU  - Trajić, Ivan
AU  - Kovač, Janez
AU  - Peruško, Davor
AU  - Gavrilov, Nemanja
AU  - Jovanović, Zoran M.
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9150
AB  - In recent years polyoxometalates (POMs) have attracted significant research interest due to versatile properties. These properties are determined by the size, structure and elemental composition of POMs and hence play an important role in their application. In the present study, the ion beam irradiation (10 keV C+ ions, 5 × 1014–2.5 × 1015 ions/cm2) has been utilized for modification of physicochemical properties of 120 nm-thick layer of 12-tungstophosphoric acid (WPA). Scanning electron microscopy analysis of irradiated films showed change of morphology i.e. an increase of WPA grain size with irradiation and coalescence of grains at the highest fluence. This was accompanied by structural changes. Attenuated total reflectance Fourier transform infrared analysis revealed that vibration bands of Keggin anion became less pronounced as fluence increased, while Raman spectra appeared as strongly modified. The effect of irradiation with 1.25 × 1015 ions/cm2 on the structure of WPA was similar to the effect of thermal treatment at 600 °C. Irradiation of WPA led to decrease of the band gap (from 4.07 to 3.92 eV), which was correlated to transformation Keggin anions into a network of WO6 octahedra and PO4 tetrahedra. This is in line with increased number of W=Od bonds observed by UV–Visible diffuse reflectance spectroscopy. Beside transformation to bronzes a reduction of WPA was observed by X-ray Photoelectron Spectroscopy (shift to lower binding energy) and Raman methods, whereas the Raman spectra of irradiated samples were similar to heteropoly blue. The electrochemical properties of irradiated WPA were also assessed. Cyclic voltammetry measurements showed that at up to 1.25 × 1015 ions/cm2 lithiation capacity of WPA increases and activity for hydrogen evolution reaction (HER) improves. The highest fluence caused interconnection of WO6 octahedra, closing of lithiation pathways and decrease in the number of active sites for HER. Our results provide a novel insight into the effects of ion beam irradiation on WPA and demonstrate high potential for tuning of physicochemical properties of POMs that are relevant in wide range of applications. © 2021 Elsevier Ltd
T2  - Radiation Physics and Chemistry
T1  - Structural and electrochemical properties of carbon ion beam irradiated 12-tungstophosphoric acid
VL  - 183
SP  - 109422
DO  - 10.1016/j.radphyschem.2021.109422
ER  - 
@article{
author = "Mravik, Željko and Bajuk-Bogdanović, Danica V. and Mraković, Ana Đ. and Vukosavljević, Ljubiša and Trajić, Ivan and Kovač, Janez and Peruško, Davor and Gavrilov, Nemanja and Jovanović, Zoran M.",
year = "2021",
abstract = "In recent years polyoxometalates (POMs) have attracted significant research interest due to versatile properties. These properties are determined by the size, structure and elemental composition of POMs and hence play an important role in their application. In the present study, the ion beam irradiation (10 keV C+ ions, 5 × 1014–2.5 × 1015 ions/cm2) has been utilized for modification of physicochemical properties of 120 nm-thick layer of 12-tungstophosphoric acid (WPA). Scanning electron microscopy analysis of irradiated films showed change of morphology i.e. an increase of WPA grain size with irradiation and coalescence of grains at the highest fluence. This was accompanied by structural changes. Attenuated total reflectance Fourier transform infrared analysis revealed that vibration bands of Keggin anion became less pronounced as fluence increased, while Raman spectra appeared as strongly modified. The effect of irradiation with 1.25 × 1015 ions/cm2 on the structure of WPA was similar to the effect of thermal treatment at 600 °C. Irradiation of WPA led to decrease of the band gap (from 4.07 to 3.92 eV), which was correlated to transformation Keggin anions into a network of WO6 octahedra and PO4 tetrahedra. This is in line with increased number of W=Od bonds observed by UV–Visible diffuse reflectance spectroscopy. Beside transformation to bronzes a reduction of WPA was observed by X-ray Photoelectron Spectroscopy (shift to lower binding energy) and Raman methods, whereas the Raman spectra of irradiated samples were similar to heteropoly blue. The electrochemical properties of irradiated WPA were also assessed. Cyclic voltammetry measurements showed that at up to 1.25 × 1015 ions/cm2 lithiation capacity of WPA increases and activity for hydrogen evolution reaction (HER) improves. The highest fluence caused interconnection of WO6 octahedra, closing of lithiation pathways and decrease in the number of active sites for HER. Our results provide a novel insight into the effects of ion beam irradiation on WPA and demonstrate high potential for tuning of physicochemical properties of POMs that are relevant in wide range of applications. © 2021 Elsevier Ltd",
journal = "Radiation Physics and Chemistry",
title = "Structural and electrochemical properties of carbon ion beam irradiated 12-tungstophosphoric acid",
volume = "183",
pages = "109422",
doi = "10.1016/j.radphyschem.2021.109422"
}
Mravik, Ž., Bajuk-Bogdanović, D. V., Mraković, A. Đ., Vukosavljević, L., Trajić, I., Kovač, J., Peruško, D., Gavrilov, N.,& Jovanović, Z. M.. (2021). Structural and electrochemical properties of carbon ion beam irradiated 12-tungstophosphoric acid. in Radiation Physics and Chemistry, 183, 109422.
https://doi.org/10.1016/j.radphyschem.2021.109422
Mravik Ž, Bajuk-Bogdanović DV, Mraković AĐ, Vukosavljević L, Trajić I, Kovač J, Peruško D, Gavrilov N, Jovanović ZM. Structural and electrochemical properties of carbon ion beam irradiated 12-tungstophosphoric acid. in Radiation Physics and Chemistry. 2021;183:109422.
doi:10.1016/j.radphyschem.2021.109422 .
Mravik, Željko, Bajuk-Bogdanović, Danica V., Mraković, Ana Đ., Vukosavljević, Ljubiša, Trajić, Ivan, Kovač, Janez, Peruško, Davor, Gavrilov, Nemanja, Jovanović, Zoran M., "Structural and electrochemical properties of carbon ion beam irradiated 12-tungstophosphoric acid" in Radiation Physics and Chemistry, 183 (2021):109422,
https://doi.org/10.1016/j.radphyschem.2021.109422 . .
4
4

The surface array structures induced by femtosecond laser modifications of Ti/Cr multilayer thin films for biomedical applications

Petrović, Suzana; Peruško, Davor; Mimidis, A.; Kavatzikidou, P.; Manousaki, A.; Božinović, Nevena; Rajić, Vladimir; Stratakis, E.

(Belgrade : Institute of Physics Belgrade, 2021)

TY  - CONF
AU  - Petrović, Suzana
AU  - Peruško, Davor
AU  - Mimidis, A.
AU  - Kavatzikidou, P.
AU  - Manousaki, A.
AU  - Božinović, Nevena
AU  - Rajić, Vladimir
AU  - Stratakis, E.
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10914
AB  - The experimental study of the static and dynamic femtosecond laser ablation of the multilayer 15x(Ti/Cr)/Si system is reported. The layer-by-layer selective laser ablation mechanism was studied by analysis of the surface morphology and elemental composition in static single pulse irradiation in a range of pulse energy from 10 – 17 μJ. The selective ablations as number of concentric circles in modified spots are increased with the pulse energy. The boundary between the circles was shown a change in the depth, comparable to the thickness of the individual layers. Changes in the elemental composition at the edges are associated with the removal of the layer by layer. Due to the intermixing of components and higher content of oxygen in the central area of ablated spots, it is expected that an ultra-thin layer composed of Ti and Cr oxide phases is formed at the bottom of the ablated center. The dynamic multi-pulse irradiation was observed via the production of lines with laser-induced periodic surface structures (LIPSS) at different laser parameters (scan velocities and laser polarization). The spatial periodicity of the formed LIPSS depends on changes in the effective number of pulses and laser polarization, as well as the nature of the material. The formation of LIPSS is followed with the significant ablation of multilayer 15x(Ti/Cr)/Si system, without visible hydrodynamic features, but ripples are somewhere covered with nanoparticles dimension up to 100 nm. The main focus of this experimental study was examined a novel Ti/Cr nanolayered composite in order to create a biomimetic surface with suitable composition and structure for cell integration. Using SEM and confocal microscopy images of the laser modified surfaces with seeded cell culture (NIH 3T3 fibroblasts) was found that cell adhesion and their growth depend on the surface composition and morphological forms. These results indicated a good adhesion and proliferation of cells after two and four days, with some tendency of grouping of cells on the laser modified surfaces.
PB  - Belgrade : Institute of Physics Belgrade
C3  - PHOTONICA2021 : 8th International School and Conference on Photonics and HEMMAGINERO workshop : Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers; August 23-27, 2021; Belgrade
T1  - The surface array structures induced by femtosecond laser modifications of Ti/Cr multilayer thin films for biomedical applications
SP  - 156
UR  - https://hdl.handle.net/21.15107/rcub_vinar_10914
ER  - 
@conference{
author = "Petrović, Suzana and Peruško, Davor and Mimidis, A. and Kavatzikidou, P. and Manousaki, A. and Božinović, Nevena and Rajić, Vladimir and Stratakis, E.",
year = "2021",
abstract = "The experimental study of the static and dynamic femtosecond laser ablation of the multilayer 15x(Ti/Cr)/Si system is reported. The layer-by-layer selective laser ablation mechanism was studied by analysis of the surface morphology and elemental composition in static single pulse irradiation in a range of pulse energy from 10 – 17 μJ. The selective ablations as number of concentric circles in modified spots are increased with the pulse energy. The boundary between the circles was shown a change in the depth, comparable to the thickness of the individual layers. Changes in the elemental composition at the edges are associated with the removal of the layer by layer. Due to the intermixing of components and higher content of oxygen in the central area of ablated spots, it is expected that an ultra-thin layer composed of Ti and Cr oxide phases is formed at the bottom of the ablated center. The dynamic multi-pulse irradiation was observed via the production of lines with laser-induced periodic surface structures (LIPSS) at different laser parameters (scan velocities and laser polarization). The spatial periodicity of the formed LIPSS depends on changes in the effective number of pulses and laser polarization, as well as the nature of the material. The formation of LIPSS is followed with the significant ablation of multilayer 15x(Ti/Cr)/Si system, without visible hydrodynamic features, but ripples are somewhere covered with nanoparticles dimension up to 100 nm. The main focus of this experimental study was examined a novel Ti/Cr nanolayered composite in order to create a biomimetic surface with suitable composition and structure for cell integration. Using SEM and confocal microscopy images of the laser modified surfaces with seeded cell culture (NIH 3T3 fibroblasts) was found that cell adhesion and their growth depend on the surface composition and morphological forms. These results indicated a good adhesion and proliferation of cells after two and four days, with some tendency of grouping of cells on the laser modified surfaces.",
publisher = "Belgrade : Institute of Physics Belgrade",
journal = "PHOTONICA2021 : 8th International School and Conference on Photonics and HEMMAGINERO workshop : Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers; August 23-27, 2021; Belgrade",
title = "The surface array structures induced by femtosecond laser modifications of Ti/Cr multilayer thin films for biomedical applications",
pages = "156",
url = "https://hdl.handle.net/21.15107/rcub_vinar_10914"
}
Petrović, S., Peruško, D., Mimidis, A., Kavatzikidou, P., Manousaki, A., Božinović, N., Rajić, V.,& Stratakis, E.. (2021). The surface array structures induced by femtosecond laser modifications of Ti/Cr multilayer thin films for biomedical applications. in PHOTONICA2021 : 8th International School and Conference on Photonics and HEMMAGINERO workshop : Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers; August 23-27, 2021; Belgrade
Belgrade : Institute of Physics Belgrade., 156.
https://hdl.handle.net/21.15107/rcub_vinar_10914
Petrović S, Peruško D, Mimidis A, Kavatzikidou P, Manousaki A, Božinović N, Rajić V, Stratakis E. The surface array structures induced by femtosecond laser modifications of Ti/Cr multilayer thin films for biomedical applications. in PHOTONICA2021 : 8th International School and Conference on Photonics and HEMMAGINERO workshop : Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers; August 23-27, 2021; Belgrade. 2021;:156.
https://hdl.handle.net/21.15107/rcub_vinar_10914 .
Petrović, Suzana, Peruško, Davor, Mimidis, A., Kavatzikidou, P., Manousaki, A., Božinović, Nevena, Rajić, Vladimir, Stratakis, E., "The surface array structures induced by femtosecond laser modifications of Ti/Cr multilayer thin films for biomedical applications" in PHOTONICA2021 : 8th International School and Conference on Photonics and HEMMAGINERO workshop : Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers; August 23-27, 2021; Belgrade (2021):156,
https://hdl.handle.net/21.15107/rcub_vinar_10914 .

Effects of static and dynamic femtosecond laser modifications of Ti/Zr multilayer thin films

Petrović, Suzana; Tsibidis, George D.; Kovačević, Aleksander; Božinović, Nevena; Peruško, Davor; Mimidis, Alexandros; Manousaki, Alexandra; Stratakis, Emmanuel

(2021)

TY  - JOUR
AU  - Petrović, Suzana
AU  - Tsibidis, George D.
AU  - Kovačević, Aleksander
AU  - Božinović, Nevena
AU  - Peruško, Davor
AU  - Mimidis, Alexandros
AU  - Manousaki, Alexandra
AU  - Stratakis, Emmanuel
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10079
AB  - The experimental study of the static and dynamic femtosecond laser ablation of the multilayer 15x(Ti/Zr)/Si system is reported. The layer-by-layer selective laser ablation mechanism was studied by analysis of the surface morphology and elemental composition in static single pulse irradiation in a range of pulse energy from 10 to 17 $$\upmu $$J. The selective ablations, as number of concentric circles in modified spots are increased with the pulse energy. The boundary between the circles was shown a change in the depth, comparable to the thickness of the individual layers. Changes in the elemental composition at the edges are associated with the removal of the layer by layer. The dynamic multipulse irradiation was observed via the production of lines with laser-induced periodic surface structures (LIPSS) at different laser parameters (scan velocities and laser polarization). The spatial periodicity of the formed LIPSS depends on changes in the effective number of pulses and laser polarization, as well as the nature of the material. For better interpretation of the experimental results, simulations have been conducted to explore the thermal response of the multiple layered structure 15x(Ti/Zr) after static single pulse irradiation.
T2  - European Physical Journal D. Atoms, Molecules, Clusters and Optical Physics
T1  - Effects of static and dynamic femtosecond laser modifications of Ti/Zr multilayer thin films
VL  - 75
IS  - 12
SP  - 304
DO  - 10.1140/epjd/s10053-021-00291-5
ER  - 
@article{
author = "Petrović, Suzana and Tsibidis, George D. and Kovačević, Aleksander and Božinović, Nevena and Peruško, Davor and Mimidis, Alexandros and Manousaki, Alexandra and Stratakis, Emmanuel",
year = "2021",
abstract = "The experimental study of the static and dynamic femtosecond laser ablation of the multilayer 15x(Ti/Zr)/Si system is reported. The layer-by-layer selective laser ablation mechanism was studied by analysis of the surface morphology and elemental composition in static single pulse irradiation in a range of pulse energy from 10 to 17 $$\upmu $$J. The selective ablations, as number of concentric circles in modified spots are increased with the pulse energy. The boundary between the circles was shown a change in the depth, comparable to the thickness of the individual layers. Changes in the elemental composition at the edges are associated with the removal of the layer by layer. The dynamic multipulse irradiation was observed via the production of lines with laser-induced periodic surface structures (LIPSS) at different laser parameters (scan velocities and laser polarization). The spatial periodicity of the formed LIPSS depends on changes in the effective number of pulses and laser polarization, as well as the nature of the material. For better interpretation of the experimental results, simulations have been conducted to explore the thermal response of the multiple layered structure 15x(Ti/Zr) after static single pulse irradiation.",
journal = "European Physical Journal D. Atoms, Molecules, Clusters and Optical Physics",
title = "Effects of static and dynamic femtosecond laser modifications of Ti/Zr multilayer thin films",
volume = "75",
number = "12",
pages = "304",
doi = "10.1140/epjd/s10053-021-00291-5"
}
Petrović, S., Tsibidis, G. D., Kovačević, A., Božinović, N., Peruško, D., Mimidis, A., Manousaki, A.,& Stratakis, E.. (2021). Effects of static and dynamic femtosecond laser modifications of Ti/Zr multilayer thin films. in European Physical Journal D. Atoms, Molecules, Clusters and Optical Physics, 75(12), 304.
https://doi.org/10.1140/epjd/s10053-021-00291-5
Petrović S, Tsibidis GD, Kovačević A, Božinović N, Peruško D, Mimidis A, Manousaki A, Stratakis E. Effects of static and dynamic femtosecond laser modifications of Ti/Zr multilayer thin films. in European Physical Journal D. Atoms, Molecules, Clusters and Optical Physics. 2021;75(12):304.
doi:10.1140/epjd/s10053-021-00291-5 .
Petrović, Suzana, Tsibidis, George D., Kovačević, Aleksander, Božinović, Nevena, Peruško, Davor, Mimidis, Alexandros, Manousaki, Alexandra, Stratakis, Emmanuel, "Effects of static and dynamic femtosecond laser modifications of Ti/Zr multilayer thin films" in European Physical Journal D. Atoms, Molecules, Clusters and Optical Physics, 75, no. 12 (2021):304,
https://doi.org/10.1140/epjd/s10053-021-00291-5 . .
4
4

Response of NIH 3T3 fibroblast cells on laser-induced periodic surface structures on a 15×(Ti/Zr)/Si multilayer system

Petrović, Suzana; Peruško, Davor; Mimidis, Alexandros; Kavatzikidou, Paraskevi; Kovač, Janez; Ranella, Anthi; Novaković, Mirjana M.; Popović, Maja; Stratakis, Emmanuel

(2020)

TY  - JOUR
AU  - Petrović, Suzana
AU  - Peruško, Davor
AU  - Mimidis, Alexandros
AU  - Kavatzikidou, Paraskevi
AU  - Kovač, Janez
AU  - Ranella, Anthi
AU  - Novaković, Mirjana M.
AU  - Popović, Maja
AU  - Stratakis, Emmanuel
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9785
AB  - Ultrafast laser processing with the formation of periodic surface nanostructures on the 15×(Ti/Zr)/Si multilayers is studied in order to the improve cell response. A novel nanocomposite structure in the form of 15x(Ti/Zr)/Si multilayer thin films, with satisfying mechanical properties and moderate biocompatibility, was deposited by ion sputtering on an Si substrate. The multilayer 15×(Ti/Zr)/Si thin films were modified by femtosecond laser pulses in air to induce the following modifications: (i) mixing of components inside of the multilayer structures, (ii) the formation of an ultrathin oxide layer at the surfaces, and (iii) surface nano-texturing with the creation of laser-induced periodic surface structure (LIPSS). The focus of this study was an examination of the novel Ti/Zr multilayer thin films in order to create a surface texture with suitable composition and structure for cell integration. Using the SEM and confocal microscopies of the laser-modified Ti/Zr surfaces with seeded cell culture (NIH 3T3 fibroblasts), it was found that cell adhesion and growth depend on the surface composition and morphological patterns. These results indicated a good proliferation of cells after two and four days with some tendency of the cell orientation along the LIPSSs. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
T2  - Nanomaterials
T1  - Response of NIH 3T3 fibroblast cells on laser-induced periodic surface structures on a 15×(Ti/Zr)/Si multilayer system
VL  - 10
IS  - 12
SP  - 1
EP  - 14
DO  - 10.3390/nano10122531
ER  - 
@article{
author = "Petrović, Suzana and Peruško, Davor and Mimidis, Alexandros and Kavatzikidou, Paraskevi and Kovač, Janez and Ranella, Anthi and Novaković, Mirjana M. and Popović, Maja and Stratakis, Emmanuel",
year = "2020",
abstract = "Ultrafast laser processing with the formation of periodic surface nanostructures on the 15×(Ti/Zr)/Si multilayers is studied in order to the improve cell response. A novel nanocomposite structure in the form of 15x(Ti/Zr)/Si multilayer thin films, with satisfying mechanical properties and moderate biocompatibility, was deposited by ion sputtering on an Si substrate. The multilayer 15×(Ti/Zr)/Si thin films were modified by femtosecond laser pulses in air to induce the following modifications: (i) mixing of components inside of the multilayer structures, (ii) the formation of an ultrathin oxide layer at the surfaces, and (iii) surface nano-texturing with the creation of laser-induced periodic surface structure (LIPSS). The focus of this study was an examination of the novel Ti/Zr multilayer thin films in order to create a surface texture with suitable composition and structure for cell integration. Using the SEM and confocal microscopies of the laser-modified Ti/Zr surfaces with seeded cell culture (NIH 3T3 fibroblasts), it was found that cell adhesion and growth depend on the surface composition and morphological patterns. These results indicated a good proliferation of cells after two and four days with some tendency of the cell orientation along the LIPSSs. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.",
journal = "Nanomaterials",
title = "Response of NIH 3T3 fibroblast cells on laser-induced periodic surface structures on a 15×(Ti/Zr)/Si multilayer system",
volume = "10",
number = "12",
pages = "1-14",
doi = "10.3390/nano10122531"
}
Petrović, S., Peruško, D., Mimidis, A., Kavatzikidou, P., Kovač, J., Ranella, A., Novaković, M. M., Popović, M.,& Stratakis, E.. (2020). Response of NIH 3T3 fibroblast cells on laser-induced periodic surface structures on a 15×(Ti/Zr)/Si multilayer system. in Nanomaterials, 10(12), 1-14.
https://doi.org/10.3390/nano10122531
Petrović S, Peruško D, Mimidis A, Kavatzikidou P, Kovač J, Ranella A, Novaković MM, Popović M, Stratakis E. Response of NIH 3T3 fibroblast cells on laser-induced periodic surface structures on a 15×(Ti/Zr)/Si multilayer system. in Nanomaterials. 2020;10(12):1-14.
doi:10.3390/nano10122531 .
Petrović, Suzana, Peruško, Davor, Mimidis, Alexandros, Kavatzikidou, Paraskevi, Kovač, Janez, Ranella, Anthi, Novaković, Mirjana M., Popović, Maja, Stratakis, Emmanuel, "Response of NIH 3T3 fibroblast cells on laser-induced periodic surface structures on a 15×(Ti/Zr)/Si multilayer system" in Nanomaterials, 10, no. 12 (2020):1-14,
https://doi.org/10.3390/nano10122531 . .
7
1
6

Different approaches for enhancing photocatalytic properties of TiO2:Au thin films deposited by DC sputtering

Pjević, Dejan; Peruško, Davor; Savić, Tatjana; Novaković, Mirjana; Popović, Maja; Potočnik, Jelena; Petrović, Suzana

(2019)

TY  - CONF
AU  - Pjević, Dejan
AU  - Peruško, Davor
AU  - Savić, Tatjana
AU  - Novaković, Mirjana
AU  - Popović, Maja
AU  - Potočnik, Jelena
AU  - Petrović, Suzana
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11901
AB  - INTRODUCTION: Titanium dioxide (TiO2) thin films showed as promising materials for photocatalytic degradation of pollutants in water under irradiation of UV-light. It is favorable material for photocatalytic processes because of its non-toxicity, high photosensitivity, large band gap and stability. One of the way to increase efficiency of TiO2 thin films is by doping and coating with metals. Metal-doped TiO2 can reduce electron-hole recombination and increase hydroxyl radical concentration on the surface of TiO2, resulting in increase in the photocatalytic activity1. In studies of J.M.Jung at al.1 with Au-buffered TiO2 thin films and V. S. Mohite et al.2 with doped TiO2 thin films showed that this systems have enhanced photocatalytic activity in comparison to pure TiO2 thin films. Also recent study3 showed that Au doped TiO2 thin films are great candidates beside photocatalysis for enhancing visible light water splitting. EXPERIMENTAL STUDY TiO2 and TiO2:Au thin films were obtained by DC magnetron sputtering of Ti target with Ar ions in O2 atmosphere. In the case of doped TiO2 thin films with Au, three different systems were deposited for comparison (fig.1): Buffering Au layer into the TiO2 layer (b), subsurface buffering of Au with island formation of Au on the surface and etching the surface of TiO2 layer by HF and applying Au nanoparticles on the surface. Annealing of the samples was performed in air and N2 atmospheres on 600 °C for better crystallinity and release of defects. For structural analyses XRD, XPS, TEM and SEM methods were used, while for optical characterization UV/Vis method was used. The photo-degradation rate was measured using Rhodamine B which simulated pollutant. Fig. 1: Experimental setup. RESULTS AND DISCUSSION Structural analysis has shown that as deposited films have amorphous-like structures, while post-deposition thermal annealing in air for 3 hours inducted significantly better crystallinity in thin films with anatase phase dominating. SEM analysis showed the presence of 10 nm Au buffered layer in crystalline structure of TiO2 and also on the surface. Optical measurements showed shift of the absorbance edge in UV/Vis spectra toward visible light wavelengths. Presence of metal dopant in the structure probably has induced some new energy sites in the region of TiO2 energy gap. Analysis of the binding energy in the corresponding XPS spectra showed that deposited films have good stoichiometry of TiO2. At binding energies of 530 eV where O1s line is present there is broadening toward higher energies and can be attributed to surface hydroxyl group. Presence of this group on the surface of the films is favorable for photo-degradation processes. CONCLUSION Obtained TiO2 thin films after deposition were amorphous-like structured, and after annealing on 600 °C anatase phase dominates in the structure. All Au doped TiO2 thin films showed better photo-degradation rates then pure TiO2. Presence of the gold clusters on the surface of the thin film showed of significant importance. Future work will be concentrated on understanding mechanisms of different Au doping sites in TiO2 crystal structure on its photocatalytic activity.
C3  - ANM 2019 : Advanced Nano Materials 2019 : Book of abstracts
T1  - Different approaches for enhancing photocatalytic properties of TiO2:Au thin films deposited by DC sputtering
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11901
ER  - 
@conference{
author = "Pjević, Dejan and Peruško, Davor and Savić, Tatjana and Novaković, Mirjana and Popović, Maja and Potočnik, Jelena and Petrović, Suzana",
year = "2019",
abstract = "INTRODUCTION: Titanium dioxide (TiO2) thin films showed as promising materials for photocatalytic degradation of pollutants in water under irradiation of UV-light. It is favorable material for photocatalytic processes because of its non-toxicity, high photosensitivity, large band gap and stability. One of the way to increase efficiency of TiO2 thin films is by doping and coating with metals. Metal-doped TiO2 can reduce electron-hole recombination and increase hydroxyl radical concentration on the surface of TiO2, resulting in increase in the photocatalytic activity1. In studies of J.M.Jung at al.1 with Au-buffered TiO2 thin films and V. S. Mohite et al.2 with doped TiO2 thin films showed that this systems have enhanced photocatalytic activity in comparison to pure TiO2 thin films. Also recent study3 showed that Au doped TiO2 thin films are great candidates beside photocatalysis for enhancing visible light water splitting. EXPERIMENTAL STUDY TiO2 and TiO2:Au thin films were obtained by DC magnetron sputtering of Ti target with Ar ions in O2 atmosphere. In the case of doped TiO2 thin films with Au, three different systems were deposited for comparison (fig.1): Buffering Au layer into the TiO2 layer (b), subsurface buffering of Au with island formation of Au on the surface and etching the surface of TiO2 layer by HF and applying Au nanoparticles on the surface. Annealing of the samples was performed in air and N2 atmospheres on 600 °C for better crystallinity and release of defects. For structural analyses XRD, XPS, TEM and SEM methods were used, while for optical characterization UV/Vis method was used. The photo-degradation rate was measured using Rhodamine B which simulated pollutant. Fig. 1: Experimental setup. RESULTS AND DISCUSSION Structural analysis has shown that as deposited films have amorphous-like structures, while post-deposition thermal annealing in air for 3 hours inducted significantly better crystallinity in thin films with anatase phase dominating. SEM analysis showed the presence of 10 nm Au buffered layer in crystalline structure of TiO2 and also on the surface. Optical measurements showed shift of the absorbance edge in UV/Vis spectra toward visible light wavelengths. Presence of metal dopant in the structure probably has induced some new energy sites in the region of TiO2 energy gap. Analysis of the binding energy in the corresponding XPS spectra showed that deposited films have good stoichiometry of TiO2. At binding energies of 530 eV where O1s line is present there is broadening toward higher energies and can be attributed to surface hydroxyl group. Presence of this group on the surface of the films is favorable for photo-degradation processes. CONCLUSION Obtained TiO2 thin films after deposition were amorphous-like structured, and after annealing on 600 °C anatase phase dominates in the structure. All Au doped TiO2 thin films showed better photo-degradation rates then pure TiO2. Presence of the gold clusters on the surface of the thin film showed of significant importance. Future work will be concentrated on understanding mechanisms of different Au doping sites in TiO2 crystal structure on its photocatalytic activity.",
journal = "ANM 2019 : Advanced Nano Materials 2019 : Book of abstracts",
title = "Different approaches for enhancing photocatalytic properties of TiO2:Au thin films deposited by DC sputtering",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11901"
}
Pjević, D., Peruško, D., Savić, T., Novaković, M., Popović, M., Potočnik, J.,& Petrović, S.. (2019). Different approaches for enhancing photocatalytic properties of TiO2:Au thin films deposited by DC sputtering. in ANM 2019 : Advanced Nano Materials 2019 : Book of abstracts.
https://hdl.handle.net/21.15107/rcub_vinar_11901
Pjević D, Peruško D, Savić T, Novaković M, Popović M, Potočnik J, Petrović S. Different approaches for enhancing photocatalytic properties of TiO2:Au thin films deposited by DC sputtering. in ANM 2019 : Advanced Nano Materials 2019 : Book of abstracts. 2019;.
https://hdl.handle.net/21.15107/rcub_vinar_11901 .
Pjević, Dejan, Peruško, Davor, Savić, Tatjana, Novaković, Mirjana, Popović, Maja, Potočnik, Jelena, Petrović, Suzana, "Different approaches for enhancing photocatalytic properties of TiO2:Au thin films deposited by DC sputtering" in ANM 2019 : Advanced Nano Materials 2019 : Book of abstracts (2019),
https://hdl.handle.net/21.15107/rcub_vinar_11901 .

Laser-assisted surface texturing of Ti/Zr multilayers for mesenchymal stem cell response

Petrović, Suzana; Peruško, Davor; Skoulas, Evangelos; Kovač, Janez; Mitrić, Miodrag; Potočnik, Jelena; Rakočević, Zlatko Lj.; Stratakis, Emmanuel

(2019)

TY  - JOUR
AU  - Petrović, Suzana
AU  - Peruško, Davor
AU  - Skoulas, Evangelos
AU  - Kovač, Janez
AU  - Mitrić, Miodrag
AU  - Potočnik, Jelena
AU  - Rakočević, Zlatko Lj.
AU  - Stratakis, Emmanuel
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8816
AB  - The formation of an ordered surface texture with micro and nanometer features on Ti/Zr multilayers is studied for better understanding and improvement of cell integration. Nanocomposite in form 30×(Ti/Zr)/Si thin films was deposited by ion sputtering on Si substrate for biocompatibility investigation. Surface texturing by femtosecond laser processing made it possible to form the laser-induced periodic surface structure (LIPSS) in each laser-written line. At fluence slightly above the ablation threshold, beside the formation of low spatial frequency-LIPSS (LSFL) oriented perpendicular to the direction of the laser polarization, the laser-induced surface oxidation was achieved on the irradiated area. Intermixing between the Ti and Zr layers with the formation of alloy in the sub-surface region was attained during the laser processing. The surface of the Ti/Zr multilayer system with changed composition and topography was used to observe the effect of topography on the survival, adhesion and proliferation of the murine mesenchymal stem cells (MSCs). Confocal and SEM microscopy images showed that cell adhesion and their growth improve on these modified surfaces, with tendency of the cell orientation along of LIPSS in laser-written lines. © 2019 by the authors.
T2  - Coatings
T1  - Laser-assisted surface texturing of Ti/Zr multilayers for mesenchymal stem cell response
VL  - 9
IS  - 12
SP  - 854
DO  - 10.3390/coatings9120854
ER  - 
@article{
author = "Petrović, Suzana and Peruško, Davor and Skoulas, Evangelos and Kovač, Janez and Mitrić, Miodrag and Potočnik, Jelena and Rakočević, Zlatko Lj. and Stratakis, Emmanuel",
year = "2019",
abstract = "The formation of an ordered surface texture with micro and nanometer features on Ti/Zr multilayers is studied for better understanding and improvement of cell integration. Nanocomposite in form 30×(Ti/Zr)/Si thin films was deposited by ion sputtering on Si substrate for biocompatibility investigation. Surface texturing by femtosecond laser processing made it possible to form the laser-induced periodic surface structure (LIPSS) in each laser-written line. At fluence slightly above the ablation threshold, beside the formation of low spatial frequency-LIPSS (LSFL) oriented perpendicular to the direction of the laser polarization, the laser-induced surface oxidation was achieved on the irradiated area. Intermixing between the Ti and Zr layers with the formation of alloy in the sub-surface region was attained during the laser processing. The surface of the Ti/Zr multilayer system with changed composition and topography was used to observe the effect of topography on the survival, adhesion and proliferation of the murine mesenchymal stem cells (MSCs). Confocal and SEM microscopy images showed that cell adhesion and their growth improve on these modified surfaces, with tendency of the cell orientation along of LIPSS in laser-written lines. © 2019 by the authors.",
journal = "Coatings",
title = "Laser-assisted surface texturing of Ti/Zr multilayers for mesenchymal stem cell response",
volume = "9",
number = "12",
pages = "854",
doi = "10.3390/coatings9120854"
}
Petrović, S., Peruško, D., Skoulas, E., Kovač, J., Mitrić, M., Potočnik, J., Rakočević, Z. Lj.,& Stratakis, E.. (2019). Laser-assisted surface texturing of Ti/Zr multilayers for mesenchymal stem cell response. in Coatings, 9(12), 854.
https://doi.org/10.3390/coatings9120854
Petrović S, Peruško D, Skoulas E, Kovač J, Mitrić M, Potočnik J, Rakočević ZL, Stratakis E. Laser-assisted surface texturing of Ti/Zr multilayers for mesenchymal stem cell response. in Coatings. 2019;9(12):854.
doi:10.3390/coatings9120854 .
Petrović, Suzana, Peruško, Davor, Skoulas, Evangelos, Kovač, Janez, Mitrić, Miodrag, Potočnik, Jelena, Rakočević, Zlatko Lj., Stratakis, Emmanuel, "Laser-assisted surface texturing of Ti/Zr multilayers for mesenchymal stem cell response" in Coatings, 9, no. 12 (2019):854,
https://doi.org/10.3390/coatings9120854 . .
7
3
6

Silicon nanostructuring by Ag ions implantation through nanosphere lithography mask

Modrić-Šahbazović, Almedina; Novaković, Mirjana M.; Schmidt, Emanuel O.; Gazdić, Izet; Đokić, Veljko R.; Peruško, Davor; Bibić, Nataša M.; Ronning, Carsten; Rakočević, Zlatko Lj.

(2019)

TY  - JOUR
AU  - Modrić-Šahbazović, Almedina
AU  - Novaković, Mirjana M.
AU  - Schmidt, Emanuel O.
AU  - Gazdić, Izet
AU  - Đokić, Veljko R.
AU  - Peruško, Davor
AU  - Bibić, Nataša M.
AU  - Ronning, Carsten
AU  - Rakočević, Zlatko Lj.
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8016
AB  - Nanosphere lithography is an effective technique for high throughput fabrication of well-ordered patterns on large areas. This study reports on nanostructuring of silicon samples by means of Ag ions implantation through self-organized polystyrene (PS) masks. The PS nanospheres with a diameter of ∼150 nm were self-assembled in a hexagonal array on top of Si(100) wafers, and then used as a mask for subsequent 60 keV silver ion implantation. Different fluences were applied up to 2 × 1016 ions/cm2 in order to create a distribution of different sizes and densities of buried metal nanoparticles. The surface morphology and the subsurface structures were studied by scanning electron microscopy and cross-sectional transmission electron microscopy, as a function of the mask deformation upon irradiation and the implantation parameters itself. We demonstrate that Ag is implanted into Si only through the mask openings, thus forming a regular array of amorphized regions over the wide area of silicon substrate. These fragments are of similar dimensions of the spheres with widths of about 190 nm and distributed over 60 nm in depth due to the given ion range. At the subsurface region of the implanted fragments, the synthesis of small sized and optically active Ag nanoparticles is clearly observed. The samples show a strong absorption peak in the long-wavelength region from 689 to 745 nm characteristic for surface plasmon resonance excitations, which could be fitted well using the Maxwell-Garnett`s theory. © 2018 Elsevier B.V.
T2  - Optical Materials
T1  - Silicon nanostructuring by Ag ions implantation through nanosphere lithography mask
VL  - 88
SP  - 508
EP  - 515
DO  - 10.1016/j.optmat.2018.12.022
ER  - 
@article{
author = "Modrić-Šahbazović, Almedina and Novaković, Mirjana M. and Schmidt, Emanuel O. and Gazdić, Izet and Đokić, Veljko R. and Peruško, Davor and Bibić, Nataša M. and Ronning, Carsten and Rakočević, Zlatko Lj.",
year = "2019",
abstract = "Nanosphere lithography is an effective technique for high throughput fabrication of well-ordered patterns on large areas. This study reports on nanostructuring of silicon samples by means of Ag ions implantation through self-organized polystyrene (PS) masks. The PS nanospheres with a diameter of ∼150 nm were self-assembled in a hexagonal array on top of Si(100) wafers, and then used as a mask for subsequent 60 keV silver ion implantation. Different fluences were applied up to 2 × 1016 ions/cm2 in order to create a distribution of different sizes and densities of buried metal nanoparticles. The surface morphology and the subsurface structures were studied by scanning electron microscopy and cross-sectional transmission electron microscopy, as a function of the mask deformation upon irradiation and the implantation parameters itself. We demonstrate that Ag is implanted into Si only through the mask openings, thus forming a regular array of amorphized regions over the wide area of silicon substrate. These fragments are of similar dimensions of the spheres with widths of about 190 nm and distributed over 60 nm in depth due to the given ion range. At the subsurface region of the implanted fragments, the synthesis of small sized and optically active Ag nanoparticles is clearly observed. The samples show a strong absorption peak in the long-wavelength region from 689 to 745 nm characteristic for surface plasmon resonance excitations, which could be fitted well using the Maxwell-Garnett`s theory. © 2018 Elsevier B.V.",
journal = "Optical Materials",
title = "Silicon nanostructuring by Ag ions implantation through nanosphere lithography mask",
volume = "88",
pages = "508-515",
doi = "10.1016/j.optmat.2018.12.022"
}
Modrić-Šahbazović, A., Novaković, M. M., Schmidt, E. O., Gazdić, I., Đokić, V. R., Peruško, D., Bibić, N. M., Ronning, C.,& Rakočević, Z. Lj.. (2019). Silicon nanostructuring by Ag ions implantation through nanosphere lithography mask. in Optical Materials, 88, 508-515.
https://doi.org/10.1016/j.optmat.2018.12.022
Modrić-Šahbazović A, Novaković MM, Schmidt EO, Gazdić I, Đokić VR, Peruško D, Bibić NM, Ronning C, Rakočević ZL. Silicon nanostructuring by Ag ions implantation through nanosphere lithography mask. in Optical Materials. 2019;88:508-515.
doi:10.1016/j.optmat.2018.12.022 .
Modrić-Šahbazović, Almedina, Novaković, Mirjana M., Schmidt, Emanuel O., Gazdić, Izet, Đokić, Veljko R., Peruško, Davor, Bibić, Nataša M., Ronning, Carsten, Rakočević, Zlatko Lj., "Silicon nanostructuring by Ag ions implantation through nanosphere lithography mask" in Optical Materials, 88 (2019):508-515,
https://doi.org/10.1016/j.optmat.2018.12.022 . .
7
7
8

Optical and Structural Investigation of Cr2O3 Thin Films: the Effect of Thickness on Their Applicability in Differential Photodetectors

Gilić, M.; Mitrić, J.; Petrović, Suzana; Peruško, Davor; Ćirković, J.; Reissig, L.; Romčević, N.

(Belgrade : Vinča Institute of Nuclear Sciences, University of Belgrade, 2019)

TY  - CONF
AU  - Gilić, M.
AU  - Mitrić, J.
AU  - Petrović, Suzana
AU  - Peruško, Davor
AU  - Ćirković, J.
AU  - Reissig, L.
AU  - Romčević, N.
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11890
AB  - We report an experimental study of Cr2O3 thin films (60, 300, 350 nm) deposited on silicon and glass substrates using the Balzers Sputtron II System. The structural and optical properties were investigated by means of AFM, XRD, UV-VIS, Raman and infrared spectroscopy, in order to determine the suitability of the as-obtained films as potential active layers in novel differential inorganic photodetectors. AFM measurements revealed that all films are well-deposited, without the presence of any cracks or voids. The crystalline peaks in the XRD spectra belonged to the trigonal Cr2O3 structure. UV-VIS measurements revealed a strong red shift in the absorption maxima with reducing film thickness. IR and Raman spectroscopy show a dependence of the characteristic vibrations on film thickness as well as on the substrate. In conclusion, our results indicate that the Cr2O3 film of 300 nm thickness is so far the most promising candidate as photoactive semiconducting layer in differential photodetectors.
PB  - Belgrade : Vinča Institute of Nuclear Sciences, University of Belgrade
C3  - PHOTONICA2019 : 7th International School and Conference on Photonics & Machine Learning with Photonics Symposium : Book of abstracts
T1  - Optical and Structural Investigation of Cr2O3 Thin Films: the Effect of Thickness on Their Applicability in Differential Photodetectors
SP  - 105
EP  - 105
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11890
ER  - 
@conference{
author = "Gilić, M. and Mitrić, J. and Petrović, Suzana and Peruško, Davor and Ćirković, J. and Reissig, L. and Romčević, N.",
year = "2019",
abstract = "We report an experimental study of Cr2O3 thin films (60, 300, 350 nm) deposited on silicon and glass substrates using the Balzers Sputtron II System. The structural and optical properties were investigated by means of AFM, XRD, UV-VIS, Raman and infrared spectroscopy, in order to determine the suitability of the as-obtained films as potential active layers in novel differential inorganic photodetectors. AFM measurements revealed that all films are well-deposited, without the presence of any cracks or voids. The crystalline peaks in the XRD spectra belonged to the trigonal Cr2O3 structure. UV-VIS measurements revealed a strong red shift in the absorption maxima with reducing film thickness. IR and Raman spectroscopy show a dependence of the characteristic vibrations on film thickness as well as on the substrate. In conclusion, our results indicate that the Cr2O3 film of 300 nm thickness is so far the most promising candidate as photoactive semiconducting layer in differential photodetectors.",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences, University of Belgrade",
journal = "PHOTONICA2019 : 7th International School and Conference on Photonics & Machine Learning with Photonics Symposium : Book of abstracts",
title = "Optical and Structural Investigation of Cr2O3 Thin Films: the Effect of Thickness on Their Applicability in Differential Photodetectors",
pages = "105-105",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11890"
}
Gilić, M., Mitrić, J., Petrović, S., Peruško, D., Ćirković, J., Reissig, L.,& Romčević, N.. (2019). Optical and Structural Investigation of Cr2O3 Thin Films: the Effect of Thickness on Their Applicability in Differential Photodetectors. in PHOTONICA2019 : 7th International School and Conference on Photonics & Machine Learning with Photonics Symposium : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences, University of Belgrade., 105-105.
https://hdl.handle.net/21.15107/rcub_vinar_11890
Gilić M, Mitrić J, Petrović S, Peruško D, Ćirković J, Reissig L, Romčević N. Optical and Structural Investigation of Cr2O3 Thin Films: the Effect of Thickness on Their Applicability in Differential Photodetectors. in PHOTONICA2019 : 7th International School and Conference on Photonics & Machine Learning with Photonics Symposium : Book of abstracts. 2019;:105-105.
https://hdl.handle.net/21.15107/rcub_vinar_11890 .
Gilić, M., Mitrić, J., Petrović, Suzana, Peruško, Davor, Ćirković, J., Reissig, L., Romčević, N., "Optical and Structural Investigation of Cr2O3 Thin Films: the Effect of Thickness on Their Applicability in Differential Photodetectors" in PHOTONICA2019 : 7th International School and Conference on Photonics & Machine Learning with Photonics Symposium : Book of abstracts (2019):105-105,
https://hdl.handle.net/21.15107/rcub_vinar_11890 .

Simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) nanocomposite films with enhanced electrical conductivity and hydrophobicity

Kepić, Dejan P.; Ristić, Ivan S.; Marinović-Cincović, Milena; Peruško, Davor; Špitalsky, Zdenko; Pavlović, Vladimir B.; Budimir, Milica; Šiffalovič, Peter; Dramićanin, Miroslav; Mičušik, Matej; Kleinova, Angela; Janigova, Ivica; Marković, Zoran M.; Todorović-Marković, Biljana

(2018)

TY  - JOUR
AU  - Kepić, Dejan P.
AU  - Ristić, Ivan S.
AU  - Marinović-Cincović, Milena
AU  - Peruško, Davor
AU  - Špitalsky, Zdenko
AU  - Pavlović, Vladimir B.
AU  - Budimir, Milica
AU  - Šiffalovič, Peter
AU  - Dramićanin, Miroslav
AU  - Mičušik, Matej
AU  - Kleinova, Angela
AU  - Janigova, Ivica
AU  - Marković, Zoran M.
AU  - Todorović-Marković, Biljana
PY  - 2018
UR  - http://doi.wiley.com/10.1002/pi.5620
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7796
AB  - This paper reports a simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) (SBS) nanocomposite films employing a vacuum filtration method. Graphene is exfoliated well by an electrochemical procedure and homogeneously dispersed in the polymer matrix. The prepared nanocomposite films were characterized by XRD, Fourier transform IR (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, AFM and SEM. Morphological studies showed that graphene formed a smooth coating over the surface of SBS. The increase in graphene concentration induces the wrinkling of graphene sheets at the composite surface which causes a further increase in surface roughness. The FTIR, Raman and XPS spectra of graphene/SBS nanocomposite films indicate the strong interactions between graphene and the polymer matrix. According to the XRD patterns, introducing SBS into graphene did not modify the graphene structure additionally, i.e. the crystal lattice parameters do not depend on SBS content in graphene/SBS nanocomposite films. The graphene/SBS nanocomposite films also exhibited better hydrophobicity due to the increased surface roughness and lower sheet resistivity (reduced 10 times) compared to exfoliated graphene.
T2  - Polymer International
T1  - Simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) nanocomposite films with enhanced electrical conductivity and hydrophobicity
VL  - 67
IS  - 8
SP  - 1118
EP  - 1127
DO  - 10.1002/pi.5620
ER  - 
@article{
author = "Kepić, Dejan P. and Ristić, Ivan S. and Marinović-Cincović, Milena and Peruško, Davor and Špitalsky, Zdenko and Pavlović, Vladimir B. and Budimir, Milica and Šiffalovič, Peter and Dramićanin, Miroslav and Mičušik, Matej and Kleinova, Angela and Janigova, Ivica and Marković, Zoran M. and Todorović-Marković, Biljana",
year = "2018",
abstract = "This paper reports a simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) (SBS) nanocomposite films employing a vacuum filtration method. Graphene is exfoliated well by an electrochemical procedure and homogeneously dispersed in the polymer matrix. The prepared nanocomposite films were characterized by XRD, Fourier transform IR (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, AFM and SEM. Morphological studies showed that graphene formed a smooth coating over the surface of SBS. The increase in graphene concentration induces the wrinkling of graphene sheets at the composite surface which causes a further increase in surface roughness. The FTIR, Raman and XPS spectra of graphene/SBS nanocomposite films indicate the strong interactions between graphene and the polymer matrix. According to the XRD patterns, introducing SBS into graphene did not modify the graphene structure additionally, i.e. the crystal lattice parameters do not depend on SBS content in graphene/SBS nanocomposite films. The graphene/SBS nanocomposite films also exhibited better hydrophobicity due to the increased surface roughness and lower sheet resistivity (reduced 10 times) compared to exfoliated graphene.",
journal = "Polymer International",
title = "Simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) nanocomposite films with enhanced electrical conductivity and hydrophobicity",
volume = "67",
number = "8",
pages = "1118-1127",
doi = "10.1002/pi.5620"
}
Kepić, D. P., Ristić, I. S., Marinović-Cincović, M., Peruško, D., Špitalsky, Z., Pavlović, V. B., Budimir, M., Šiffalovič, P., Dramićanin, M., Mičušik, M., Kleinova, A., Janigova, I., Marković, Z. M.,& Todorović-Marković, B.. (2018). Simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) nanocomposite films with enhanced electrical conductivity and hydrophobicity. in Polymer International, 67(8), 1118-1127.
https://doi.org/10.1002/pi.5620
Kepić DP, Ristić IS, Marinović-Cincović M, Peruško D, Špitalsky Z, Pavlović VB, Budimir M, Šiffalovič P, Dramićanin M, Mičušik M, Kleinova A, Janigova I, Marković ZM, Todorović-Marković B. Simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) nanocomposite films with enhanced electrical conductivity and hydrophobicity. in Polymer International. 2018;67(8):1118-1127.
doi:10.1002/pi.5620 .
Kepić, Dejan P., Ristić, Ivan S., Marinović-Cincović, Milena, Peruško, Davor, Špitalsky, Zdenko, Pavlović, Vladimir B., Budimir, Milica, Šiffalovič, Peter, Dramićanin, Miroslav, Mičušik, Matej, Kleinova, Angela, Janigova, Ivica, Marković, Zoran M., Todorović-Marković, Biljana, "Simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) nanocomposite films with enhanced electrical conductivity and hydrophobicity" in Polymer International, 67, no. 8 (2018):1118-1127,
https://doi.org/10.1002/pi.5620 . .
5
3
5

Modification of Ti/Zr multilayer by femtosecond laser pulses

Gaković, Biljana M.; Petrović, S.; Peruško, Davor; Mimidis, A.; Kavatzikidou, E.; Stratakis, E.

(Moscow : Lebedev Physical Institute, 2018)

TY  - CONF
AU  - Gaković, Biljana M.
AU  - Petrović, S.
AU  - Peruško, Davor
AU  - Mimidis, A.
AU  - Kavatzikidou, E.
AU  - Stratakis, E.
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12441
AB  - Femtosecond laser texturing holds promise for the surface modification of materials, due to a wide application to all materials; the possibility of getting a wide variety of structures with micro- and nano-scaled features; and a fast, repeatable and contactless process. Laser processing is unique method, which allows production of active surface with formation of the desired oxide, creation of nano/micro textures and change wettability of the surface. Due to excellent mechanical properties and moderate biocompatibility, Ti/Zr multi- layer thin films, as novel nanolayered composites were deposited by ion sputtering on Si substrate. Subsequently, the Ti/Zr thin films were irradiated by femtosecond laser pulses in air to induce the following modifications: (i) mixing of components within the thin film structures, (ii) formation of ultrathin oxide layer at the irradiated surfaces, and (iii) structuring of the surface arrays in form of ripple structure. The main focus of this experimental study was examined different surface motives with nano- and micrometre features. For this purpose, the modifications of Ti/Zr multilayers were included forma- tion of spots, lines and surfaces with different pulse energy, scanning speed i.e. number of pulses, z-distance. Laser-induced spots are composed of concentric circles, where the number of circles in individual spots is increased with increasing pulse energy. Maxi- mum depth in the centre of spots and total roughness are gradually rising with pulse energy, but heights between ablated layers in these spots does not match with the thick- ness of layers, but these deviations are not significant. Lines and surfaces were scanned with different scanning rate, the conditions for formation of well-defined LSFL (low spa- tial frequency LIPSS) are determined. The periodic structures at high scanning rate (3 mm/s) are mainly formed on the multilayer thin film. However, the degree of ablation becomes higher at the lowest rate (0.5 mm/s) where the ripples mostly are formed on the Si substrate.
PB  - Moscow : Lebedev Physical Institute
C3  - UltrafastLight-2018 : International Conference on Ultrafast Optical Science : Book of Abstracts
T1  - Modification of Ti/Zr multilayer by femtosecond laser pulses
SP  - 100
EP  - 100
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12441
ER  - 
@conference{
author = "Gaković, Biljana M. and Petrović, S. and Peruško, Davor and Mimidis, A. and Kavatzikidou, E. and Stratakis, E.",
year = "2018",
abstract = "Femtosecond laser texturing holds promise for the surface modification of materials, due to a wide application to all materials; the possibility of getting a wide variety of structures with micro- and nano-scaled features; and a fast, repeatable and contactless process. Laser processing is unique method, which allows production of active surface with formation of the desired oxide, creation of nano/micro textures and change wettability of the surface. Due to excellent mechanical properties and moderate biocompatibility, Ti/Zr multi- layer thin films, as novel nanolayered composites were deposited by ion sputtering on Si substrate. Subsequently, the Ti/Zr thin films were irradiated by femtosecond laser pulses in air to induce the following modifications: (i) mixing of components within the thin film structures, (ii) formation of ultrathin oxide layer at the irradiated surfaces, and (iii) structuring of the surface arrays in form of ripple structure. The main focus of this experimental study was examined different surface motives with nano- and micrometre features. For this purpose, the modifications of Ti/Zr multilayers were included forma- tion of spots, lines and surfaces with different pulse energy, scanning speed i.e. number of pulses, z-distance. Laser-induced spots are composed of concentric circles, where the number of circles in individual spots is increased with increasing pulse energy. Maxi- mum depth in the centre of spots and total roughness are gradually rising with pulse energy, but heights between ablated layers in these spots does not match with the thick- ness of layers, but these deviations are not significant. Lines and surfaces were scanned with different scanning rate, the conditions for formation of well-defined LSFL (low spa- tial frequency LIPSS) are determined. The periodic structures at high scanning rate (3 mm/s) are mainly formed on the multilayer thin film. However, the degree of ablation becomes higher at the lowest rate (0.5 mm/s) where the ripples mostly are formed on the Si substrate.",
publisher = "Moscow : Lebedev Physical Institute",
journal = "UltrafastLight-2018 : International Conference on Ultrafast Optical Science : Book of Abstracts",
title = "Modification of Ti/Zr multilayer by femtosecond laser pulses",
pages = "100-100",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12441"
}
Gaković, B. M., Petrović, S., Peruško, D., Mimidis, A., Kavatzikidou, E.,& Stratakis, E.. (2018). Modification of Ti/Zr multilayer by femtosecond laser pulses. in UltrafastLight-2018 : International Conference on Ultrafast Optical Science : Book of Abstracts
Moscow : Lebedev Physical Institute., 100-100.
https://hdl.handle.net/21.15107/rcub_vinar_12441
Gaković BM, Petrović S, Peruško D, Mimidis A, Kavatzikidou E, Stratakis E. Modification of Ti/Zr multilayer by femtosecond laser pulses. in UltrafastLight-2018 : International Conference on Ultrafast Optical Science : Book of Abstracts. 2018;:100-100.
https://hdl.handle.net/21.15107/rcub_vinar_12441 .
Gaković, Biljana M., Petrović, S., Peruško, Davor, Mimidis, A., Kavatzikidou, E., Stratakis, E., "Modification of Ti/Zr multilayer by femtosecond laser pulses" in UltrafastLight-2018 : International Conference on Ultrafast Optical Science : Book of Abstracts (2018):100-100,
https://hdl.handle.net/21.15107/rcub_vinar_12441 .

Laser induced mixing in multilayered Ti/Ta thin film structures

Obradović, Marko O.; Kovač, Janez; Petrović, Suzana; Lazović, Vladimir M.; Salatić, Branislav; Ciganović, Jovan; Pjević, Dejan J.; Milosavljević, Momir; Peruško, Davor

(2018)

TY  - JOUR
AU  - Obradović, Marko O.
AU  - Kovač, Janez
AU  - Petrović, Suzana
AU  - Lazović, Vladimir M.
AU  - Salatić, Branislav
AU  - Ciganović, Jovan
AU  - Pjević, Dejan J.
AU  - Milosavljević, Momir
AU  - Peruško, Davor
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7721
AB  - The possibility of interlayer mixing in a Ti/Ta multilayer system, induced by laser irradiation, was the main purpose of these experiments. Ti/Ta multilayer system, consisting of ten alternating Ti and Ta thin films and covered by slightly thicker Ti layer, was deposited on Si (100) wafers to a total thickness of 205 nm. Laser irradiation was performed in air by picoseconds Nd:YAG laser pulses in defocused regime with fluences of 0.057 and 0.11 J cm−2. Laser beam was scanned over the 5 × 5 mm surface area with different steps along y-axes. Structural and compositional characterisation was done by auger electron spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, and scanning electron microscopy. Laser processing at lower fluence caused only oxidation of the top Ti layer, despite of the number of applied laser pulses. Interlayer mixing was not observed. Application of laser pulses at fluence of 0.11 J cm−2caused partial and/or complete ablation of deposited layers. In partially ablated regions considerable mixing between Ti and Ta films was registered.
T2  - Optical and Quantum Electronics
T1  - Laser induced mixing in multilayered Ti/Ta thin film structures
VL  - 50
IS  - 6
SP  - 257
DO  - 10.1007/s11082-018-1525-x
ER  - 
@article{
author = "Obradović, Marko O. and Kovač, Janez and Petrović, Suzana and Lazović, Vladimir M. and Salatić, Branislav and Ciganović, Jovan and Pjević, Dejan J. and Milosavljević, Momir and Peruško, Davor",
year = "2018",
abstract = "The possibility of interlayer mixing in a Ti/Ta multilayer system, induced by laser irradiation, was the main purpose of these experiments. Ti/Ta multilayer system, consisting of ten alternating Ti and Ta thin films and covered by slightly thicker Ti layer, was deposited on Si (100) wafers to a total thickness of 205 nm. Laser irradiation was performed in air by picoseconds Nd:YAG laser pulses in defocused regime with fluences of 0.057 and 0.11 J cm−2. Laser beam was scanned over the 5 × 5 mm surface area with different steps along y-axes. Structural and compositional characterisation was done by auger electron spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, and scanning electron microscopy. Laser processing at lower fluence caused only oxidation of the top Ti layer, despite of the number of applied laser pulses. Interlayer mixing was not observed. Application of laser pulses at fluence of 0.11 J cm−2caused partial and/or complete ablation of deposited layers. In partially ablated regions considerable mixing between Ti and Ta films was registered.",
journal = "Optical and Quantum Electronics",
title = "Laser induced mixing in multilayered Ti/Ta thin film structures",
volume = "50",
number = "6",
pages = "257",
doi = "10.1007/s11082-018-1525-x"
}
Obradović, M. O., Kovač, J., Petrović, S., Lazović, V. M., Salatić, B., Ciganović, J., Pjević, D. J., Milosavljević, M.,& Peruško, D.. (2018). Laser induced mixing in multilayered Ti/Ta thin film structures. in Optical and Quantum Electronics, 50(6), 257.
https://doi.org/10.1007/s11082-018-1525-x
Obradović MO, Kovač J, Petrović S, Lazović VM, Salatić B, Ciganović J, Pjević DJ, Milosavljević M, Peruško D. Laser induced mixing in multilayered Ti/Ta thin film structures. in Optical and Quantum Electronics. 2018;50(6):257.
doi:10.1007/s11082-018-1525-x .
Obradović, Marko O., Kovač, Janez, Petrović, Suzana, Lazović, Vladimir M., Salatić, Branislav, Ciganović, Jovan, Pjević, Dejan J., Milosavljević, Momir, Peruško, Davor, "Laser induced mixing in multilayered Ti/Ta thin film structures" in Optical and Quantum Electronics, 50, no. 6 (2018):257,
https://doi.org/10.1007/s11082-018-1525-x . .
1

Formation of LIPSS on Al/Ti thin metal films by scanning of low-fluence femtosecond beam during cross-directional scanning

Kovačević, Aleksander G.; Petrović, Suzana; Lekić, Marina; Peruško, Davor; Lazović, Vladimir; Savić-Šević, Svetlana; Vasić, Borislav; Salatić, Branislav; Gajić, Radoš; Pantelić, Dejan; Jelenković, Branislav

(Belgrade : Institute of physics, 2018)

TY  - CONF
AU  - Kovačević, Aleksander G.
AU  - Petrović, Suzana
AU  - Lekić, Marina
AU  - Peruško, Davor
AU  - Lazović, Vladimir
AU  - Savić-Šević, Svetlana
AU  - Vasić, Borislav
AU  - Salatić, Branislav
AU  - Gajić, Radoš
AU  - Pantelić, Dejan
AU  - Jelenković, Branislav
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12275
PB  - Belgrade : Institute of physics
C3  - 11th Workshop on PHOTONICS : Book of abstracts
T1  - Formation of LIPSS on Al/Ti thin metal films by scanning of low-fluence femtosecond beam during cross-directional scanning
SP  - 34
EP  - 34
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12275
ER  - 
@conference{
author = "Kovačević, Aleksander G. and Petrović, Suzana and Lekić, Marina and Peruško, Davor and Lazović, Vladimir and Savić-Šević, Svetlana and Vasić, Borislav and Salatić, Branislav and Gajić, Radoš and Pantelić, Dejan and Jelenković, Branislav",
year = "2018",
publisher = "Belgrade : Institute of physics",
journal = "11th Workshop on PHOTONICS : Book of abstracts",
title = "Formation of LIPSS on Al/Ti thin metal films by scanning of low-fluence femtosecond beam during cross-directional scanning",
pages = "34-34",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12275"
}
Kovačević, A. G., Petrović, S., Lekić, M., Peruško, D., Lazović, V., Savić-Šević, S., Vasić, B., Salatić, B., Gajić, R., Pantelić, D.,& Jelenković, B.. (2018). Formation of LIPSS on Al/Ti thin metal films by scanning of low-fluence femtosecond beam during cross-directional scanning. in 11th Workshop on PHOTONICS : Book of abstracts
Belgrade : Institute of physics., 34-34.
https://hdl.handle.net/21.15107/rcub_vinar_12275
Kovačević AG, Petrović S, Lekić M, Peruško D, Lazović V, Savić-Šević S, Vasić B, Salatić B, Gajić R, Pantelić D, Jelenković B. Formation of LIPSS on Al/Ti thin metal films by scanning of low-fluence femtosecond beam during cross-directional scanning. in 11th Workshop on PHOTONICS : Book of abstracts. 2018;:34-34.
https://hdl.handle.net/21.15107/rcub_vinar_12275 .
Kovačević, Aleksander G., Petrović, Suzana, Lekić, Marina, Peruško, Davor, Lazović, Vladimir, Savić-Šević, Svetlana, Vasić, Borislav, Salatić, Branislav, Gajić, Radoš, Pantelić, Dejan, Jelenković, Branislav, "Formation of LIPSS on Al/Ti thin metal films by scanning of low-fluence femtosecond beam during cross-directional scanning" in 11th Workshop on PHOTONICS : Book of abstracts (2018):34-34,
https://hdl.handle.net/21.15107/rcub_vinar_12275 .

Formation of LIPSS on Al/Ti thin metal films by scanning of low-fluence femtosecond beam during multi-pass scanning

Kovačević, Aleksander G.; Petrović, Suzana; Lekić, Marina; Peruško, Davor; Lazović, Vladimir; Savić-Šević, Svetlana; Vasić, Borislav; Salatić, Branislav; Gajić, Radoš; Pantelić, Dejan; Jelenković, Branislav

(Belgrade : Institute of physics, 2018)

TY  - CONF
AU  - Kovačević, Aleksander G.
AU  - Petrović, Suzana
AU  - Lekić, Marina
AU  - Peruško, Davor
AU  - Lazović, Vladimir
AU  - Savić-Šević, Svetlana
AU  - Vasić, Borislav
AU  - Salatić, Branislav
AU  - Gajić, Radoš
AU  - Pantelić, Dejan
AU  - Jelenković, Branislav
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12276
PB  - Belgrade : Institute of physics
C3  - 11th Workshop on PHOTONICS : Book of abstracts
T1  - Formation of LIPSS on Al/Ti thin metal films by scanning of low-fluence femtosecond beam during multi-pass scanning
SP  - 35
EP  - 35
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12276
ER  - 
@conference{
author = "Kovačević, Aleksander G. and Petrović, Suzana and Lekić, Marina and Peruško, Davor and Lazović, Vladimir and Savić-Šević, Svetlana and Vasić, Borislav and Salatić, Branislav and Gajić, Radoš and Pantelić, Dejan and Jelenković, Branislav",
year = "2018",
publisher = "Belgrade : Institute of physics",
journal = "11th Workshop on PHOTONICS : Book of abstracts",
title = "Formation of LIPSS on Al/Ti thin metal films by scanning of low-fluence femtosecond beam during multi-pass scanning",
pages = "35-35",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12276"
}
Kovačević, A. G., Petrović, S., Lekić, M., Peruško, D., Lazović, V., Savić-Šević, S., Vasić, B., Salatić, B., Gajić, R., Pantelić, D.,& Jelenković, B.. (2018). Formation of LIPSS on Al/Ti thin metal films by scanning of low-fluence femtosecond beam during multi-pass scanning. in 11th Workshop on PHOTONICS : Book of abstracts
Belgrade : Institute of physics., 35-35.
https://hdl.handle.net/21.15107/rcub_vinar_12276
Kovačević AG, Petrović S, Lekić M, Peruško D, Lazović V, Savić-Šević S, Vasić B, Salatić B, Gajić R, Pantelić D, Jelenković B. Formation of LIPSS on Al/Ti thin metal films by scanning of low-fluence femtosecond beam during multi-pass scanning. in 11th Workshop on PHOTONICS : Book of abstracts. 2018;:35-35.
https://hdl.handle.net/21.15107/rcub_vinar_12276 .
Kovačević, Aleksander G., Petrović, Suzana, Lekić, Marina, Peruško, Davor, Lazović, Vladimir, Savić-Šević, Svetlana, Vasić, Borislav, Salatić, Branislav, Gajić, Radoš, Pantelić, Dejan, Jelenković, Branislav, "Formation of LIPSS on Al/Ti thin metal films by scanning of low-fluence femtosecond beam during multi-pass scanning" in 11th Workshop on PHOTONICS : Book of abstracts (2018):35-35,
https://hdl.handle.net/21.15107/rcub_vinar_12276 .

Laser-induced periodic structure on Ti and Ti/Al thin films for photocatalytic application

Pjević, Dejan J.; Peruško, Davor; Skoulas, E.; Stratakis, E.; Siketić, Z.; Bogdanović-Radović, Iva; Savić, Tatjana D.; Čomor, Mirjana; Petrović, S.

(Belgrade : Institute of Physics Belgrade, 2017)

TY  - CONF
AU  - Pjević, Dejan J.
AU  - Peruško, Davor
AU  - Skoulas, E.
AU  - Stratakis, E.
AU  - Siketić, Z.
AU  - Bogdanović-Radović, Iva
AU  - Savić, Tatjana D.
AU  - Čomor, Mirjana
AU  - Petrović, S.
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10946
AB  - Modification of single titanium and complex titanium-aluminium samples by laser processing in the femtosecond time domain is unexplored field. This work included a study of the effects caused by changes in the composition and morphology of the compact Ti thin film and multilayer Ti/5x(Al/Ti) structure. Titanium and its oxides have specific physical, chemical and mechanical properties, such as high corrosion resistance, good stability, high strength and porosity. Titanium−oxide materials in different types and forms have shown great potential as ideal and powerful photocatalysts for various significant reactions due to their chemical stability, nontoxicity, and high reactivity. Laser surface modification allows production of active surface with formation of the desired oxide, creation of nano/micro textures and change wettability of the surface. The samples were processed by focused an Yb:KGW laser beam with 1026 nm central wavelength, 170 fs pulse duration and repetition rate of 1 kHz. The laser-induced morphological and composition modifications have shown dependence on applied intensities and number of laser pulses. The formed surface nanostructures on the Ti and Ti/Al thin film surface (5x5 mm) are obtained in scanning regime. The results show an increase in surface roughness, formation of parallel periodic surface structures, appearance of hydrodynamic features and ablation of surface material. At low pulse energies range (not over 0.01 mJ) and effective 50 pulses, the two types of LIPSS can be observed: low and high spatial frequency LIPSS (HSFL and LSFL). The low spatial frequency LIPSS (LSFL), oriented perpendicular to the laser polarization with periods slightly lower than the irradiation wavelength, was typically formed. The laser-induced surface oxidation was analysed by Elastic Recoil Detection Analysis (ERDA) in the subsurface part of the investigated samples, which indicates formation Ti-oxide and mixture of Al- and Ti-oxide in the case of multilayer structure. Photocatalytic degradation rate on the laser irradiated surface of Ti and Ti/Al thin films was compared with unmodified samples. The rate of photo-degradation was associated with changes in structure of Ti-oxide and in increasing of surface roughness with formation of periodic structure.
PB  - Belgrade : Institute of Physics Belgrade
C3  - PHOTONICA2017 : 6th International School and Conference on Photonics and COST actions: MP1406 and MP1402 : Program and the book of abstracts
T1  - Laser-induced periodic structure on Ti and Ti/Al thin films for photocatalytic application
SP  - 177
UR  - https://hdl.handle.net/21.15107/rcub_vinar_10946
ER  - 
@conference{
author = "Pjević, Dejan J. and Peruško, Davor and Skoulas, E. and Stratakis, E. and Siketić, Z. and Bogdanović-Radović, Iva and Savić, Tatjana D. and Čomor, Mirjana and Petrović, S.",
year = "2017",
abstract = "Modification of single titanium and complex titanium-aluminium samples by laser processing in the femtosecond time domain is unexplored field. This work included a study of the effects caused by changes in the composition and morphology of the compact Ti thin film and multilayer Ti/5x(Al/Ti) structure. Titanium and its oxides have specific physical, chemical and mechanical properties, such as high corrosion resistance, good stability, high strength and porosity. Titanium−oxide materials in different types and forms have shown great potential as ideal and powerful photocatalysts for various significant reactions due to their chemical stability, nontoxicity, and high reactivity. Laser surface modification allows production of active surface with formation of the desired oxide, creation of nano/micro textures and change wettability of the surface. The samples were processed by focused an Yb:KGW laser beam with 1026 nm central wavelength, 170 fs pulse duration and repetition rate of 1 kHz. The laser-induced morphological and composition modifications have shown dependence on applied intensities and number of laser pulses. The formed surface nanostructures on the Ti and Ti/Al thin film surface (5x5 mm) are obtained in scanning regime. The results show an increase in surface roughness, formation of parallel periodic surface structures, appearance of hydrodynamic features and ablation of surface material. At low pulse energies range (not over 0.01 mJ) and effective 50 pulses, the two types of LIPSS can be observed: low and high spatial frequency LIPSS (HSFL and LSFL). The low spatial frequency LIPSS (LSFL), oriented perpendicular to the laser polarization with periods slightly lower than the irradiation wavelength, was typically formed. The laser-induced surface oxidation was analysed by Elastic Recoil Detection Analysis (ERDA) in the subsurface part of the investigated samples, which indicates formation Ti-oxide and mixture of Al- and Ti-oxide in the case of multilayer structure. Photocatalytic degradation rate on the laser irradiated surface of Ti and Ti/Al thin films was compared with unmodified samples. The rate of photo-degradation was associated with changes in structure of Ti-oxide and in increasing of surface roughness with formation of periodic structure.",
publisher = "Belgrade : Institute of Physics Belgrade",
journal = "PHOTONICA2017 : 6th International School and Conference on Photonics and COST actions: MP1406 and MP1402 : Program and the book of abstracts",
title = "Laser-induced periodic structure on Ti and Ti/Al thin films for photocatalytic application",
pages = "177",
url = "https://hdl.handle.net/21.15107/rcub_vinar_10946"
}
Pjević, D. J., Peruško, D., Skoulas, E., Stratakis, E., Siketić, Z., Bogdanović-Radović, I., Savić, T. D., Čomor, M.,& Petrović, S.. (2017). Laser-induced periodic structure on Ti and Ti/Al thin films for photocatalytic application. in PHOTONICA2017 : 6th International School and Conference on Photonics and COST actions: MP1406 and MP1402 : Program and the book of abstracts
Belgrade : Institute of Physics Belgrade., 177.
https://hdl.handle.net/21.15107/rcub_vinar_10946
Pjević DJ, Peruško D, Skoulas E, Stratakis E, Siketić Z, Bogdanović-Radović I, Savić TD, Čomor M, Petrović S. Laser-induced periodic structure on Ti and Ti/Al thin films for photocatalytic application. in PHOTONICA2017 : 6th International School and Conference on Photonics and COST actions: MP1406 and MP1402 : Program and the book of abstracts. 2017;:177.
https://hdl.handle.net/21.15107/rcub_vinar_10946 .
Pjević, Dejan J., Peruško, Davor, Skoulas, E., Stratakis, E., Siketić, Z., Bogdanović-Radović, Iva, Savić, Tatjana D., Čomor, Mirjana, Petrović, S., "Laser-induced periodic structure on Ti and Ti/Al thin films for photocatalytic application" in PHOTONICA2017 : 6th International School and Conference on Photonics and COST actions: MP1406 and MP1402 : Program and the book of abstracts (2017):177,
https://hdl.handle.net/21.15107/rcub_vinar_10946 .

Inducing periodic structures on multilayers of Ti and Ta by femtosecond laser beam

Kovačević, Aleksander; Petrović, Suzana; Peruško, Davor; Lazović, Vladimir; Bogdanović-Radović, Iva; Pavlović, Vladimir B.; Pantelić, Dejan; Jelenković, Branislav

(Belgrade : Institute of Physics Belgrade, 2017)

TY  - CONF
AU  - Kovačević, Aleksander
AU  - Petrović, Suzana
AU  - Peruško, Davor
AU  - Lazović, Vladimir
AU  - Bogdanović-Radović, Iva
AU  - Pavlović, Vladimir B.
AU  - Pantelić, Dejan
AU  - Jelenković, Branislav
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10947
AB  - Nanostructuring of surfaces by femtosecond (fs) laser beam interaction is the topic of research for some time [1]. The emergence of the laser-induced periodic surface structures (LIPSS) on metal-dielectric surfaces is of interest from fundamental and application points of view. The interaction of fs beam with thin films can also generate LIPSS, with the arrangement of thin films in multi-layer structure being important for the quality of the LIPSS [2]. Excellent properties of titanium (Ti) and tantalum (Ta), like corrosion resistance, heat transfer properties and workability, recommend them as useful materials for a wide range of applications - heat exchangers, reactors, and others exposed to extremely corrosive fluids. Combining Ti and Ta could be attractive for applications, but challenging, as they have great difference in melting point and density, therefore, TiTa alloys are still not widely adopted in applications [3]. We have performed the interaction of fs laser beam with multilayer Ti/Ta samples in order to investigate the effects of interaction with ultra-short pulses to surface morphology and to both surface and bulk chemistry of newly generated compounds. Each layer of the sample was 17 nm thick. The interactions were in two regimes: dynamic and static, depending whether the beam scanned over the sample surface or not. SEM and PIXE RBS analyses have shown the LIPSS formed with or without ablation depending on the beam fluence. The LIPSS orientation is dependent on the input beam polarization. Both types of LIPSS were formed, low- and highspatial frequency LIPSS, with periods being as low as 120 nm.
PB  - Belgrade : Institute of Physics Belgrade
C3  - PHOTONICA2017 : 6th International School and Conference on Photonics and COST actions: MP1406 and MP1402 : Program and the book of abstracts
T1  - Inducing periodic structures on multilayers of Ti and Ta by femtosecond laser beam
SP  - 179
UR  - https://hdl.handle.net/21.15107/rcub_vinar_10947
ER  - 
@conference{
author = "Kovačević, Aleksander and Petrović, Suzana and Peruško, Davor and Lazović, Vladimir and Bogdanović-Radović, Iva and Pavlović, Vladimir B. and Pantelić, Dejan and Jelenković, Branislav",
year = "2017",
abstract = "Nanostructuring of surfaces by femtosecond (fs) laser beam interaction is the topic of research for some time [1]. The emergence of the laser-induced periodic surface structures (LIPSS) on metal-dielectric surfaces is of interest from fundamental and application points of view. The interaction of fs beam with thin films can also generate LIPSS, with the arrangement of thin films in multi-layer structure being important for the quality of the LIPSS [2]. Excellent properties of titanium (Ti) and tantalum (Ta), like corrosion resistance, heat transfer properties and workability, recommend them as useful materials for a wide range of applications - heat exchangers, reactors, and others exposed to extremely corrosive fluids. Combining Ti and Ta could be attractive for applications, but challenging, as they have great difference in melting point and density, therefore, TiTa alloys are still not widely adopted in applications [3]. We have performed the interaction of fs laser beam with multilayer Ti/Ta samples in order to investigate the effects of interaction with ultra-short pulses to surface morphology and to both surface and bulk chemistry of newly generated compounds. Each layer of the sample was 17 nm thick. The interactions were in two regimes: dynamic and static, depending whether the beam scanned over the sample surface or not. SEM and PIXE RBS analyses have shown the LIPSS formed with or without ablation depending on the beam fluence. The LIPSS orientation is dependent on the input beam polarization. Both types of LIPSS were formed, low- and highspatial frequency LIPSS, with periods being as low as 120 nm.",
publisher = "Belgrade : Institute of Physics Belgrade",
journal = "PHOTONICA2017 : 6th International School and Conference on Photonics and COST actions: MP1406 and MP1402 : Program and the book of abstracts",
title = "Inducing periodic structures on multilayers of Ti and Ta by femtosecond laser beam",
pages = "179",
url = "https://hdl.handle.net/21.15107/rcub_vinar_10947"
}
Kovačević, A., Petrović, S., Peruško, D., Lazović, V., Bogdanović-Radović, I., Pavlović, V. B., Pantelić, D.,& Jelenković, B.. (2017). Inducing periodic structures on multilayers of Ti and Ta by femtosecond laser beam. in PHOTONICA2017 : 6th International School and Conference on Photonics and COST actions: MP1406 and MP1402 : Program and the book of abstracts
Belgrade : Institute of Physics Belgrade., 179.
https://hdl.handle.net/21.15107/rcub_vinar_10947
Kovačević A, Petrović S, Peruško D, Lazović V, Bogdanović-Radović I, Pavlović VB, Pantelić D, Jelenković B. Inducing periodic structures on multilayers of Ti and Ta by femtosecond laser beam. in PHOTONICA2017 : 6th International School and Conference on Photonics and COST actions: MP1406 and MP1402 : Program and the book of abstracts. 2017;:179.
https://hdl.handle.net/21.15107/rcub_vinar_10947 .
Kovačević, Aleksander, Petrović, Suzana, Peruško, Davor, Lazović, Vladimir, Bogdanović-Radović, Iva, Pavlović, Vladimir B., Pantelić, Dejan, Jelenković, Branislav, "Inducing periodic structures on multilayers of Ti and Ta by femtosecond laser beam" in PHOTONICA2017 : 6th International School and Conference on Photonics and COST actions: MP1406 and MP1402 : Program and the book of abstracts (2017):179,
https://hdl.handle.net/21.15107/rcub_vinar_10947 .

Femtosecond laser processing of NiPd single and 5x(Ni/Pd) multilayer thin films

Petrović, Suzana; Gaković, Biljana M.; Zamfirescu, M.; Radu, C.; Peruško, Davor; Radak, Bojan; Ristoscu, Carmen; Zdravković, Slobodan; Luculescu, C. L.; Mihailescu, Ion N.

(2017)

TY  - JOUR
AU  - Petrović, Suzana
AU  - Gaković, Biljana M.
AU  - Zamfirescu, M.
AU  - Radu, C.
AU  - Peruško, Davor
AU  - Radak, Bojan
AU  - Ristoscu, Carmen
AU  - Zdravković, Slobodan
AU  - Luculescu, C. L.
AU  - Mihailescu, Ion N.
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7164
AB  - Modification of single and complex nickel-palladium samples by laser processing in the femtosecond time domain was studied. The samples were processed by focused Ti:Sapphire laser beam (Clark CPA-2101) with 775 nm laser wavelength, 2 kHz repetition rate, 200 fs pulse duration. The laser-induced morphological modifications have shown dependence on the applied fluences and number of laser pulses. The formed surface nanostructures on the single NiPd/Si and multilayer 5x(Ni/Pd)/Si systems are compared with individual Ni and Pd thin films. The results show an increase in surface roughness, formation of parallel periodic surface structures, appearance of hydrodynamic features and ablation of surface material. At low number of pulses (less than 10 pulses) and low pulse energies range (not over 1.7 mu J), the two types of laser-induced periodic surface structure (LIPSS) can be observed: low and high spatial frequency LIPSS (HSFL and LSFL). For all samples, the measured LSFL periods were 720 nm for the ripples created solely on thin film surfaces during the single pulse action. In the case of the multi-pulse irradiation, the periodicities of created LSFLs on the all investigated thin films have shown tendency to reduction with increasing of pulse energies. (C) 2016 Elsevier B.V. All rights reserved.
T2  - Applied Surface Science
T1  - Femtosecond laser processing of NiPd single and 5x(Ni/Pd) multilayer thin films
VL  - 417
SP  - 16
EP  - 22
DO  - 10.1016/j.apsusc.2016.12.142
ER  - 
@article{
author = "Petrović, Suzana and Gaković, Biljana M. and Zamfirescu, M. and Radu, C. and Peruško, Davor and Radak, Bojan and Ristoscu, Carmen and Zdravković, Slobodan and Luculescu, C. L. and Mihailescu, Ion N.",
year = "2017",
abstract = "Modification of single and complex nickel-palladium samples by laser processing in the femtosecond time domain was studied. The samples were processed by focused Ti:Sapphire laser beam (Clark CPA-2101) with 775 nm laser wavelength, 2 kHz repetition rate, 200 fs pulse duration. The laser-induced morphological modifications have shown dependence on the applied fluences and number of laser pulses. The formed surface nanostructures on the single NiPd/Si and multilayer 5x(Ni/Pd)/Si systems are compared with individual Ni and Pd thin films. The results show an increase in surface roughness, formation of parallel periodic surface structures, appearance of hydrodynamic features and ablation of surface material. At low number of pulses (less than 10 pulses) and low pulse energies range (not over 1.7 mu J), the two types of laser-induced periodic surface structure (LIPSS) can be observed: low and high spatial frequency LIPSS (HSFL and LSFL). For all samples, the measured LSFL periods were 720 nm for the ripples created solely on thin film surfaces during the single pulse action. In the case of the multi-pulse irradiation, the periodicities of created LSFLs on the all investigated thin films have shown tendency to reduction with increasing of pulse energies. (C) 2016 Elsevier B.V. All rights reserved.",
journal = "Applied Surface Science",
title = "Femtosecond laser processing of NiPd single and 5x(Ni/Pd) multilayer thin films",
volume = "417",
pages = "16-22",
doi = "10.1016/j.apsusc.2016.12.142"
}
Petrović, S., Gaković, B. M., Zamfirescu, M., Radu, C., Peruško, D., Radak, B., Ristoscu, C., Zdravković, S., Luculescu, C. L.,& Mihailescu, I. N.. (2017). Femtosecond laser processing of NiPd single and 5x(Ni/Pd) multilayer thin films. in Applied Surface Science, 417, 16-22.
https://doi.org/10.1016/j.apsusc.2016.12.142
Petrović S, Gaković BM, Zamfirescu M, Radu C, Peruško D, Radak B, Ristoscu C, Zdravković S, Luculescu CL, Mihailescu IN. Femtosecond laser processing of NiPd single and 5x(Ni/Pd) multilayer thin films. in Applied Surface Science. 2017;417:16-22.
doi:10.1016/j.apsusc.2016.12.142 .
Petrović, Suzana, Gaković, Biljana M., Zamfirescu, M., Radu, C., Peruško, Davor, Radak, Bojan, Ristoscu, Carmen, Zdravković, Slobodan, Luculescu, C. L., Mihailescu, Ion N., "Femtosecond laser processing of NiPd single and 5x(Ni/Pd) multilayer thin films" in Applied Surface Science, 417 (2017):16-22,
https://doi.org/10.1016/j.apsusc.2016.12.142 . .
5
2
5

Laser ablation of nickel/palladium multilayer thin films by nanosecond pulses

Salatić, Branislav; Petrović, Suzana; Bogdanović-Radović, Iva; Čekada, M.; Panjan, P.; Pantelić, D.; Jelenković, B.; Peruško, Davor

(Belgrade : Institute of Physics Belgrade, 2017)

TY  - CONF
AU  - Salatić, Branislav
AU  - Petrović, Suzana
AU  - Bogdanović-Radović, Iva
AU  - Čekada, M.
AU  - Panjan, P.
AU  - Pantelić, D.
AU  - Jelenković, B.
AU  - Peruško, Davor
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10944
AB  - Metallic thin films, based on nickel (Ni) and palladium (Pd)are promising material for a wide range of application, as catalytic components [1], optical devices [2], photovoltaic gas sensors [3], dye sensitized solar cells [4], and especially for environmental purposes [5]. The potential of nanosecond laser micro-processing for surface modification of nickel-palladium (Ni/Pd) multilayer thin film deposited on n-type (100) silicon wafer was studied. The multilayer structure composed of five bilayer (Pd/Ni) was deposited by d.c.sputtering from a pure Ni and Pd targets, using Ar ions, to a total thickness of about 180 nm. These multilayer thin films were then exposed to various number of pulses of Er:Glass laser, operating at 1540 nm wavelength with pulse duration of 44 ns. Multi-pulse laser irradiations were done at an incidence angle of 90 in an ambient air environment. The changes of the composition and surface morphology in the 5x(Pd/Ni)/Si system were monitored by Particle Induced X-Ray Emission (PIXE), by Rutherford backscattering spectrometry (RBS), by scanning electron microscopy (SEM) and by profilometry. The main part of the absorbed laser energy was rapidly transformed into heat, producing intensive modifications of composition and morphology on the multilayer surface. The results show an increase in surface roughness, formation of a specific surface topography, appearance of hydrodynamic features and ablation of surface material without shallow or deep crater like characteristics. RBS analysis revealed that laser modification was induced intermixing between the individual Ni and Pd layers, but also with silicon substrate. During the laser processing of 5x(Pd/Ni)/Si system delivered energy was probably sufficient to cause solid-state reactions, the formation of intermetallic compounds and silicides with Ni and Pd. An interesting finding is the 5x(Pd/Ni)/Si thin film has undergone some changes in the chemical composition and structure in the irradiated areas, indicating better crystallinity with an increase of the number of applied pulses.
PB  - Belgrade : Institute of Physics Belgrade
C3  - PHOTONICA2017 : 6th International School and Conference on Photonics and COST actions: MP1406 and MP1402 : Program and the book of abstracts
T1  - Laser ablation of nickel/palladium multilayer thin films by nanosecond pulses
SP  - 173
UR  - https://hdl.handle.net/21.15107/rcub_vinar_10944
ER  - 
@conference{
author = "Salatić, Branislav and Petrović, Suzana and Bogdanović-Radović, Iva and Čekada, M. and Panjan, P. and Pantelić, D. and Jelenković, B. and Peruško, Davor",
year = "2017",
abstract = "Metallic thin films, based on nickel (Ni) and palladium (Pd)are promising material for a wide range of application, as catalytic components [1], optical devices [2], photovoltaic gas sensors [3], dye sensitized solar cells [4], and especially for environmental purposes [5]. The potential of nanosecond laser micro-processing for surface modification of nickel-palladium (Ni/Pd) multilayer thin film deposited on n-type (100) silicon wafer was studied. The multilayer structure composed of five bilayer (Pd/Ni) was deposited by d.c.sputtering from a pure Ni and Pd targets, using Ar ions, to a total thickness of about 180 nm. These multilayer thin films were then exposed to various number of pulses of Er:Glass laser, operating at 1540 nm wavelength with pulse duration of 44 ns. Multi-pulse laser irradiations were done at an incidence angle of 90 in an ambient air environment. The changes of the composition and surface morphology in the 5x(Pd/Ni)/Si system were monitored by Particle Induced X-Ray Emission (PIXE), by Rutherford backscattering spectrometry (RBS), by scanning electron microscopy (SEM) and by profilometry. The main part of the absorbed laser energy was rapidly transformed into heat, producing intensive modifications of composition and morphology on the multilayer surface. The results show an increase in surface roughness, formation of a specific surface topography, appearance of hydrodynamic features and ablation of surface material without shallow or deep crater like characteristics. RBS analysis revealed that laser modification was induced intermixing between the individual Ni and Pd layers, but also with silicon substrate. During the laser processing of 5x(Pd/Ni)/Si system delivered energy was probably sufficient to cause solid-state reactions, the formation of intermetallic compounds and silicides with Ni and Pd. An interesting finding is the 5x(Pd/Ni)/Si thin film has undergone some changes in the chemical composition and structure in the irradiated areas, indicating better crystallinity with an increase of the number of applied pulses.",
publisher = "Belgrade : Institute of Physics Belgrade",
journal = "PHOTONICA2017 : 6th International School and Conference on Photonics and COST actions: MP1406 and MP1402 : Program and the book of abstracts",
title = "Laser ablation of nickel/palladium multilayer thin films by nanosecond pulses",
pages = "173",
url = "https://hdl.handle.net/21.15107/rcub_vinar_10944"
}
Salatić, B., Petrović, S., Bogdanović-Radović, I., Čekada, M., Panjan, P., Pantelić, D., Jelenković, B.,& Peruško, D.. (2017). Laser ablation of nickel/palladium multilayer thin films by nanosecond pulses. in PHOTONICA2017 : 6th International School and Conference on Photonics and COST actions: MP1406 and MP1402 : Program and the book of abstracts
Belgrade : Institute of Physics Belgrade., 173.
https://hdl.handle.net/21.15107/rcub_vinar_10944
Salatić B, Petrović S, Bogdanović-Radović I, Čekada M, Panjan P, Pantelić D, Jelenković B, Peruško D. Laser ablation of nickel/palladium multilayer thin films by nanosecond pulses. in PHOTONICA2017 : 6th International School and Conference on Photonics and COST actions: MP1406 and MP1402 : Program and the book of abstracts. 2017;:173.
https://hdl.handle.net/21.15107/rcub_vinar_10944 .
Salatić, Branislav, Petrović, Suzana, Bogdanović-Radović, Iva, Čekada, M., Panjan, P., Pantelić, D., Jelenković, B., Peruško, Davor, "Laser ablation of nickel/palladium multilayer thin films by nanosecond pulses" in PHOTONICA2017 : 6th International School and Conference on Photonics and COST actions: MP1406 and MP1402 : Program and the book of abstracts (2017):173,
https://hdl.handle.net/21.15107/rcub_vinar_10944 .

Laser induced mixing in multilayered Ti/Ta thin film structures

Obradović, Marko O.; Kovač, Janez; Petrović, Suzana; Lazović, Vladimir M.; Salatić, Branislav; Ciganović, Jovan; Pjević, Dejan J.; Milosavljević, Momir; Peruško, Davor

(Belgrade : Institute of Physics Belgrade, 2017)

TY  - CONF
AU  - Obradović, Marko O.
AU  - Kovač, Janez
AU  - Petrović, Suzana
AU  - Lazović, Vladimir M.
AU  - Salatić, Branislav
AU  - Ciganović, Jovan
AU  - Pjević, Dejan J.
AU  - Milosavljević, Momir
AU  - Peruško, Davor
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10948
AB  - Metallic biomaterials should exhibit excellent biocompatibility, high corrosion resistance and low elastic modulus which are close to that of human bones. It was shown that in this sence Ti-Ta alloys have considerably better mechanical properties compared to pure titanium or tantalum [1, 2]. The main purpose of these experiments was investigation of possibility to induce interlayer mixing in an Ti/Ta immiscible multilayer system by laser irradiation.The absence of interlayer mixing was previously shown on this system during the Ar+ ion irradiation up to relatively high fluence of 2x1016 ions cm-2 [3]. The system consisted of ten alternate Ti and Ta thin films (~18 nm each) and covered by slightly thicker Ti layer (~27 nm) on the top with the purpose of creating an appropriate porous structure very important for potential biocompatibility [4]. Structure was deposited on Si (100) wafers to a total thickness of 205 nm. Laser irradiation was performed in air by picoseconds Nd: YAG laser. Defocused laser pulses had a laser spot on the sample surface of 3 mm in diameter and fluences of 0.057 and 0.11 J cm-2 . Laser beam was scanned over the 5x5 mm2 surface area with different steps along y-axes to provide a variation in deposited energy density. For structural and compositional characterisation following methods were used: Auger electron spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy and scanning electron microscopy. The obtained results show that laser processing at a lower fluence causes only oxidation of the top Ti layer, invariable to the number of applied laser pulses and no interlayer mixing was observed. Appliance of laser pulses at fluence of 0.11 J cm-2 , on the other hand, caused significant increase of surface roughness and partial and/or complete ablation of deposited layers, but in partially ablated regions considerable mixing between Ti and Ta films was registered. These experiments indicate that the use of picoseconds laser pulses with fluences in interval (0.057 – 0.11) J cm-2 could be very useful for mixing of titanium and tantalum layers and fabrication of a new material for medical implants. Suitable choice of films thicknesses would lead to the desired composition of this alloy.
PB  - Belgrade : Institute of Physics Belgrade
C3  - PHOTONICA2017 : 6th International School and Conference on Photonics and COST actions: MP1406 and MP1402 : Program and the book of abstracts
T1  - Laser induced mixing in multilayered Ti/Ta thin film structures
SP  - 182
UR  - https://hdl.handle.net/21.15107/rcub_vinar_10948
ER  - 
@conference{
author = "Obradović, Marko O. and Kovač, Janez and Petrović, Suzana and Lazović, Vladimir M. and Salatić, Branislav and Ciganović, Jovan and Pjević, Dejan J. and Milosavljević, Momir and Peruško, Davor",
year = "2017",
abstract = "Metallic biomaterials should exhibit excellent biocompatibility, high corrosion resistance and low elastic modulus which are close to that of human bones. It was shown that in this sence Ti-Ta alloys have considerably better mechanical properties compared to pure titanium or tantalum [1, 2]. The main purpose of these experiments was investigation of possibility to induce interlayer mixing in an Ti/Ta immiscible multilayer system by laser irradiation.The absence of interlayer mixing was previously shown on this system during the Ar+ ion irradiation up to relatively high fluence of 2x1016 ions cm-2 [3]. The system consisted of ten alternate Ti and Ta thin films (~18 nm each) and covered by slightly thicker Ti layer (~27 nm) on the top with the purpose of creating an appropriate porous structure very important for potential biocompatibility [4]. Structure was deposited on Si (100) wafers to a total thickness of 205 nm. Laser irradiation was performed in air by picoseconds Nd: YAG laser. Defocused laser pulses had a laser spot on the sample surface of 3 mm in diameter and fluences of 0.057 and 0.11 J cm-2 . Laser beam was scanned over the 5x5 mm2 surface area with different steps along y-axes to provide a variation in deposited energy density. For structural and compositional characterisation following methods were used: Auger electron spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy and scanning electron microscopy. The obtained results show that laser processing at a lower fluence causes only oxidation of the top Ti layer, invariable to the number of applied laser pulses and no interlayer mixing was observed. Appliance of laser pulses at fluence of 0.11 J cm-2 , on the other hand, caused significant increase of surface roughness and partial and/or complete ablation of deposited layers, but in partially ablated regions considerable mixing between Ti and Ta films was registered. These experiments indicate that the use of picoseconds laser pulses with fluences in interval (0.057 – 0.11) J cm-2 could be very useful for mixing of titanium and tantalum layers and fabrication of a new material for medical implants. Suitable choice of films thicknesses would lead to the desired composition of this alloy.",
publisher = "Belgrade : Institute of Physics Belgrade",
journal = "PHOTONICA2017 : 6th International School and Conference on Photonics and COST actions: MP1406 and MP1402 : Program and the book of abstracts",
title = "Laser induced mixing in multilayered Ti/Ta thin film structures",
pages = "182",
url = "https://hdl.handle.net/21.15107/rcub_vinar_10948"
}
Obradović, M. O., Kovač, J., Petrović, S., Lazović, V. M., Salatić, B., Ciganović, J., Pjević, D. J., Milosavljević, M.,& Peruško, D.. (2017). Laser induced mixing in multilayered Ti/Ta thin film structures. in PHOTONICA2017 : 6th International School and Conference on Photonics and COST actions: MP1406 and MP1402 : Program and the book of abstracts
Belgrade : Institute of Physics Belgrade., 182.
https://hdl.handle.net/21.15107/rcub_vinar_10948
Obradović MO, Kovač J, Petrović S, Lazović VM, Salatić B, Ciganović J, Pjević DJ, Milosavljević M, Peruško D. Laser induced mixing in multilayered Ti/Ta thin film structures. in PHOTONICA2017 : 6th International School and Conference on Photonics and COST actions: MP1406 and MP1402 : Program and the book of abstracts. 2017;:182.
https://hdl.handle.net/21.15107/rcub_vinar_10948 .
Obradović, Marko O., Kovač, Janez, Petrović, Suzana, Lazović, Vladimir M., Salatić, Branislav, Ciganović, Jovan, Pjević, Dejan J., Milosavljević, Momir, Peruško, Davor, "Laser induced mixing in multilayered Ti/Ta thin film structures" in PHOTONICA2017 : 6th International School and Conference on Photonics and COST actions: MP1406 and MP1402 : Program and the book of abstracts (2017):182,
https://hdl.handle.net/21.15107/rcub_vinar_10948 .

Selective Al-Ti reactivity in laser-processed Al/Ti multilayers

Peruško, Davor; Kovač, Janez; Petrović, Suzana; Obradović, Marko O.; Mitrić, Miodrag; Pavlović, Vladimir B.; Salatić, Branislav; Jaksa, G.; Ciganović, Jovan; Milosavljević, Momir

(2017)

TY  - JOUR
AU  - Peruško, Davor
AU  - Kovač, Janez
AU  - Petrović, Suzana
AU  - Obradović, Marko O.
AU  - Mitrić, Miodrag
AU  - Pavlović, Vladimir B.
AU  - Salatić, Branislav
AU  - Jaksa, G.
AU  - Ciganović, Jovan
AU  - Milosavljević, Momir
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1725
AB  - Multilayers consisting of five (Al/Ti) bilayers were deposited on (100) silicon wafers. On top was deposited the Ti layer, aimed at preventing Al from diffusing to the surface upon laser treatment. The total thickness of the thin-film structure was 200 nm. Laser irradiations with Nd:YAG picoseconds laser pulses in the defocused regime were performed in air. Laser beam energy was 4 mJ and laser spot diameter on the sample surface was 3 mm (fluence 0.057 J cm(-2)). The samples were treated with different numbers of laser pulses. Structural characterizations were performed by different analytical methods and nano-hardness was also measured. Laser processing induced layer intermixing, formation of titanium aluminides, oxidation of the surface titanium layer and enhanced surface roughness. Aluminum appears at the sample surface only for the highest density of laser irradiation. Laser processing induces increment of nano-hardness by approximately 20% and decrease of residual Youngs modulus for a few percentages from the starting value of the untreated samples. These results can be interesting toward achieving structures with a selective extent of Al-Ti reactivity in this multilayered system, within the development of biocompatible materials.
T2  - Materials and Manufacturing Processes
T1  - Selective Al-Ti reactivity in laser-processed Al/Ti multilayers
VL  - 32
IS  - 14
SP  - 1622
EP  - 1627
DO  - 10.1080/10426914.2017.1279299
ER  - 
@article{
author = "Peruško, Davor and Kovač, Janez and Petrović, Suzana and Obradović, Marko O. and Mitrić, Miodrag and Pavlović, Vladimir B. and Salatić, Branislav and Jaksa, G. and Ciganović, Jovan and Milosavljević, Momir",
year = "2017",
abstract = "Multilayers consisting of five (Al/Ti) bilayers were deposited on (100) silicon wafers. On top was deposited the Ti layer, aimed at preventing Al from diffusing to the surface upon laser treatment. The total thickness of the thin-film structure was 200 nm. Laser irradiations with Nd:YAG picoseconds laser pulses in the defocused regime were performed in air. Laser beam energy was 4 mJ and laser spot diameter on the sample surface was 3 mm (fluence 0.057 J cm(-2)). The samples were treated with different numbers of laser pulses. Structural characterizations were performed by different analytical methods and nano-hardness was also measured. Laser processing induced layer intermixing, formation of titanium aluminides, oxidation of the surface titanium layer and enhanced surface roughness. Aluminum appears at the sample surface only for the highest density of laser irradiation. Laser processing induces increment of nano-hardness by approximately 20% and decrease of residual Youngs modulus for a few percentages from the starting value of the untreated samples. These results can be interesting toward achieving structures with a selective extent of Al-Ti reactivity in this multilayered system, within the development of biocompatible materials.",
journal = "Materials and Manufacturing Processes",
title = "Selective Al-Ti reactivity in laser-processed Al/Ti multilayers",
volume = "32",
number = "14",
pages = "1622-1627",
doi = "10.1080/10426914.2017.1279299"
}
Peruško, D., Kovač, J., Petrović, S., Obradović, M. O., Mitrić, M., Pavlović, V. B., Salatić, B., Jaksa, G., Ciganović, J.,& Milosavljević, M.. (2017). Selective Al-Ti reactivity in laser-processed Al/Ti multilayers. in Materials and Manufacturing Processes, 32(14), 1622-1627.
https://doi.org/10.1080/10426914.2017.1279299
Peruško D, Kovač J, Petrović S, Obradović MO, Mitrić M, Pavlović VB, Salatić B, Jaksa G, Ciganović J, Milosavljević M. Selective Al-Ti reactivity in laser-processed Al/Ti multilayers. in Materials and Manufacturing Processes. 2017;32(14):1622-1627.
doi:10.1080/10426914.2017.1279299 .
Peruško, Davor, Kovač, Janez, Petrović, Suzana, Obradović, Marko O., Mitrić, Miodrag, Pavlović, Vladimir B., Salatić, Branislav, Jaksa, G., Ciganović, Jovan, Milosavljević, Momir, "Selective Al-Ti reactivity in laser-processed Al/Ti multilayers" in Materials and Manufacturing Processes, 32, no. 14 (2017):1622-1627,
https://doi.org/10.1080/10426914.2017.1279299 . .
2
2
2

Inducing subwavelength periodic nanostructures on multilayer NiPd thin film by low-fluence femtosecond laser beam

Kovačević, Aleksander; Petrović, Suzana; Lazović, Vladimir M.; Peruško, Davor; Pantelić, Dejan; Jelenković, Branislav

(2017)

TY  - JOUR
AU  - Kovačević, Aleksander
AU  - Petrović, Suzana
AU  - Lazović, Vladimir M.
AU  - Peruško, Davor
AU  - Pantelić, Dejan
AU  - Jelenković, Branislav
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7165
AB  - During femtosecond interaction with surfaces, the processes of liquid and solid-state dewetting could be responsible for the generation and regrouping of nanoparticles and nanoparticle clusters. The occurrence of surface plasmon polariton most probably induces the LIPSS arrangement. We have used low-fluence scanning femtosecond beam to generate sub-wavelength periodic structures on multilayer Ni/Pd thin films on Si. The spatial period of LIPSS increases with the change of scanning directions in respect to the polarization direction due to the phase difference increase between the incoming and induced oscillations. (c) 2017 Elsevier B.V. All rights reserved.
T2  - Applied Surface Science
T1  - Inducing subwavelength periodic nanostructures on multilayer NiPd thin film by low-fluence femtosecond laser beam
VL  - 417
SP  - 155
EP  - 159
DO  - 10.1016/j.apsusc.2017.03.141
ER  - 
@article{
author = "Kovačević, Aleksander and Petrović, Suzana and Lazović, Vladimir M. and Peruško, Davor and Pantelić, Dejan and Jelenković, Branislav",
year = "2017",
abstract = "During femtosecond interaction with surfaces, the processes of liquid and solid-state dewetting could be responsible for the generation and regrouping of nanoparticles and nanoparticle clusters. The occurrence of surface plasmon polariton most probably induces the LIPSS arrangement. We have used low-fluence scanning femtosecond beam to generate sub-wavelength periodic structures on multilayer Ni/Pd thin films on Si. The spatial period of LIPSS increases with the change of scanning directions in respect to the polarization direction due to the phase difference increase between the incoming and induced oscillations. (c) 2017 Elsevier B.V. All rights reserved.",
journal = "Applied Surface Science",
title = "Inducing subwavelength periodic nanostructures on multilayer NiPd thin film by low-fluence femtosecond laser beam",
volume = "417",
pages = "155-159",
doi = "10.1016/j.apsusc.2017.03.141"
}
Kovačević, A., Petrović, S., Lazović, V. M., Peruško, D., Pantelić, D.,& Jelenković, B.. (2017). Inducing subwavelength periodic nanostructures on multilayer NiPd thin film by low-fluence femtosecond laser beam. in Applied Surface Science, 417, 155-159.
https://doi.org/10.1016/j.apsusc.2017.03.141
Kovačević A, Petrović S, Lazović VM, Peruško D, Pantelić D, Jelenković B. Inducing subwavelength periodic nanostructures on multilayer NiPd thin film by low-fluence femtosecond laser beam. in Applied Surface Science. 2017;417:155-159.
doi:10.1016/j.apsusc.2017.03.141 .
Kovačević, Aleksander, Petrović, Suzana, Lazović, Vladimir M., Peruško, Davor, Pantelić, Dejan, Jelenković, Branislav, "Inducing subwavelength periodic nanostructures on multilayer NiPd thin film by low-fluence femtosecond laser beam" in Applied Surface Science, 417 (2017):155-159,
https://doi.org/10.1016/j.apsusc.2017.03.141 . .
3
3
3

Design of co-existence parallel periodic surface structure induced by picosecond laser pulses on the Al/Ti multilayers

Petrović, Suzana; Peruško, Davor; Kovač, Janez; Panjan, Peter; Mitrić, Miodrag; Pjević, Dejan J.; Kovačević, Aleksander; Jelenković, Branislav

(2017)

TY  - JOUR
AU  - Petrović, Suzana
AU  - Peruško, Davor
AU  - Kovač, Janez
AU  - Panjan, Peter
AU  - Mitrić, Miodrag
AU  - Pjević, Dejan J.
AU  - Kovačević, Aleksander
AU  - Jelenković, Branislav
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1746
AB  - Formation of periodic nanostructures on the Ti/5x(Al/Ti)/Si multilayers induced by picosecond laser pulses is studied in order to better understand the formation of a laser-induced periodic surface structure (LIPSS). At fluence slightly below the ablation threshold, the formation of low spatial frequency-LIPSS (LSFL) oriented perpendicular to the direction of the laser polarization is observed on the irradiated area. Prolonged irradiation while scanning results in the formation of a high spatial frequency-LIPSS (HSFL), on top of the LSFLs, creating a co-existence parallel periodic structure. HSFL was oriented parallel to the incident laser polarization. Intermixing between the Al and Ti layers with the formation of Al-Ti intermetallic compounds was achieved during the irradiation. The intermetallic region was formed mostly within the heat affected zone of the sample. Surface segregation of aluminium with partial ablation of the top layer of titanium was followed by the formation of an ultra-thin Al2O3 film on the surface of the multi-layered structure. Published by AIP Publishing.
T2  - Journal of Applied Physics
T1  - Design of co-existence parallel periodic surface structure induced by picosecond laser pulses on the Al/Ti multilayers
VL  - 122
IS  - 11
DO  - 10.1063/1.4985830
ER  - 
@article{
author = "Petrović, Suzana and Peruško, Davor and Kovač, Janez and Panjan, Peter and Mitrić, Miodrag and Pjević, Dejan J. and Kovačević, Aleksander and Jelenković, Branislav",
year = "2017",
abstract = "Formation of periodic nanostructures on the Ti/5x(Al/Ti)/Si multilayers induced by picosecond laser pulses is studied in order to better understand the formation of a laser-induced periodic surface structure (LIPSS). At fluence slightly below the ablation threshold, the formation of low spatial frequency-LIPSS (LSFL) oriented perpendicular to the direction of the laser polarization is observed on the irradiated area. Prolonged irradiation while scanning results in the formation of a high spatial frequency-LIPSS (HSFL), on top of the LSFLs, creating a co-existence parallel periodic structure. HSFL was oriented parallel to the incident laser polarization. Intermixing between the Al and Ti layers with the formation of Al-Ti intermetallic compounds was achieved during the irradiation. The intermetallic region was formed mostly within the heat affected zone of the sample. Surface segregation of aluminium with partial ablation of the top layer of titanium was followed by the formation of an ultra-thin Al2O3 film on the surface of the multi-layered structure. Published by AIP Publishing.",
journal = "Journal of Applied Physics",
title = "Design of co-existence parallel periodic surface structure induced by picosecond laser pulses on the Al/Ti multilayers",
volume = "122",
number = "11",
doi = "10.1063/1.4985830"
}
Petrović, S., Peruško, D., Kovač, J., Panjan, P., Mitrić, M., Pjević, D. J., Kovačević, A.,& Jelenković, B.. (2017). Design of co-existence parallel periodic surface structure induced by picosecond laser pulses on the Al/Ti multilayers. in Journal of Applied Physics, 122(11).
https://doi.org/10.1063/1.4985830
Petrović S, Peruško D, Kovač J, Panjan P, Mitrić M, Pjević DJ, Kovačević A, Jelenković B. Design of co-existence parallel periodic surface structure induced by picosecond laser pulses on the Al/Ti multilayers. in Journal of Applied Physics. 2017;122(11).
doi:10.1063/1.4985830 .
Petrović, Suzana, Peruško, Davor, Kovač, Janez, Panjan, Peter, Mitrić, Miodrag, Pjević, Dejan J., Kovačević, Aleksander, Jelenković, Branislav, "Design of co-existence parallel periodic surface structure induced by picosecond laser pulses on the Al/Ti multilayers" in Journal of Applied Physics, 122, no. 11 (2017),
https://doi.org/10.1063/1.4985830 . .
1
6
2
5

Semi-transparent, conductive thin films of electrochemical exfoliated graphene

Marković, Zoran M.; Budimir, Milica; Kepić, Dejan P.; Holclajtner-Antunović, Ivanka D.; Marinović-Cincović, Milena; Dramićanin, Miroslav; Spasojević, Vojislav; Peruško, Davor; Špitalsky, Zdenko; Mičušik, Matej; Pavlović, Vladimir B.; Todorović-Marković, Biljana

(2016)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Budimir, Milica
AU  - Kepić, Dejan P.
AU  - Holclajtner-Antunović, Ivanka D.
AU  - Marinović-Cincović, Milena
AU  - Dramićanin, Miroslav
AU  - Spasojević, Vojislav
AU  - Peruško, Davor
AU  - Špitalsky, Zdenko
AU  - Mičušik, Matej
AU  - Pavlović, Vladimir B.
AU  - Todorović-Marković, Biljana
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1043
AB  - The electrochemical exfoliation of graphite to give one-atom-thick graphene with desirable properties is a green, cost-effective method for high-yield graphene production. This paper presents the results of electrochemical exfoliation of two different graphite precursors under an applied direct current voltage of +12 V. The used characterization techniques (elemental analysis, Fourier transform infrared spectroscopy, X-ray diffraction, X-photoelectron spectroscopy, Raman spectroscopy, field emission scanning electron microscopy and atomic force microscopy) showed that the exfoliated powder is highly functionalized with a low carbon/oxygen content that is similar to graphene oxide. The exfoliated graphene sheets dispersed in N,N-dimethylformamide were deposited on ano-discs by vacuum filtration and transferred to glass ceramic substrates. The thermal annealing of the as-deposited films at 600 degrees C for 30 minutes resulted in an increase in the carbon/oxygen ratio by more than 3 fold and a decrease in the sheet resistance by 25%. The lowest values for the sheet resistance of the annealed graphene thin films were in the range of 0.32 +/- 0.04 to 0.84 +/- 0.1 kohm sq(-1) depending on the graphite source that was used.
T2  - RSC Advances
T1  - Semi-transparent, conductive thin films of electrochemical exfoliated graphene
VL  - 6
IS  - 45
SP  - 39275
EP  - 39283
DO  - 10.1039/c6ra04250c
ER  - 
@article{
author = "Marković, Zoran M. and Budimir, Milica and Kepić, Dejan P. and Holclajtner-Antunović, Ivanka D. and Marinović-Cincović, Milena and Dramićanin, Miroslav and Spasojević, Vojislav and Peruško, Davor and Špitalsky, Zdenko and Mičušik, Matej and Pavlović, Vladimir B. and Todorović-Marković, Biljana",
year = "2016",
abstract = "The electrochemical exfoliation of graphite to give one-atom-thick graphene with desirable properties is a green, cost-effective method for high-yield graphene production. This paper presents the results of electrochemical exfoliation of two different graphite precursors under an applied direct current voltage of +12 V. The used characterization techniques (elemental analysis, Fourier transform infrared spectroscopy, X-ray diffraction, X-photoelectron spectroscopy, Raman spectroscopy, field emission scanning electron microscopy and atomic force microscopy) showed that the exfoliated powder is highly functionalized with a low carbon/oxygen content that is similar to graphene oxide. The exfoliated graphene sheets dispersed in N,N-dimethylformamide were deposited on ano-discs by vacuum filtration and transferred to glass ceramic substrates. The thermal annealing of the as-deposited films at 600 degrees C for 30 minutes resulted in an increase in the carbon/oxygen ratio by more than 3 fold and a decrease in the sheet resistance by 25%. The lowest values for the sheet resistance of the annealed graphene thin films were in the range of 0.32 +/- 0.04 to 0.84 +/- 0.1 kohm sq(-1) depending on the graphite source that was used.",
journal = "RSC Advances",
title = "Semi-transparent, conductive thin films of electrochemical exfoliated graphene",
volume = "6",
number = "45",
pages = "39275-39283",
doi = "10.1039/c6ra04250c"
}
Marković, Z. M., Budimir, M., Kepić, D. P., Holclajtner-Antunović, I. D., Marinović-Cincović, M., Dramićanin, M., Spasojević, V., Peruško, D., Špitalsky, Z., Mičušik, M., Pavlović, V. B.,& Todorović-Marković, B.. (2016). Semi-transparent, conductive thin films of electrochemical exfoliated graphene. in RSC Advances, 6(45), 39275-39283.
https://doi.org/10.1039/c6ra04250c
Marković ZM, Budimir M, Kepić DP, Holclajtner-Antunović ID, Marinović-Cincović M, Dramićanin M, Spasojević V, Peruško D, Špitalsky Z, Mičušik M, Pavlović VB, Todorović-Marković B. Semi-transparent, conductive thin films of electrochemical exfoliated graphene. in RSC Advances. 2016;6(45):39275-39283.
doi:10.1039/c6ra04250c .
Marković, Zoran M., Budimir, Milica, Kepić, Dejan P., Holclajtner-Antunović, Ivanka D., Marinović-Cincović, Milena, Dramićanin, Miroslav, Spasojević, Vojislav, Peruško, Davor, Špitalsky, Zdenko, Mičušik, Matej, Pavlović, Vladimir B., Todorović-Marković, Biljana, "Semi-transparent, conductive thin films of electrochemical exfoliated graphene" in RSC Advances, 6, no. 45 (2016):39275-39283,
https://doi.org/10.1039/c6ra04250c . .
9
30
15
27

Single- and dual-wavelength laser pulses induced modification in 10x(Al/Ti)/Si multilayer system

Salatić, Branislav; Petrović, Suzana; Peruško, Davor; Čekada, Miha; Panjan, Peter; Pantelić, Dejan; Jelenković, Branislav

(Elsevier, 2016)

TY  - JOUR
AU  - Salatić, Branislav
AU  - Petrović, Suzana
AU  - Peruško, Davor
AU  - Čekada, Miha
AU  - Panjan, Peter
AU  - Pantelić, Dejan
AU  - Jelenković, Branislav
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/858
AB  - The surface morphology of the ablation craters created in the multilayer 10x(Al/Ti)/Si system by nanosecond laser pulses at single- and dual wavelength has been studied experimentally and numerically. A complex multilayer thin film including ten (Al/Ti) bilayers deposited by ion sputtering on Si(1 0 0) substrate to a total thickness of 260 nm were illuminated at different laser irradiance in the range 0.25-3.5 x 10(9)W cm(-2). Single pulse laser irradiation was done at normal incidence in air, with the single wavelength, either at 532 nm or 1064 nm or with both laser light simultaneously in the ratio of 1: 10 for energy per pulse between second harmonic and 1064 nm. Most of the absorbed laser energy was rapidly transformed into heat, producing intensive modifications of composition and morphology on the sample surface. The results show an increase in surface roughness, formation of specific nanostructures, appearance of hydrodynamic features and ablation of surface material with crater formation. Applying a small fraction (10%) of the second harmonic in dual-wavelength pulses, a modification of the 10x(Al/Ti)/Si system by a single laser pulse was reflected in the formation of wider and/or deeper craters. Numerical calculations show that the main physical mechanism in ablation process is normal evaporation without phase explosion. The calculated and experimental results agree relatively well for the whole irradiance range, what makes the model applicable to complex Al/Ti multilayer systems. (C) 2015 Elsevier B.V. All rights reserved.
PB  - Elsevier
T2  - Applied Surface Science
T1  - Single- and dual-wavelength laser pulses induced modification in 10x(Al/Ti)/Si multilayer system
VL  - 360
SP  - 559
EP  - 565
DO  - 10.1016/j.apsusc.2015.10.203
ER  - 
@article{
author = "Salatić, Branislav and Petrović, Suzana and Peruško, Davor and Čekada, Miha and Panjan, Peter and Pantelić, Dejan and Jelenković, Branislav",
year = "2016",
abstract = "The surface morphology of the ablation craters created in the multilayer 10x(Al/Ti)/Si system by nanosecond laser pulses at single- and dual wavelength has been studied experimentally and numerically. A complex multilayer thin film including ten (Al/Ti) bilayers deposited by ion sputtering on Si(1 0 0) substrate to a total thickness of 260 nm were illuminated at different laser irradiance in the range 0.25-3.5 x 10(9)W cm(-2). Single pulse laser irradiation was done at normal incidence in air, with the single wavelength, either at 532 nm or 1064 nm or with both laser light simultaneously in the ratio of 1: 10 for energy per pulse between second harmonic and 1064 nm. Most of the absorbed laser energy was rapidly transformed into heat, producing intensive modifications of composition and morphology on the sample surface. The results show an increase in surface roughness, formation of specific nanostructures, appearance of hydrodynamic features and ablation of surface material with crater formation. Applying a small fraction (10%) of the second harmonic in dual-wavelength pulses, a modification of the 10x(Al/Ti)/Si system by a single laser pulse was reflected in the formation of wider and/or deeper craters. Numerical calculations show that the main physical mechanism in ablation process is normal evaporation without phase explosion. The calculated and experimental results agree relatively well for the whole irradiance range, what makes the model applicable to complex Al/Ti multilayer systems. (C) 2015 Elsevier B.V. All rights reserved.",
publisher = "Elsevier",
journal = "Applied Surface Science",
title = "Single- and dual-wavelength laser pulses induced modification in 10x(Al/Ti)/Si multilayer system",
volume = "360",
pages = "559-565",
doi = "10.1016/j.apsusc.2015.10.203"
}
Salatić, B., Petrović, S., Peruško, D., Čekada, M., Panjan, P., Pantelić, D.,& Jelenković, B.. (2016). Single- and dual-wavelength laser pulses induced modification in 10x(Al/Ti)/Si multilayer system. in Applied Surface Science
Elsevier., 360, 559-565.
https://doi.org/10.1016/j.apsusc.2015.10.203
Salatić B, Petrović S, Peruško D, Čekada M, Panjan P, Pantelić D, Jelenković B. Single- and dual-wavelength laser pulses induced modification in 10x(Al/Ti)/Si multilayer system. in Applied Surface Science. 2016;360:559-565.
doi:10.1016/j.apsusc.2015.10.203 .
Salatić, Branislav, Petrović, Suzana, Peruško, Davor, Čekada, Miha, Panjan, Peter, Pantelić, Dejan, Jelenković, Branislav, "Single- and dual-wavelength laser pulses induced modification in 10x(Al/Ti)/Si multilayer system" in Applied Surface Science, 360 (2016):559-565,
https://doi.org/10.1016/j.apsusc.2015.10.203 . .
3
3
4

Laser irradiation of 10x(Ni/Ti)/Si multilayers at different wavelengths

Salatić, Branislav; Petrović, Suzana; Peruško, Davor; Čekada, Miha; Jelenković, Branislav; Pantelić, Dejan

(2016)

TY  - JOUR
AU  - Salatić, Branislav
AU  - Petrović, Suzana
AU  - Peruško, Davor
AU  - Čekada, Miha
AU  - Jelenković, Branislav
AU  - Pantelić, Dejan
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1108
AB  - A study of the effects of laser irradiation on the morphology and composition of Ni/Ti multilayers induced by nanosecond laser pulses at different wavelengths is reported. Irradiation of complex 109(Ni/Ti)/Si sample was done by a Nd:YAG laser which operate at a 1064 nm wavelength, frequency doubled wavelength (532 nm) and dual-wavelength (1064 and 532 nm). The following surface morphological changes were observed: (1) ablation of the thin film during the first laser pulse and (2) appearance of some nanostructures (mosaic structure) in the irradiated region. After action of one pulse, the boundary of damage area was relatively sharp at low pulse energy, whereas it was diffuse after irradiation with higher energy per pulse. The results obtained show that laser irradiation induced mixing between Ni and Ti layers which creates conditions for the formation of intermetallic compounds. A numerical model was used to predict ablation depths and temperatures inside the material during the time. The model prediction shows a close agreement with experimental data.
T2  - Optical and Quantum Electronics
T1  - Laser irradiation of 10x(Ni/Ti)/Si multilayers at different wavelengths
VL  - 48
IS  - 6
DO  - 10.1007/s11082-016-0503-4
ER  - 
@article{
author = "Salatić, Branislav and Petrović, Suzana and Peruško, Davor and Čekada, Miha and Jelenković, Branislav and Pantelić, Dejan",
year = "2016",
abstract = "A study of the effects of laser irradiation on the morphology and composition of Ni/Ti multilayers induced by nanosecond laser pulses at different wavelengths is reported. Irradiation of complex 109(Ni/Ti)/Si sample was done by a Nd:YAG laser which operate at a 1064 nm wavelength, frequency doubled wavelength (532 nm) and dual-wavelength (1064 and 532 nm). The following surface morphological changes were observed: (1) ablation of the thin film during the first laser pulse and (2) appearance of some nanostructures (mosaic structure) in the irradiated region. After action of one pulse, the boundary of damage area was relatively sharp at low pulse energy, whereas it was diffuse after irradiation with higher energy per pulse. The results obtained show that laser irradiation induced mixing between Ni and Ti layers which creates conditions for the formation of intermetallic compounds. A numerical model was used to predict ablation depths and temperatures inside the material during the time. The model prediction shows a close agreement with experimental data.",
journal = "Optical and Quantum Electronics",
title = "Laser irradiation of 10x(Ni/Ti)/Si multilayers at different wavelengths",
volume = "48",
number = "6",
doi = "10.1007/s11082-016-0503-4"
}
Salatić, B., Petrović, S., Peruško, D., Čekada, M., Jelenković, B.,& Pantelić, D.. (2016). Laser irradiation of 10x(Ni/Ti)/Si multilayers at different wavelengths. in Optical and Quantum Electronics, 48(6).
https://doi.org/10.1007/s11082-016-0503-4
Salatić B, Petrović S, Peruško D, Čekada M, Jelenković B, Pantelić D. Laser irradiation of 10x(Ni/Ti)/Si multilayers at different wavelengths. in Optical and Quantum Electronics. 2016;48(6).
doi:10.1007/s11082-016-0503-4 .
Salatić, Branislav, Petrović, Suzana, Peruško, Davor, Čekada, Miha, Jelenković, Branislav, Pantelić, Dejan, "Laser irradiation of 10x(Ni/Ti)/Si multilayers at different wavelengths" in Optical and Quantum Electronics, 48, no. 6 (2016),
https://doi.org/10.1007/s11082-016-0503-4 . .
1
1
1